
Difficult configurations — on the complexity of

LTrL

Igor Walukiewicz1

Institute of Informatics, Warsaw University
Banacha 2, 02-097 Warsaw, POLAND

January 6, 2005

Abstract

The complexity of LTrL, a global linear time temporal logic over
traces is investigated. The logic is global because the truth of a formula
is evaluated in a global state, also called configuration. The logic is
shown to be non-elementary with the main reason for this complexity
being the nesting of until operators in formulas. The fragment of the
logic without the until operator is shown to be EXPSPACE-hard.

1 Introduction

Infinite words, which are linear orders on events, are often used to model
executions of systems. Infinite traces, which are partial orders on events, are
often used to model concurrent systems when we do not want to put some
arbitrary ordering on actions occurring concurrently. A state of a system
in the linear model is just a prefix of an infinite word; it represents the
actions that have already happened. A state of a system in the trace model
is a configuration, i.e., a finite downwards closed set of events that already
happened.

Temporal logics over traces come in two sorts: a local and a global one.
The truth of a formula in a local logic is evaluated in an event, the truth of
a formula in a global logic is evaluated in a configuration. Global logics have
the advantage of talking directly about configurations hence potentially it
is easier to write specifications in them.

1Supported by Polish KBN grant No. 8 T11C 002 11

1

In this paper we investigate the complexity of LTrL, a global temporal
logic over traces proposed in [TW97]. Originally this logic had special for-
mulas of the form 〈a−1〉tt. We do not need these formulas for the lower
bounds in this paper. Diekert and Gastin has recently shown [DG00] that
even without these formulas the logic is expressively complete with respect
to first-order logic.

We show that the satisfiability problem for LTrL is non-elementary. As
it turns out, it is the nesting of until operators that gives such a high com-
plexity. This makes it natural to ask what is the complexity of the logic
without the until operator. We investigate a global logic, LTrL−, contain-
ing only “for some configuration in the future” modality and “next step”
modalities. We show that this logic is EXPSPACE-hard. These results give
also the bounds on the model checking problem for the logics in question.

The presented results show that the complexity of global logics is big-
ger than the complexity of local logics. It is well known that LTL, a
linear temporal logic over infinite words, is PSPACE-complete. It is still
PSPACE-complete if we have just “some time in the future” operator in-
stead of the until operator [SC85]. Local temporal logics for traces proposed
in [APP95, Ram96, Thi94] have also PSPACE complexity. It is not known
what kinds of global properties are expressible in these local logics. More
recently [Nie98, Wal00] some variants of the mu-calculus were proposed.
These are expressively complete with respect to monadic second-order logic
on traces and have PSPACE complexity. Our results show that express-
ing global trace properties in these logics, if at all possible, will require big
formulas.

There are not many results known about the complexity of global logics.
Some undecidability results were obtained in [KPRP95, Pen92]. The most
relevant here is the paper by Alur, McMillan and Peled [AMP98]. In this
paper an EXPSPACE upper bound is shown for the logic ISTL�. This
fragment corresponds to LTrL− with atomic propositions but without next
modalities. We conjecture that LTrL− can be decided in EXPSPACE too.

Let us finish this introduction with some remarks on a more general
context of this paper. From the verification point of view, traces are in-
teresting for at least two reasons. First, as the development of the trace
theory shows [DR95], they are “like words” because most of the proper-
ties of words have their counterparts in traces. The generalization from
words to traces is interesting because it is far from trivial and it requires
new methods and new insights. Next, traces can model systems more faith-
fully than words as they do not introduce ad hoc dependencies. Because
of this, traces promise to offer some help in coping with the state explosion

2

problem [Val92, God96, Pel96].
If we agree that modeling systems with traces is a good enough idea to

try then the immediate question is: how to express properties of traces. For
this we must understand the complexity of checking properties over traces.
Instead of talking about particular properties it is often better to design a
logic and talk about a set of properties definable in this logic. A twenty
year long development of temporal logics suggests strong candidates for the
classes of properties we want to express – the classes of properties express-
ible in first-order and monadic second-order logic over traces represented as
dependence graphs. Here we focus on properties expressible in first-order
logic. This class of properties has many different characterizations [EM93]
and is a natural counterpart of the class of properties expressible in LTL over
words. The next question then is: with what kinds of operators we want to
express this class of properties. LTL and first-order logic can express exactly
the same properties of infinite words but, often, LTL is preferred because of
its low complexity. This low complexity would be useless if it was not often
the case that the properties we want to express can be written as small LTL
formulas. To have this feature in the trace world it seems reasonable to base
a logic on configurations and not events. Unfortunately, the present paper
shows that one has to be very careful with operators one allows unless one
is willing to cope with very high complexity.

In the next section we give the necessary definitions and notations. In
Section 3 we describe the proof of the non-elementary lower bound for LTrL.
In Section 4 we show the EXPSPACE lower bound for the fragment, LTrL−,
of LTrL.

2 Preliminaries

A (Mazurkiewicz) trace alphabet is a pair (Σ, I) where Σ is a finite set of
actions and I ⊆ Σ×Σ is an irreflexive and symmetric independence relation.
Its complement D = (Σ× Σ)− I is called the dependency relation.

We shall view (Mazurkiewicz) trace, over an alphabet (Σ, I), as a Σ-
labelled poset with special properties. Let (E,≤, λ) be a Σ-labelled poset,
i.e., (E,≤) is a poset and λ : E → Σ is a labelling function. For Y ⊆ E we
define ↓ Y = {x : ∃y ∈ Y. x ≤ y} and ↑Y = {x : ∃y ∈ Y. y ≤ x}. In case
Y = {y} is a singleton we shall write ↓ y (↑y) instead of ↓ {y} (↑{y}). We
also let l be the immediate successor relation: x l y iff x < y and for all
z ∈ E, x ≤ z ≤ y implies x = z or z = y.

