
Framing Algorithms for Approximate Multicriteria1

Shortest Paths2

Nicolas Hanusse3

LaBRI, CNRS & Univ. Bordeaux, France4

David Ilcinkas5

LaBRI, CNRS & Univ. Bordeaux, France6

Antonin Lentz7

LaBRI, Univ. Bordeaux, France8

Abstract9

This paper deals with the computation of d-dimensional multicriteria shortest paths. In a weighted10

graph with arc weights represented by vectors, the cost of a path is the vector sum of the weights of11

its arcs. For a given pair consisting of a source s and a destination t, a path P dominates a path Q12

if and only if P ’s cost is component-wise smaller than or equal to Q’s cost. The set of Pareto paths,13

or Pareto set, from s to t is the set of paths that are not dominated. The computation time of the14

Pareto paths can be prohibitive whenever the set of Pareto paths is large.15

We propose in this article new algorithms to compute approximated Pareto paths in any dimension.16

For d = 2, we exhibit the first approximation algorithm, called Frame, whose output is guaranteed17

to be always a subset of the Pareto set. Finally, we provide a small experimental study in order to18

confirm the relevance of our Frame algorithm.19

2012 ACM Subject Classification Theory of computation → Shortest paths; Applied computing →20

Multi-criterion optimization and decision-making21

Keywords and phrases Pareto set, multicriteria, shortest paths, approximation22

Digital Object Identifier 10.4230/OASIcs.ATMOS.2020.1123

1 Introduction24

1.1 Context and Motivation25

Computing a shortest path is a classical problem and it has been widely studied for one26

criterion. However, in a transportation network for example, one is often interested in27

finding a path minimizing several criteria like the duration, the financial cost, or the physical28

effort. The list of potentially interesting criteria gets even larger with the development of29

multimodal and public transportation systems, when a traveler can walk, take a taxi, a plane,30

a train within a journey. For instance, the number of connections [6] matters especially31

when time tables are uncertain. Even time might have different facets: in temporal graphs,32

it is different to minimize arrival time and traveling time [8, 25]. More generally, people33

want to get personalized answers taking simultaneously into account several criteria, that34

is handling several cost functions. For a given path of cost (c1, c2, . . . , cd), the first natural35

approach consists in computing a linear combination of the costs, that is
∑

1≤i≤d αici, for36

some coefficients αi. Then any algorithm dedicated to shortest path computation for one37

criterion can be used. This approach has several drawbacks: how to set up the αi’s? Does38

such a formula have a semantic meaning?39

A first immediate property drops whenever a multiple cost function is considered: the40

“smallest” cost is no more unique. Taking a helicopter to reach a destination is much quicker41

than walking but it is also much more expensive! We can also think of other paths with42

other transportation vehicles that are all incomparable for the two criteria time and price.43

© Nicolas Hanusse, David Ilcinkas, and Antonin Lentz;
licensed under Creative Commons License CC-BY

20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2020).
Editors: Dennis Huisman and Christos D. Zaroliagis; Article No. 11; pp. 11:1–11:19

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/OASIcs.ATMOS.2020.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

11:2 Approximate Multicriteria Shortest Paths

A set of paths representing all incomparable “best” costs is called a set of Pareto paths144

and reflects the variety of smallest costs. A Pareto set can be exponentially large even for45

bounded degree graphs and two criteria [10]. As a consequence, the computation may take a46

lot of time and require an significant amount of space. Besides, in practical settings, users47

do not want to get thousands of propositions. To reduce the size of a Pareto set, the notion48

of (1 + ε)-Pareto set1 has been proposed and proved to always exist even with the constraint49

of having a polynomial size in n [18].50

Dijkstra-based algorithms for multiple criteria, called in this paper MC Dijkstra, also51

called Multicriteria Label Setting (MLS)2, have been proposed in order to compute exact52

Pareto sets for two [10] or more dimensions [15]. Whenever the criteria are correlated and53

the distance between the source and the destination is small, Pareto sets tend to be small.54