A trace (over (Σ, I)) is a Σ-labelled poset T = (E,≤, λ) satisfying:

3

(T1) ∀e ∈ E. ↓e is a finite set.
(T2) ∀e, e′ ∈ E. e l e′ ⇒ (λ(e), λ(e′)) ∈ D.
(T3) ∀e, e′ ∈ E. (λ(e), λ(e′)) ∈ D ⇒ e ≤ e′ or e′ ≤ e.

We shall refer to members of E as events. All our traces will be infinite,
i.e., will have infinitely many events. The set of infinite traces over (Σ, I) is
denoted by TR(Σ, I).

Let T = (E,≤, λ) be a trace. A configuration is a finite subset C ⊆
E such that C =↓ C. We let Conf (T) be the set of configurations of T
and we let C,C ′, C ′′ range over Conf (T). Note that ∅, the empty set, is
a configuration and ↓ e is a configuration for every e ∈ E. Finally, the
transition relation →T⊆ Conf (T)× Σ× Conf (T) is given by: C

a
→T C ′ iff

there exists e ∈ E such that λ(e) = a and e /∈ C and C ′ = C ∪ {e}. It is
easy to see that if C

a
→T C ′ and C

a
→T C ′′ then C ′ = C ′′.

The set of formulas of our linear time temporal logic of traces (LTrL) is
defined as follows:

LTrL(Σ, I) ::= tt | ¬α | α ∧ β | 〈a〉α | α U β

where α, β range over formulas and a over actions. In the original definition
of LTrL there were also formulas of the form 〈a−1〉tt. These formulas are
not needed for the lower bounds we present here. Recently Diekert and
Gastin [DG00] has shown that these formulas do not increase the expressive
power of the logic.

A model of LTrL is a trace T = (E,≤, λ). The relation T,C |= α
will denote that formula α ∈ LTrL(Σ, I) is satisfied at configuration C ∈
Conf (T). This notion is defined via:

• T,C |= tt. Furthermore ¬ and ∧ are interpreted in the usual way.

• T,C |= 〈a〉α iff ∃C ′ ∈ Conf (T). C
a
→T C ′ and T,C ′ |= α.

• T,C |= α U β iff ∃C ′ ∈ Conf (T). C ⊆ C ′ and T,C ′ |= β and ∀C ′′ ∈
Conf (T). C ⊆ C ′′ ⊂ C ′ implies T,C ′′ |= α.

We will write T � α for T, ∅ � α. The semantics of until allows us to express
“sometime” and “always” modalities:

Eα ≡ tt U α Aα ≡ ¬E¬α

which have the expected semantics:

• T,C � Eα iff ∃C ′ ∈ Conf (T). C ⊆ C ′ and T,C ′ |= α.

4

• T,C |= Aα iff ∀C ′ ∈ Conf (T). C ⊆ C ′ implies T,C ′ |= α.

For a sequence of actions v1 . . . vn ∈ Σ∗ we will write 〈v1 . . . vn〉α instead
of 〈v1〉〈v2〉 . . . 〈vn〉α.

3 The complexity of LTrL

In this section we show a non-elementary lower bound for the complexity of
the satisfiability problem for LTrL. Let Tower stand for the “tower of expo-
nentials” function, i.e., Tower (0, n) = n and Tower (k + 1, n) = 2Tower(k,n).

Given a λx.Tower (m,x) space bounded Turing machine M and a word
w, we will construct a O(|w|2O(m) + |w|+ |M |) size formula that is satisfiable
iff w is accepted by M . This will show that the satisfiability problem for
LTrL cannot be solved in time bounded by the function λx.Tower (m,x)
for any fixed m. On the other hand the satisfiability problem can be solved
in time λm.Tower (m, 2). This follows from the translation of LTrL into
first-order logic over infinite words [TW97].

The plan of this section is the following. Our first goal is to show, on an
example, how to construct big counters with small formulas. Even before
the example we will introduce some extensions to our logic and show how
to code these extensions in the basic language. After the example we will
formally define what a big counter is and we will say what kind of formulas
we can write. Finally, we will explain how to use big counters to code long
computations of Turing machines.

Preliminary definitions and notations

For i = 0, 1, 2 let Σi = {ai, bi} and let Σi = {ai, bi}. Put ∆ = Σ0 ∪ Σ1 ∪ Σ2

and similarly for ∆. Our trace alphabet will be (∆∪∆, I) where I says that
two letters are independent iff one has a bar and the other does not, i.e.,
I = (∆×∆) ∪ (∆×∆).

In the formulas below we will use the construction 〈Σ〉α for a set of
letters Σ ⊆ ∆ or Σ ⊆ ∆. This just an abbreviation for

∨

σ∈Σ〈σ〉α. Of
course if we want to replace 〈Σ〉α with what it stands for, we may obtain
an exponentially bigger formula. This is not a problem for us because we
want to show a non-elementary lower bound. Anyway, below we will show
how to code 〈Σ〉α more efficiently if we have traces of a special form.

We will also use the construction 〈Σ∗〉α for a set of letters Σ ⊆ ∆ or
Σ ⊆ ∆. The meaning of such a formula is that 〈v〉α holds for some v ∈ Σ∗.
We need to require some special form of a trace to encode this formula with

5

the constructions we have in LTrL. Every trace over the alphabet we are
working with consists of two, independent from each other, sequences of
events (one over ∆ and one over ∆). Assume that we have two more letters
e, e. Letter e depends only on letters from ∆ and letter e depends only on
letters from ∆. We will force our traces to have e on every even position of
the ∆ sequence and e on every even position of the ∆ sequence. So traces
we will consider will look as follows:

eσ0eσ1 · · ·eσi · · ·

eρ0eρ1 · · ·eρi · · ·

where σ0, σ1, . . . ∈ ∆ and ρ0, ρ1, . . . ∈ ∆. It is easy to write a formula forcing
the trace to be of this shape. Over such traces the formula 〈(Σ ∪ {e})∗〉α
is equivalent to

(

〈e〉tt ∧ 〈Σ ∪ {e}〉tt
)

U (α ∧ 〈e〉〈e〉tt). Strictly speaking it is
equivalent in configurations satisfying 〈e〉〈e〉tt. We could avoid this problem
but anyway we will be interested only in configurations satisfying 〈e〉〈e〉tt.
Let us also mention that if we have this form of trace then there is a more
efficient way to code 〈Σ〉α. In case Σ ⊆ ∆, we can define it with the formula:
〈e〉

(

〈e〉tt∧¬〈e〉tt ∧
∧

a6∈(∆−Σ) ¬〈a〉tt
)

U (α∧ 〈e〉tt). Because α appears only
once in this formula, we avoid an exponential blowup caused by the previous
translation.

To make the presentation easier we will forget about e and e letters and
use 〈Σ∗〉α construct as if we had it in our language. Nevertheless all formulas
we will write below can be translated to the core language without 〈Σ∗〉α
construct. First step in this translation is to add a formula requiring that
every second letter in the upper sequence is e and every second letter in the
lower sequence is e. Then we need to make translated formulas to see only
configurations starting with ee; or in other words configurations satisfying
〈e〉〈e〉tt. For this we replace each 〈a〉β by 〈ea〉β and similarly for the letters
with bars. We replace α U β with (〈e〉〈e〉tt ⇒ α) U (β ∧ 〈e〉〈e〉tt). Finally,
we replace each 〈Σ∗〉α by its definition from the above.

Counters: an example

After this preliminary definitions, let us start with the description of the
construction. A word l ∈ (Σ0)

n can be considered as a counter when we
identify a0 with 0 and b0 with 1. The value of such a counter σ0 . . . σn−1 ∈
(Σ0)

n is
∑

i=0,...,n−1 σi2
i. (Note that the most significant digit is to the

right.) Similarly an element of (Σ0)
n can be regarded as a counter.

6

Consider the following formulas:

counter 0 ≡〈Σ0〉
n〈Σ0〉

n〈Σ1〉〈Σ1〉tt

same0 ≡
∧

i=0,...,n−1

〈Σ0〉
i〈Σ0〉

i
(

〈a0〉〈a0〉tt ∨ 〈b0〉〈b0〉tt
)

first0 ≡〈a0〉
n〈a0〉

n〈Σ1〉〈Σ1〉tt

Recall that the letters from ∆ are independent from the letters from ∆ so,
for example, 〈a0〉〈a0〉tt is equivalent to 〈a0〉〈a0〉tt. The formula counter 0

says that a trace starts with two counters, one over Σ0 and one over Σ0.
After these counters, there are letters from Σ1 and Σ1 which will be used
later for defining bigger counters. The formula same 0 says that the counters
at the beginning of a trace represent the same values. One can also write, a
slightly longer, formula next 0 saying that the value of the Σ0 counter is one
plus the value of the Σ0 counter. Finally, the formula first 0 just says that
the values of the two counters are 0. Similarly we can write a formula last0

saying the that values of the two counters are 2n − 1.
Now we want to write a formula counter 1 forcing the beginning of a

trace to consist of two exponentially longer counters. We call them level 1
counters as opposed to level 0 counters defined above. For level 1 counter
the beginning of a trace will have the form

l0σ0l1σ1 . . .lkσkσ

l0ρ0l1ρ1 . . .lkρkρ
(1)

where k = 2n − 1; li ∈ (Σ0)
n and li ∈ (Σ0)

n are counters representing
successive numbers; σi ∈ Σ1, ρi ∈ Σ1, σ ∈ Σ2, ρ ∈ Σ2 (for i = 0, . . . , k).

counter 1 ≡first0 ∧(α U 〈Σ2〉〈Σ2〉tt)

α ≡ same0 ⇒ (last0 ∧β1) ∨ (¬ last0 ∧β2)

β1 ≡〈Σ0〉
n〈Σ0〉

n〈Σ1〉〈Σ1〉〈Σ2〉〈Σ2〉tt

β2 ≡〈Σ0〉
n〈Σ1〉

(

next0 ∧〈Σ0〉
n〈Σ1〉 same0

)

The first conjunct of formula counter 1 says that a trace should begin with
two level 0 counters representing 0 followed by σ0 and ρ0. The second
conjunct of counter 1 says that α should be true until we reach (uniquely
determined) configuration from which it is possible to do 〈Σ2〉〈Σ2〉. Formula
α says that whenever we are in a configuration ahead of which there are two
level 0 counters with the same values then either these counters represent

7

the maximal values and β1 holds or otherwise β2 holds. Formula β1 takes
care about the end of the counter. It says that after the counters we should
have σk, ρk, σ, ρ. Formula β2 says that the value of the next Σ0 counter is
bigger by one than the value of the current Σ0 counter and is equal to the
value of the next Σ0 counter.

A σ-counter, i.e., the upper line of the trace (1) represents the number
∑

i=0,...,k σi2
i (with the convention that a stands for 0 and b stands for 1).

Similarly for the ρ-counter, i.e., the lower line of the trace. We can force the
value of the σ-counter to have the same value as the ρ-counter. This can be
done using the formula same1:

same1 ≡δ U 〈Σ2〉〈Σ2〉tt

δ ≡ same0 ⇒ 〈Σ0〉
n〈Σ0〉

n(〈a1〉〈a1〉tt ∨ 〈b1〉〈b1〉tt)

This formula says that whenever a configuration starts with two counters
representing the same value of level 0 counters then these counters are fol-
lowed either by two letters representing 0 or by two letters representing
1.

With a slightly more elaborate formula, next 1, we can force the value of
the σ-counter to be one plus the value of the ρ-counter.

This way we have obtained exponentially bigger counters than the ones
we have started with. We have also means to test whether two counters are
equal and to test that the value of one counter is one plus the value of the
other. It is easy to write formulas saying that the a counter has value 0
or that it has the maximal possible value. At this point we can iterate the
whole construction to get even bigger counters.