For instance, for 10K vertices, using as criteria time and distance, the existing solutions are55

practical.56

However, these algorithms are not scalable in practice: without any preprocessing, it57

takes a few seconds to solve a query in a network of 18 millions vertices modeling western58

Europe [2] for queries with only one criterion. Informally, even for a city like Prague with59

65K nodes, for a given pair of source and destination, an exact Pareto set often contains60

thousands of paths for three criteria [11] and its computation may take around 10 minutes.61

Since a query can require to store all the incomparable paths for one source, the amount of62

memory can be a thousand times larger than the storage of the graph itself.63

In order to compute queries on large graphs and to limit the number of optimal paths64

proposed to users, the approximation of Pareto sets is promising. The main difficulty is that,65

even if the output may be quite small, the existing algorithms require a large working memory,66

and very little is known about the time and the memory of computing (1 + ε)-approximations67

of Pareto sets. To speed up the queries for one criterion, preprocessing algorithms are68

presented in the survey [2] but it is not obvious that all of these techniques can be efficient69

for multicriteria queries.70

1.2 Problem Description and State of the Art71

1.2.1 Exact and Approximated Pareto Sets72

The input of our problem is a weighted directed graph G = (V,A) of n vertices and m arcs73

defined on d criteria, and a source vertex s. The graph may contain multiple arcs and loops.74

The weight w(a) of an arc a is a d-dimensional vector whose values belong to the range75

{0} ∪ [1, C], the components of the arc weights being normalized and bounded by some76

common value C. The cost c(P) = (P1, . . . , Pd) of a k-hop path P = a1, . . . , ak is the vector77

sum
∑

1≤i≤k w(ai).78

A path P dominates a path P ′ if Pi ≤ P ′i for every i ∈ {1, . . . , d}. A Pareto set of a set T79

of paths is a set of incomparable3 paths from T , that are not dominated by any other path80

from T with a different cost, and which is maximal by inclusion. In particular, if several81

paths of T have the same cost, then at most one is kept in a Pareto set of T . Notice that82

if S is a Pareto set of some set T , then the Pareto set of S is S itself. The Multicriteria83

Shortest Path problem consists in finding, for each vertex v ∈ V , a Pareto set Sv of the set of84

all paths from s to v. We use the notations Sv = |Sv| and S =
∑

v∈V Sv. The values Sv and85

1 A formal definition will be given in Section 1.2.1.
2 The letters M and S may also stand for “Multiobjective” and “Scheme” respectively.
3 w.r.t. dominance

N. Hanusse, D. Ilcinkas, and A. Lentz 11:3

(a) {B, D} is a 2-Pareto set
(b) Regions containing the incomparable
paths 2-covering B

Figure 1 Pareto sets and Covering

S do not depend on the actual choices of the sets Sv, since these values derive from the size86

of the unique Pareto set of the path costs.87

A path P (1 + ε)-covers a path P ′ if Pi ≤ (1 + ε)P ′i for every i ∈ {1, . . . , d}. A (1 + ε)-88

Pareto set of a set T is a set Sε of incomparable paths from T , such that any path of T is89

(1 + ε)-covered by a path in Sε. In particular, a 1-Pareto set is a Pareto set and vice versa.90

Then, the (1 + ε)-approximated Multicriteria Shortest Path problem consists in finding, for91

each vertex v ∈ V , a (1 + ε)-Pareto set Sv,ε of the set of all paths from s to v.92

A solution (Sv,ε)v∈V to the (1 + ε)-approximated Multicriteria Shortest Path problem93

is said to be Pareto compatible if and only if Sv,ε is a subset of a Pareto set Sv, for every94

vertex v. This property is useful since it guarantees that the size Sε of the output of an95

approximation algorithm is always at most S. In Fig. 1a, S = {A,B,C,D,E, F} is a Pareto96

set of all the paths, whereas {B,D} is a 2-Pareto set. The two quadrants bounded by the97

dashed lines represent the areas 2-covered by B and D. Note that there may be various98

(1 + ε)-Pareto sets when ε > 0. For example the set {G,D} is also a 2-Pareto set even though99