Counters: definition

For describing inductive construction of bigger and bigger counters we need
a precise definition of what a counter is. To simplify matters, a counter of
level 0 does not count to n as in our example above but just to 1. A counter
of level n > 0 is a trace with the prefix of the form:

l0σ0l1σ1 . . .lkσkσ

l0ρ0l1ρ1 . . .lkρkρ
(2)

where k = Tower (n, 2)−1. For each i = 0, . . . , k, a trace liσiliρi is a counter
of level n−1 representing the number i; these counters are over the alphabets
∆n−1 =

⋃

i=1,...n−1 Σi and ∆n−1. Letters σi are from Σn = {an, bn}, letters

8

ρi are from Σn. Finally σ ∈ Σn+1, ρ ∈ Σn+1. We use a, a with indices to
represent 0 and b, b with indices to represent 1. So the sequence σ0, . . . , σk

represents the number
∑k

i=0 σi2
i.

We can construct formulas: (i) counter (n) saying that a trace starts with
the counter of level n; (ii) same(n) saying that if a trace is of the form (2)
then σ0, . . . , σk and ρ0, . . . , ρk represent the same numbers; (iii) next(n)
saying that the number represented by σ0, . . . , σk is one plus the number
represented by ρ0, . . . , ρk. Below we only present the counter formula. The
remaining formulas are given in Appendix A.

counter (0) ≡〈Σ0〉〈Σ0〉〈Σ1〉〈Σ1〉tt

counter (n + 1) ≡first(n) ∧ (α U 〈Σn+2〉〈Σn+2〉tt)

α(n) ≡(counter (n) ∧ same(n)) ⇒
[

(last(n) ∧ β1(n + 1)) ∨ (¬ last(n) ∧ β2(n + 1))
]

β1(n + 1) ≡〈(∆n ∪∆n)∗〉〈Σn+1〉〈Σn+1〉〈Σn+2〉〈Σn+2〉tt

β2(n + 1) ≡〈∆∗
n〉〈Σn+1〉

(

next(n) ∧ 〈∆
∗
n〉〈Σn + 1〉 same(n)

)

We have:

Lemma 1 For every trace T and n ∈ N. T is a counter of level n iff
T � counter (n). The size of the formula counter(n) is 2O(n).

The proof of the lemma is given in Appendix A.

Encoding of Turing Machines

Let m ≥ 0 and let M be a λx.Tower (m,x) space bounded Turing machine.
For a given word w ∈ {0, 1}∗ we are going to write a formula Accept that
is satisfiable iff w ∈ L(M). Configurations of M on w can be of length
Tower (m, |w|), so we need counters able to count up to this number. Let
n be the smallest number such that Tower (n, 2) ≥ Tower (m, |w|). Clearly
n ≤ m + log(|w|).

Let Q be the set of states of M , Γ its tape alphabet, qI , qF its initial and
finial sates respectively. The blank symbol is denoted by B. A configuration
is a word `vqv′a with v representing symbols to the left of the head, v ′

representing symbols to the right, and the head looking at the first symbol
of v′. We use symbols ` and a as end markers. Let Ω = Q ∪ Γ ∪ {`,a} be
the alphabet needed to write down configurations.

9

We can now define our trace alphabet. Recall that ∆n stands for
⋃

i=0,...,n Σn

and ∆n denotes the corresponding set of letters with bars. Our trace al-
phabet is (∆n ∪ Ω ∪ ∆n ∪ Ω ∪ {$, $}, I), where I says that two letters are
independent iff one has a bar and the other doesn’t.

The first step in constructing the formula Accept is to write a formula
Conf saying that a prefix of a trace is of the form:

l0σ
0
0l1σ

0
1 . . .lkσ

0
k$

l0ρ
0
0l1ρ

0
1 . . .lkρ

0
k$

(3)

where k = Tower (n, 2), the letters σi come from Ω, letters ρi come from Ω
and $, $ are special end markers. This form is exactly the same as the form of
the counter (2) but with letters σi and ρi from a different alphabet. Formula
Conf can be obtained by a simple modification of formula counter (n + 1)
(replace Σn+1 by Ω and Σn+2 by {$}).

To write the formula Accept we will need tools to define initial configu-
ration, and to say that one configuration is obtained from the other in one
step of M .

We start with a formula defining the initial configuration.

Init ≡Conf ∧Same

∧ 〈(∆n)∗ ` (∆n)∗qI(∆n)∗w1 . . . (∆n)∗w|w|(∆n)∗ a〉Blanks

Same ≡Conf ∧(δ U 〈$$〉tt)

δ ≡ same(n) ⇒ 〈∆∗
n〉〈∆

∗
n〉

∨

σ∈Ω

〈σ〉〈σ〉tt

Blanks ≡〈∆n ∪ {B}〉tt U 〈$〉tt

Formula Conf forces the beginning of the trace to be of shape (3). Formula
Same requires that for every i = 0, . . . , k the letter ρ0

i is the letter σ0
i with a

bar over it. The last conjunct of formula Init requires that the first letters
σ0

0 · · · σ
0
|w|+3 form the string `qIwa representing the initial configuration.

The rest of the symbols σ0
i is forced to be blanks.

Next we write the formula Comp which requires that each configuration
is followed by a configuration representing the next step of the simulated
machine. The intention is that the trace should look like:

l0σ
0
0l1σ

0
1 . . .lkσ

0
k$ · · · l0σ

i
0l1σ

i
1 . . . lkσ

i
k$ · · ·

l0ρ
0
0l1ρ

0
1 . . .lkρ

0
k$ · · · l0ρ

i
0l1ρ

i
1 . . . lkρ

i
k$ · · ·

(4)

with σi
0 . . . σi

k representing i-th configuration of the machine and each ρi
j

being the same letter as σi
j but with a bar (for all i > 0 and j = 0, . . . , k).

10

This formula can be written as:

Comp ≡α U (Conf ∧〈∆∗
n〉〈qF 〉tt)

α ≡Same ⇒ 〈(∆n ∪ Ω)∗〉〈$〉
(

Step ∧〈(∆n ∪ Ω)∗〉〈$〉(Conf ∧Same)
)

The formula says that if we are in a trace configuration where the upper
and the lower sequence represent the same machine configuration then the
next machine configuration on the upper sequence should be obtainable in
one step of the machine (this is the role of formula Step) and the next
configuration on the lower sequence should be the same as in the upper
sequence (this is guaranteed by the conjunction Conf ∧Same).

Formula Step, that we have not presented, looks at three consecutive let-
ters of the lower configuration (i.e., the configuration written in Ω), consults
the transition table of the machine and decides what letters should there
be in the upper configuration. We need to look at three letters at the time
because a letter may change at some position if and only if it is adjacent to
a state.

The formula Accept is Init ∧Comp. We obtain:

Lemma 2 Formula Accept is satisfiable iff w ∈ L(M)

In the construction of Accept we have used the alphabet depending on
the machine. Fortunately the traces we are interested in consist always
of two independent sequences of events. Hence we can code big alphabets
that we have used, with a four letter alphabet – two letters for each of the
sequences.

Finally, let us calculate the size of the formula Accept . The formula Conf
is of the same size as counter(n + 1) hence of the size 2O(n). Also same(n)
is of the size 2O(n). This makes the size of Init to be O(|w| + 2O(n)). The
only new element in the formula Comp is the formula Step. This formula
encodes the transition function of the machine and uses same(n). Hence the
size of Comp is O(|M |+2O(n)). This makes the whole formula Accept to be
of the size O(2O(n) + |w|+ |M |). Finally comes the duty of removing 〈∆〉α
and 〈∆∗〉α constructs but this causes only linear blowup.

Summarizing, for a λx.Tower (m,x) space bounded machine M and a
word w we construct a O(|w|2O(m) + |w|+ |M |) size formula Accept that is
satisfiable iff w ∈ L(M). This implies:

Theorem 3 Let (Σ, I) be a trace alphabet containing letters a, b, a, b with
the only dependencies among them being that between a and b and between
a and b. The satisfiability problem for LTrL over (Σ, I) is non-elementary.

11

4 A lower bound for the fragment of LTrL

As the previous section shows, it is until operator that is responsible for
non-elementary complexity. In this section we will deal with LTrL without
until. Instead of until we will allow “sometime” and “always” modalities (E
and A respectively) and a new next step modality 〈·〉α with the semantics:

T,C � 〈·〉α iff T,C � 〈a〉α for some action a

We call this logic LTrL−. The addition of the new modality requires some
justification. One justification is that we don’t know the complexity of
LTrL− without this modality. We don’t know its complexity even in the
case when all the letters dependent on each other. In this case we obtain
LTL, a linear time temporal logic, but without until, propositional constants
and arbitrary next time modality; what is left are 〈a〉 modalities and some-
times in the future modality. Of course 〈·〉α is equivalent to

∨

a∈Σ〈a〉α but
this definition shows that the formulas using 〈·〉 may be exponentially more
succinct. Finally, let us say that if we add any form of “trace independent”
propositional constants to LTrL− then we don’t need 〈·〉 modality to obtain
the EXPSPACE lower bound.

To encode computations of EXPSPACE Turing machines in traces we
will use similar ideas as in the previous section although we will not be able
to construct as huge counters as before because for this we need the until
operator. Here we will use counter alphabets: {a, b}, {c, d}, {a, b} and {c, d}.
A counter is a word over one of these four alphabets. The interpretation is
that a, b stand for 0 and b, d stand for 1.

Let M be a λx.2x space bounded Turing machine. Let Q be its set of
states, Γ its tape alphabet, qI and qF its initial and final states respectively.
Let w ∈ Γ∗ be a word, let n be the length of w and let k = 2n − 1. We are
going to write a formula Accept having the property:

Accept is satisfiable iff w ∈ L(M) (5)

The configuration of M is, as before, a string ` vqv ′ a, with v, v′ ∈ Γ∗

and q ∈ Q. We write Ω = Q ∪ Γ ∪ {`,a} for the alphabet needed to write
down configurations. Let ∆ = {a, b, c, d} be the counter alphabet and let Ω
and ∆ stand for the corresponding sets of letters with bars over them.

Our trace alphabet is (Ω∪∆∪Ω∪∆∪{↓,↗}, I) where I is the smallest
symmetric relation containing:

(

(Ω ∪∆)× (Ω ∪∆)
)

∪
(

{↓} × (Ω ∪∆)
)

∪
(

{↗} × (Ω ∪∆)
)

12

In words: letters with bars are independent from the letters without bars;
the symbol ↓ depends only on letters without bars and ↗; the symbol ↗
depends only on letters with bars and ↓.

The shape of traces we are after is:

la
0
σ0

0
la
1
σ0

1
. . . lakσ0

k ↓

la
0
ρ0

0
la
1
ρ0

1
. . . lakρ0

k ↗

lc
0
σ1

0
lc
1
σ1

1
. . . lckσ1

k ↓

lc
0
ρ1

0
lc
1
ρ1

1
. . . lckρ1

k ↗

· · ·

· · ·

↓ la
0
σi

0
la
1
σi

1
. . . lakσi

k ↓

↗ la
0
ρi
0
la
1
ρi
1
. . . lakρi

k ↗

· · ·

· · · (6)

The dashed arrows represent additional dependencies and the meanings of
the components is the following. For every i = 1, . . . , k, lai ∈ {a, b}n is a
counter representing number i; similarly for lai , lci lci . Letters σi

j , ρ
i
j ∈ Ω

are used to describe configurations. Intuitively σi
0 · · · σ

i
k will represent i-th

configuration. Letters ↓,↗ are used to force synchronization and their role
we will explain later.

In our formulas we will use the construction 〈Σ〉α, for some set of letters
Σ ⊆ (Ω ∪ ∆). To have a translation of this construction into our core
language without causing an exponential blowup we need once again to use
the trick with e, e letters. We extend the shape of the trace form (6) by
adding e as every second letter in the upper sequence and e as every second
letter in the lower sequence. Having this we can define 〈Σ〉α construction
by 〈·〉(α∧〈e〉tt)∧

∧

a6∈Σ ¬〈a〉tt. This long formula is equivalent to 〈Σ〉α only
in configurations satisfying 〈e〉tt but these will be the only configurations
we will be interested in. As in the previous section, we forget about the
complication caused by adding e, e letters and pretend that we have 〈Σ〉α
construct from the start. So in the formulas we will write, we will never
mention e, e letters.