G /∈ S.100

To solve the Multicriteria Shortest Paths problem, Hansen [10] proposes a generalization101

of Dijkstra’s algorithm with two criteria. This algorithm has then been generalized to102

any number of criteria in [15]. The bicriteria algorithm proposed by Hansen operates in103

O(mnC log(nC)) time. In [3], it is proved that the standard MC Dijkstra for the one-to-all104

query in dimension d has time complexity O(nS2) and uses O(nS) space when there are no105

multiple arcs. Although S can reach Θ(n(nC)d−1), it is very unlikely in practice to get such106

a size.107

It is also interesting to observe that exact Pareto sets are not always large in practice,108

especially if the criteria are correlated. In [17], Pareto sets sizes are often smaller than 100109

for real graphs and synthetic graphs with a random weight assignment. However, when110

the number of criteria grows and some are negatively correlated, Pareto set sizes can be111

unpractical. Some examples can be found in [1]. An experimental comparison of methods112

are presented in [19] on grids and road networks up to 300K nodes. It does not exhibit which113

algorithm is the best in practice for exact Pareto sets.114

Papadimitriou and Yannakakis show that for any multiobjective optimization problem,115

there exists a (1+ε)-Pareto set (Sv,ε)v∈V of polynomial size in n even if C is exponential in n.116

In our context, they show that Sv,ε can be in O
((

log(nC)
ε

)d−1
)
. It means that the output117

ATMOS 2020

11:4 Approximate Multicriteria Shortest Paths

can be quite small but the difficulty is still to limit the time and the memory space during the118

computation. For d = 2, Hansen [10] proposes a solution applying m times MC Dijkstra119

on the initial graph. In a similar fashion, Warburton [24] gives an algorithm for any d, calling120

an exact algorithm several times. This algorithm could require less MC Dijkstra iterations121

than Hansen’s, but this number is still claimed in [4] to be too huge in order to be competitive122

in practice. Wang et al. develop in [23] a new algorithm called α-Dijkstra, pruning path123

with a variable severity, depending on the number of best paths kept at a certain stage of124

the algorithm. This algorithm is limited to d = 2. Tsaggouris and Zariolagis [21] propose125

a Bellman-Ford-based algorithm TZ operating in O

(
nm

(
n log(nC)

ε

)d−1
)

time. Inspired126

from TZ, Breugem et al.[3] proposed a Dijkstra-based algorithm, called Hydrid, running127

in O
(
n3
(

n log(nC)
ε

)2d−2
)

time. They made an experimental comparison between the two128

approximated Pareto sets computations and the standard MC Dijkstra. The new hybrid129

algorithm is efficient and sometimes outperforms MC Dijkstra whenever Pareto sets are130

very large. It is also interesting to notice that TZ does not prune a lot of explored paths. It131

means that it can be much worse than MC Dijkstra for small Pareto sets. An attempt132

to unify Djikstra and Bellman-Ford-based algorithms is addressed by Bökler et al. in [4],133

containing TZ, Hydrid and new variants.134

If we allow a light preprocessing, NAMOA* [13, 14] is a generalization of the well-known135

A* search algorithm to the multicriteria setting, meaning that it is dedicated to one-to-one136

requests. The difficulty here is the estimation of a guaranteed lower bound h(v) for the137

d dimensions. For large and real graphs, the computation time of the algorithms with138

guarantee can be too long. Some heuristics have been proposed and speed up drastically the139

computation time [11] but without any guarantee.140

Other attempts have been done to summarize Pareto sets [1, 20]. A linear path skyline,141

defined as a subset of conventional Pareto sets, is a set of paths optimal under a linear142

combination of their cost values. Multicriteria being especially relevant in a multimodal143

setting, a different approximation definition has been proposed in [5]. This paper proposes144

to summarize a Pareto set by the paths such that their projection on two specific criteria145

(arrival time and number of trips) are additively not far from an optimal one.146

1.3 Contributions147

In this article, we propose two algorithms, called Sector and Frame, computing guaranteed148