We can write O(n) size formula Shape forcing a trace to be of the form
presented in (6) (c.f. Appendix B). We can also write a formula Init saying
that σ0

0 . . . σ0
|w|+3 form the initial configuration of M on w which is ` qIw a.

With a formula of size O(n), and no until, we cannot say that every σ0
i for

i > |w| + 3 is blank. This is not a problem as we will always look only at
the prefix up to the first a symbol and we will assume that M accepts with
the empty tape.

For every i ∈ N, we would like to force σi+1
0 . . . σi+1

k to represent the next
configuration after σi

0 . . . σi
k. First consider the formula:

same(a, a) ≡
∧

i=0,...,n−1

〈∆〉i〈∆〉i(〈a〉〈a〉tt ∨ 〈b〉〈b〉tt)

The formula same(a, a) says that from the current configuration we see two
counters, one over {a, b} and one over {a, b}, representing the same numbers.

13

Now, we can explain the role of the synchronization letters ↓,↗. Because
of the structure of the trace forced by these letters, if some configuration
satisfies same(a, a) then this configuration must be necessary of the form
symbolized by the thick vertical line:

la
0
σ0

0
la
1
σ0

1
. . . lakσ0

k ↓

la
0
ρ0

0
la
1
ρ0

1
. . . lakρ0

k ↗

lc
0
σ1

0
lc
1
σ1

1
. . . lckσ1

k ↓

lc
0
ρ1

0
lc
1
ρ1

1
. . . lckρ1

k ↗

· · ·

· · ·

↓ la
0
σi

0
la
1
σi

1
. . . laj σi

j . . . lakσi
k ↓

↗ la
0
ρi
0
la
1
ρi
1
. . . laj ρi

j . . . lakρi
k ↗

· · ·

· · ·

for some i and j. That the j’s in σi
j and ρi

j are the same is due to the fact
that the counters represent the same value. To see that that the i’s are the
same suppose i′ 6= i′′. Then both i′ and i′′ are even as they occur after {a, b}
and {a, b} counters. But then, form the shape of the trace it follows that the
positions of σi′

j and ρi′′

j are comparable in the dependency ordering. Hence

σi′

j and ρi′′

j cannot be both maximal elements of a configuration.
Next, we can write the formula:

β(a, a) ≡ A
(

same(a, a) ⇒ 〈∆〉n〈∆〉n
∨

σ∈Ω

〈σ〉〈σ〉tt
)

This formula says that whenever we see two counters (over {a, b} and {a, b})
representing the same numbers then the letters after them are the same.
This way we have σi

j = ρi
j for all even i and all j ∈ {0, . . . , k}.

Similarly one can write the formulas same(c, c) and β(c, c) forcing σ i
j =

ρi
j for all odd i and all j ∈ {0, . . . , k}.

Now, we want to write a formula saying that σi+1
0 . . . σi+1

k represents the
next configuration after ρi

0 . . . ρi
k. For this observe that in order to decide

what σi+1
j should be it is enough to know ρi

j−1, ρ
i
j , ρ

i
j+1. We define the

formula:
Ls(σ1, σ2, σ3) ≡ 〈∆〉n〈σ1〉〈∆〉

n〈σ2〉〈∆〉
n〈σ3〉tt

checking that the three consecutive letters from Ω in the upper sequence
(i.e., the one written with letters without bars) are σ1, σ2, σ3. Similarly we

14

can define Ls talking about the lower sequence. Consider the formulas:

Step(c, a) ≡ same(c, a) ⇒ γ1 ∧ γ2 ∧ γ3 ∧ γ4

γ1 ≡
∧

σ1,σ2,σ3∈Ω−Q

Ls(σ1, σ2, σ3) ⇒ 〈∆〉n〈Ω〉〈∆〉n〈σ2〉tt

γ2 ≡
∧

σ1,...,σ6∈Ω

(Ls(σ1, σ2, σ3) ∧ trans(σ1, . . . , σ6)) ⇒

Ls(σ4, σ5, σ6)

γ3 ≡〈∆〉
n〈Ω−Q〉〈∆〉n〈a〉 ⇒ 〈∆〉n〈Ω〉〈∆〉n〈a〉

γ4 ≡first(a) ⇒ 〈∆〉n〈`〉

The shape of the trace guarantees that the only configurations satisfying
same(c, a) are those ending in ρi

j and σi+1
j for some i ∈ N, j ∈ {0, . . . , k}.

Formula γ1 says that if none of ρi
j, ρ

i+1
j , ρi+2

j is a state then σi+1
j should be

the same as ρi+1
j but without a bar. Formula γ2 takes care of the case when

there is a state: we consult the transition function of M encoded in the
formula trans . Formula γ3 assures that the end of configuration marker is
copied correctly, similarly γ4 but for the start of configuration marker.

Finally, we can write a formula Finish saying that the automaton has
reached the final state and its head is at the leftmost position:

Finish ≡ 〈↓〉〈∆〉n〈`〉〈∆〉n〈qF 〉tt

Of course we can assume that if M accepts then it does so with the head at
the leftmost position. Our main formula is:

Accept ≡ Shape ∧ Init ∧β(a, a) ∧ β(c, c) ∧ Step(c, a) ∧ Step(c, a) ∧ Finish

It can be checked that this formula satisfies property (5). As the size of
Accept is linear in the size of |M |+ |w|, we obtain:

Theorem 4 Let (Σ, I) be a trace alphabet that contains six letters {a, b, c, d, ↓
,↗} with the only dependencies between these letters being those between:
(a, b), (c, d), (↓, a), (↓, b), (↗, c), (↗, d), (↓,↗). The satisfiability problem
for LTrL− over (Σ, I) is EXPSPACE-hard.

In [AMP98] an EXPSPACE upper bound is shown for ISTL�. This logic
is very similar to LTrL− but uses atomic propositions and does not have
next modalities. It is not clear how to extend the EXPSPACE upper bound
to LTrL although at first sight one can think that replacing next modalities

15

with propositions should not be very complex. Indeed, it is not known if the
extension ISTL�,© of ISTL� can be decided in EXPSPACE. We conjecture
that both LTrL− and ISTL�,© can be decided in EXPSPACE.