(1 + ε)-Pareto sets Sε =
⋃

v∈V Sv,ε. Frame is a variant of Sector optimized in dimension 2.149

It guarantees the Pareto compatibility property and thus outputs a set which cannot be150

larger than the exact Pareto set size, while having a worst case time complexity lower than151

or equal to MC Dijkstra’s one.152

In Table 1, we focus on the one-to-all query in simple graphs, and the computation time153

is expressed in the output sensitive complexity, ∆ being the maximal degree.154

In approximation algorithms, Sε denotes the size of the output, which is a (1 + ε)-Pareto155

set. It can be much larger than S∗ε , the minimum cardinality of a (1 +ε)-Pareto set. However,156

starting from Sε, a linear time algorithm can output S ′ε ⊆ Sε such that S′ε = O(S∗ε).157

Since Frame is Pareto compatible, we have Sε ≤ S for that algorithm. Thus we can hope158

that its computation time is in practice significantly smaller than the one of the best MC159

Dijkstra algorithm in 2D. Hybrid [3] and TZ [21] are not Pareto compatible. However, for160

d = 2, Sε(Hydrid) ≤ nS. More generally, for d ≥ 3, it is a priori impossible to claim what161

is the smallest output among Sε(Sector), Sε(Hydrid), Sε(TZ) and S(MC Dijkstra).162

N. Hanusse, D. Ilcinkas, and A. Lentz 11:5

Output sensitive complexity O(·) Pareto compatible Ref.
MC Dijkstra ∆S2 X [10, 3]
Sector ∆Sε logd−1(∆Sε) Theorem 8
TZ n∆Sε [21]
Hydrid ? [3]
MC Dijkstra (d = 2, 3) ∆S log(∆S) X Proposition 1
Frame (d = 2) ∆Sε log(∆Sε) X Theorem 18
Hydrid (d = 2) nS2

ε ≤ n2S3 [3]
Table 1 Our results

For integer arc weights, the output size Sε of Sector is in O
(
d(nC)d−1 log1+ε(nC)

)
.163

We can observe that whenever C is moderate, Sector provides smaller upper bounds on the164

time complexity than TZ. To make a simple comparison with ∆ = Θ(1), if C ≤
(

n
d2εd−2

) 1
d

165

then Sector has a smaller known upper bound on its time complexity than TZ. For instance,166

if d = 2, it is the case if C = O(
√
n). Furthermore, if C = Θ(1), then TZ upper bound is167

Ω(n2) times Sector’s one.168

2 Preliminaries169

Notations and Remarks.170

A path is a sequence of arcs a1, . . . , ak such that, for all 1 ≤ i < k, the destination of ai is the171

source of ai+1. The source of a path P = a1, . . . , ak is the source of a1 and its destination is172

that of ak. In this paper, all paths have the same source s. Notice that if P = a1, . . . , ak is a173

path and ak+1 is an arc whose source is the destination of ak, notation P · ak+1 stands for174

the path a1, . . . , ak, ak+1, defined by the extension of P by ak+1.175

For a path P of cost c(P) = (P1, P2, . . . , Pd), its rank is defined as rank(P) =
∑

1≤i≤d Pi.176

For legibility reasons, each arc rank is strictly positive in our algorithms descriptions.177

Let P = a1, . . . , ak and P ′ = a′1, . . . a
′
k′ be two paths sharing the same source and178

destination. If rank(P) > rank(P ′) then P cannot dominate P ′. Depending on ε > 0,179

P could however (1 + ε)-cover P ′. In Fig. 1a, rank(G) = 21 and rank(B) = 18 but G180

2-covers B.181

Pareto Set Computation.182

Depending on the context, maximal or minimal vectors, Pareto sets (mathematics) or Skylines183

(data-mining) are different names of the same notion. In the offline setting, the whole set184

of n points on which we want to compute a Pareto set is given at the beginning. If S is185

the Pareto set size, the computation can be done in O(nS) time and can drop to O(n logn)186

for d = 2 and O(n logd−2 n) for d > 2 [12]. However, these methods cannot be used in an187

online setting, i.e., if the points are processed one by one. As explained later in Section 3.1,188

it means that these methods are not relevant for MC Dijkstra.189

Domination and Covering Checking.190

Checking if a given point P is (1 + ε)-covered by a point in a set S, not necessarily being a191

Pareto set, can be done using range queries in dimension d.192

ATMOS 2020

11:6 Approximate Multicriteria Shortest Paths

Given a cartesian product of intervals I = [x1, x
′
1]× [x2, x

′
2]× . . .× [xd, x

′
d] and a point193

set S, RangeQuery(I,S) reports every point Q in S ∩ I. We use such queries to test (1 + ε)-194

coverings or finer properties. Note that in our case, we do not require to report every point in195

the subspace specified by the intervals but just to learn if there is at least one point. A point196

set S of n points can be preprocessed in O(n logd−1 n) time so that any range query and197

thus any (1 + ε)-covering (or similar) checking can be done in O
((

log n
log log n

)d−1
)

time [16].198

3 General Algorithms199

3.1 Reminder on MC Dijkstra200

MC Dijkstra overview.201

The MC Dijkstra algorithm follows Dijkstra’s one, adapted to the case of multiple criteria.202

In that case, the goal is to obtain a Pareto set from s to v for each vertex v. For this reason,203

the algorithm maintains a set T of paths rather than vertices. This set is initialized with the204

empty path from s to s. Also, for each vertex v, the algorithm maintains a candidate Pareto205

set Sv, initialized to the empty set.206

Similarly as in the single-criterion case, MC Dijkstra selects at each step the minimum207

of T . More precisely, MC Dijkstra selects the path P in T which has the lexicographically208

minimum cost. If v is the destination of P , then P is added to the set Sv. Again similarly,209

all paths P ′ which consist of P plus one arc from the destination of P are considered. Let210

w be the destination of P ′. If P ′ is dominated by a path in Sw or by a path in T with the211

same destination, P ′ is discarded. Otherwise, P ′ is added to T , and any path P ′′ ∈ T with212

the same destination as P ′ which is dominated by it is removed from T .213

The algorithm terminates when T is empty at the end of a step. At that time, the sets214

Sv contain Pareto sets from s to every vertex v. The following proposition is more or less215

an agglomeration of existing results, with small adjustments in order to obtain a consistent216

statement.217

MC Dijkstra pseudo code.218

A more formal description of MC Dijkstra is given in Algorithm 1. In this algorithm, we219

use the following two functions:220

IsNotDominated(P,S) takes a path P and a Pareto set S as input. It returns True if221

the path P is not dominated by any path in S, and False otherwise.222

InsertAndClean(P,S) takes a path P and a Pareto set S as input and returns a Pareto223

set of S ∪ {P}.224

Correctness and complexity.225

MC Dijkstra algorithm solves the Multicriteria Shortest Paths problem (see [15] and [9]).226

Its complexity depends in particular heavily on the parts removing dominated paths, i.e. on227

the functions IsNotDominated and InsertAndClean. Nevertheless, existing papers simply228

use a naive algorithm for these functions, except for dimension 2, for which [10] claims a229

logarithmic complexity. In order to lower the complexity of MC Dijkstra, we may use the230

algorithms described in Section 2 to remove paths that are dominated. For d = 2 and d = 3,231

we can use online algorithms since MC Dijkstra processes elements in lexicographic order.232

N. Hanusse, D. Ilcinkas, and A. Lentz 11:7

Input: Graph G = (V,A) with V the vertices, A the arcs, s ∈ V the source vertex
Output: Sets Su for every vertex u

1 begin Initialization
2 foreach u ∈ V do
3 Su ← ∅ ; Tu ← ∅ ;
4 Ts ← {empty path from s to s} ;
5 while

⋃
u∈V Tu 6= ∅ do

6 let P of destination v be the lexmin of
⋃

u∈V Tu ;
7 Tv ← Tv \ {P} ;
8 Sv ← Sv ∪ {P} ;
9 foreach (v, w) ∈ A do

10 if IsNotDominated(P · (v, w),Sw) then
11 Tw ← InsertAndClean(P · (v, w), Tw) ;