References

[AMP98] R. Alur, K. McMillan, and D. Peled. Deciding global partial-
order properties. In ICALP’98, number 1443 in LNCS, pages
41–52, 1998.

[APP95] Rajeev Alur, Doron Peled, and Wojciech Penczek. Model-
checking of causality properties. In LICS ’95, pages 90–100,
1995.

[DG00] Volker Diekert and Paul Gastin. LTL is expressively complete
for Mazurkiewicz traces. In ICALP’00, volume 1853 of LNCS,
pages 211–222, 2000.

[DR95] V. Diekert and G. Rozenberg, editors. The Book of Traces. World
Scientific, 1995.

[EM93] Werner Ebinger and Anca Muscholl. Logical definability on infi-
nite traces. In ICALP ’93, volume 700, pages 335–346, 1993.

[God96] P. Godefroid. Partial-order methods for the verification of con-
current systems, volume 1032 of LNCS. Springer-Verlag, 1996.

[KPRP95] K.Lodaya, R. Parikh, R.Ramanujam, and P.S.Thiagarajan. A
logical study of distributed transition systems. Information and
Computation, 119(1):91–118, 1995.

[Nie98] Peter Niebert. A Temporal Logic for the Specification and
Verification of Distributed Behaviour. PhD thesis, Univer-
sität Hildesheim, March 1998. Also available as Informatik-
Bericht Nr. 99-02,Institut für Software, Abteilung Program-
mierung, Technische Universität Braunschweig, Gaußstraße 11,
D-38092 Braunschweig/Germany.

[Pel96] D. Peled. Partial order reduction : model checking using repre-
sentatives. In MFCS’96, volume 1113 of LNCS, pages 93–112,
1996.

16

[Pen92] Wojciech Penczek. On udecidability of propositional temporal
logics on trace systems. Information Processing Letters, 43:147–
153, 1992.

[Ram96] R. Ramanujam. Locally linear time temporal logic. In LICS ’96,
pages 118–128, 1996.

[SC85] A.P. Sistla and E.M. Clarke. The complexity of propositional
linear time logic. J. ACM, 32:733–749, 1985.

[Thi94] P. S. Thiagarajan. A trace based extension of linear time tem-
poral logic. In LICS, pages 438–447, 1994.

[TW97] P. S. Thiagarajan and I. Walukiewicz. An expressively complete
linear time temporal logic for Mazurkiewicz traces. In LICS’97,
pages 183–194, 1997.

[Val92] A. Valmari. A stubborn attack on state explosion. Formal Meth-
ods in System Design, 1:297–322, 1992.

[Wal00] Igor Walukiewicz. Local logics for traces. Technical Report RS-
00-2, BRICS, Aarhus University, 2000. Extended version to ap-
pear in Journal of Automata, Languages and Combinatorics.

A The construction of the formula counter(n)

For i ∈ N we define Σi = {ai, bi} and Σi = {ai, bi}. For every n ∈ N, we
let ∆n =

⋃

i=0,...,n Σn and similarly for ∆n. To define counters of level n we

will use the trace alphabet (∆n+1 ∪ ∆n+1, I) where I = (∆n+1 × ∆n+1) ∪
(∆n+1×∆n+1). We use a, a with indices to represent 0 and b, b with indices
to represent 1. So the sequence σ0, . . . , σk represents the number

∑k
i=0 σi2

i.
A counter of level 0 is a trace with a prefix:

l0σ

l0ρ

where l0 ∈ Σ0, l0 ∈ Σ0, σ ∈ Σ1 and ρ ∈ Σ1.
A counter of level n ≥ 0 is a trace with the prefix of the form:

l0σ0l1σ1 . . .lkσkσ

l0ρ0l1ρ1 . . .lkρkρ
(7)

where:

17

• k = Tower (n, 2)− 1;

• σ ∈ Σn+1, ρ ∈ Σn+1;

• for each i = 0, . . . , k, the trace
li σi

li ρi

is a counter of level n− 1 with li

and li representing the number i.

We will say that the number
∑k

i=0 σi2
i is represented on the upper line of

the counter and the number
∑k

i=0 ρi2
i is represented on the lower line of

the counter.
The following formulas define counters and some auxiliary operations on

counters:

counter (0) ≡〈Σ0〉〈Σ0〉〈Σ1〉〈Σ1〉tt

same(0) ≡〈a0〉〈a0〉tt ∨ 〈b0〉〈b0〉tt

next(0) ≡〈b0〉〈a0〉〈Σ1〉〈Σ1〉tt

first(0) ≡〈a0〉〈a0〉〈Σ1〉〈Σ1〉tt

last(0) ≡〈b0〉〈b0〉〈Σ1〉〈Σ1〉tt

18

counter (n + 1) ≡first(n) ∧ (α U 〈Σn+2〉〈Σn+2〉tt)

α(n) ≡(counter (n) ∧ same(n)) ⇒
[

(last(n) ∧ β1(n + 1)) ∨ (¬ last(n) ∧ β2(n + 1))
]

β1(n + 1) ≡〈(∆n ∪∆n)∗〉〈Σn+1〉〈Σn+1〉〈Σn+2〉〈Σn+2〉tt

β2(n + 1) ≡〈∆∗
n〉〈Σn+1〉

(

next(n) ∧ 〈∆
∗
n〉〈Σn + 1〉 same(n)

)

same(n + 1) ≡ counter(n + 1) ∧ (δ(n + 1) U 〈Σn+2〉〈Σn+2〉tt)

δ(n + 1) ≡ same(n) ⇒ 〈(∆n ∪∆n)∗〉
∨

σ∈Σn+1

〈σ〉〈σ〉tt

next(n + 1) ≡ counter(n + 1) ∧ (zero-one(n + 1) U γ)

zero-one(n + 1) ≡ same(n) ⇒ 〈(∆n ∪∆n)∗〉〈an+1〉〈bn+1〉tt

γ(n + 1) ≡ same(n) ∧ 〈(∆n ∪∆n)∗〉〈an+1〉〈bn+1〉 same(n)

first(n + 1) ≡ onlya(n + 1)

last(n + 1) ≡ only b(n + 1)

onlya(n) ≡ counter(n) ∧ α1(n) U α2(n)

α1(n) ≡¬ last(n− 1) ∧ 〈∆n−1 ∪∆n−1 ∪ {an, an}〉tt

α2(n) ≡ last(n− 1)∧

〈(∆n−1 ∪∆n−1)
∗〉〈an〉〈an〉〈Σn+1〉〈Σn+1〉tt

Lemma 5 For every trace T and n ∈ N:

• T � counter (n) iff T is an n-level counter.

• T � same(n) iff T is an n-level counter and the upper and the lower
lines of the counter represent the same numbers.

• T � next(n) iff T is an n-level counter and the upper line represents a
number bigger by one than the number represented on the lower line.

• T � first(n) iff T is an n-level counter and both lines represent the
number 0.

• T � last(n) iff T is an n-level counter and both lines represent the
maximal possible number which is Tower (n, 2) − 1.

The size of each of the above mentioned formulas is 2O(n).

19

thmheadfont Proof
The proof follows basically by inspection of the formulas. Let us consider
formula counter (n + 1). The first conjunct guarantees that the trace starts
with l0σ0l1ρ1. Then, formula α guarantees that whenever we are in a con-
figuration from which we see liσiliρi then after liσi there is li+1σi+1 (this is
done by next(n + 1) part of β2 formula) and then we have li+1ρi+1 (this is
done by same(n) part for β2 formula). Formula β1 takes care about the end
of the trace.

For the formula same(n + 1) we know that same(n) is true in (n + 1)-
level counter exactly in configurations from which we see liσiliρi. Formula
δ requires that ρi is the same as σi but with a bar on the top.

The formula next(n+1) guesses a position i such that σi = b and ρi = a.
Then it checks that for all j < i we have σj = a and ρj = b and that for all
j > i we have that σj is the same as ρj modulo bar on the top.

Formulas first(n + 1) and last(n + 1) require that all σi and ρi for i =
0, . . . , k are a’s and b’s respectively.

For the size of the formulas, observe that each formula of level n + 1
contains a constant number of symbols and a constant number of occurrences
of formulas of level n. �

B The construction of the formula Shape

Let n be fixed (it comes from the size of the input of the machine). A
counter over {a, b} is a word w ∈ {a, b}n. Similarly for {a, b}, {c, d} and
{c, d} counters. A counter w1 . . . wn represents a number

∑k
i=1 wi2

i where
a, c stand for 0 and b, d stand for 1. Clearly the biggest number that can be
represented is k = 2n−1. Let lai stand for a counter over {a, b} representing
number i. Similarly for lai , lci and lci .

The required shape of the trace is the following:

la
0
σ0

0
la
1
σ0

1
. . . lakσ0

k ↓

la
0
ρ0

0
la
1
ρ0

1
. . . lakρ0

k ↗

lc
0
σ1

0
lc
1
σ1

1
. . . lckσ1

k ↓

lc
0
ρ1

0
lc
1
ρ1

1
. . . lckρ1

k ↗

· · ·

· · ·

↓ la
0
σi

0
la
1
σi

1
. . . lakσi

k ↓

↗ la
0
ρi
0
la
1
ρi
1
. . . lakρi

k ↗

· · ·

· · ·

where dashed arrows represent additional dependencies and σ i
j, ρ

i
j ∈ Ω for

all i ≤ 0 and j = 0, . . . , k.

20

Below we present the formula Shape defining traces of the required shape.

first(a) ≡〈a〉n〈`〉

last(a) ≡〈b〉n〈Ω〉

next(a) ≡(counter (a) ∧ ¬ last(a)) ⇒

add -one(a) ∧ 〈∆〉n〈Ω〉〈∆〉n〈Ω〉

add -one(a) ≡
∨

k=0,...,n−2

〈b〉k〈a〉tt ⇒ 〈∆〉n〈Ω〉〈a〉k〈b〉tt

∧
[

∧

i=k,...,n−1

(〈∆〉i〈a〉 ⇒ 〈∆〉n〈Ω〉〈∆〉i〈a〉))

∧ (〈∆〉i〈b〉 ⇒ 〈∆〉n〈Ω〉〈∆〉i〈b〉))
]

All the above formulas have their counterparts for a, c, and c instead of a.

links ≡
[

last(a) ∧ last(a) ⇒ ends-with(↓,↗, c, c)
]

∧
[

last(a) ∧ last(c) ⇒ ends-with(↗, ↓, c, a)
]

∧
[

last(c) ∧ last(a) ⇒ ends-with(↗, ↓, a, c)
]

∧
[

last(c) ∧ last(c) ⇒ ends-with(↓,↗, a, a)
]

ends-with(σ, ρ, d1, d2) ≡〈∆〉
n〈∆〉n〈W 〉〈Ω〉〈σ〉〈ρ〉(first (d1) ∧ first(d2))

Shape ≡ first(a) ∧ first(a)∧

A
(

next(a) ∧ next(a) ∧ next(c) ∧ next(c) ∧ links
)

Lemma 6 For every trace T : T � Shape iff it is of the form as in (6). The
size of Shape is O(n).

thmheadfont Proof
The proof follows from inspection of the formulas. Formula first(a) holds in
configurations from which starts a counter over {a, b} representing 0 followed
by the start marker. Similarly, last(a) holds in configurations from which
starts a counter representing the maximal value.

The formula next(a) says that whenever we see a {a, b} counter which
does not represent the maximal value then it should be followed by a letter
from Ω, a counter representing a number bigger by one, and yet another
letter from Ω. The links formula takes care of the configurations from which
we see the counters with the maximal values. It puts ↗, ↓ in appropriate

21

order and starts new counters over appropriate letters. Finally the Shape
formula forces the presence of two counters representing 0 and then says that
every counter which has not reached its maximal value should be followed by
a bigger counter. Maximal value counters are dealt with by links formula.�

22