Algorithm 1 MC Dijkstra overview

I Proposition 1. [partially from [10] and [3]] Let µ be the maximal number of parallel arcs233

between a pair of vertices, and S be the Pareto set size. The output-sensitive time complexity234

of MC Dijkstra is O(∆S log(∆S)) for d ≤ 3, and O(µ∆S2) for d > 3.235

Proof. In all cases, the size of a set Tu (the subset of paths from T having the same236

destination u) is upper-bounded by µS, since any path is an extension of an optimal one (a237

path in some Sv), and there exists at most µ extensions of a path having the same destination.238

The same reasoning leads to the fact that the union of all the sets Tu has cardinality at most239

∆S.240

Besides, the repeated application of Line 6 requires to efficiently store the sets Tu. The241

used data structure keeps the elements in
⋃

u∈V Tu sorted. This hidden sorting in Lines 7242

and 11 leads to a complexity in O(log(∆S)) when inserting or removing a vertex.243

Therefore, in each of the at most ∆S iterations of the while loop, the time complexity244

is upper-bounded by O(log(∆S)) (the sorting time) plus the time needed to execute the245

functions IsNotDominated and InsertAndClean.246

For d = 2, the proof is essentially the same as in [10]. Since in MC Dijkstra the path P247

is lexicographically larger than any element in S, the function IsNotDominated(P,S) can be248

computed in constant time with the algorithm in [12], instead of time O(log(µS)) by using249

a tree as proposed in [10]. However, the function InsertAndClean(P, T) has an amortized250

complexity of O(log |T |) to keep the structure sorted, amortized since it may remove a lot of251

paths during one call but a path can be removed only once. Anyway, the complexity in this252

case is dominated by the sorting time, leading to the overall complexity O(∆S log(∆S)).253

For d = 3, using the algorithm proposed in [12] and the same reasoning as in the d = 2254

case, the functions IsNotDominated and InsertAndClean can be computed in logarithmic255

time, leading to the same overall complexity as in the case d = 2.256

For d > 3, we extend the proof for µ = 1 (simple graph) given in [3]: the dominance257

relation of the current path is iteratively tested with each element of the sets Su and Tu for258

some u. The latter being upper-bounded by µS, we obtain the overall time complexity in259

O(µ∆S2). J260

ATMOS 2020

11:8 Approximate Multicriteria Shortest Paths

3.2 Meta Rank Algorithm261

Unfortunately, the efficient methods from Section 2 are not suitable in dimensions larger262

than 3, since those are offline. Yet, if the paths are processed in subsets, we could apply an263

offline method to each subset. For this purpose, we may group paths by rank, allowing to264

have several paths with the same destination in the same group. We will then process groups265

in increasing rank order, so that we keep the nice property that the “smallest” elements of266

T incorporated in S cannot be dominated by paths that are discovered later. This idea to267

process paths in increasing rank order is already used in [22] to compute Pareto sets.268

Using this method, it is much easier to test dominance when paths are leaving the set T269

rather than when they enter it, because the paths are leaving the set T in increasing rank270

order, while this is not the case for their entering. Furthermore, we may take advantage of271

this dominance pruning step by group to also remove some optimal paths in order to output272

a smaller approximated Pareto Set. In order to implement this versatility, we propose a273

meta-algorithm Meta Rank (see Algorithm 2) which uses a blackbox function called Sample.274

If this function simply removes paths dominated by permanent solutions, Meta Rank solves275

the exact Multicriteria Shortest Paths problem. In the following, additional properties on276

Sample are defined in order to ensure that Meta Rank solves the (1 + ε)-approximated277

Multicriteria Shortest Paths problem. Later on, instanciations of Sample are provided.278

Input: Graph G = (V,A) with V the vertices, A the arcs, s ∈ V the source vertex
Output: Sets Sv for every vertex v

1 Initialization: (∀u ∈ V Su ← ∅ ; Tu ← ∅) ; Ts ← {empty path from s to s} ;
2 while

⋃
u∈V Tu 6= ∅ do

3 let r be the minimum rank in
⋃

u∈V Tu ;
4 foreach v ∈ V do
5 let R be the paths of destination v and of rank r in

⋃
u∈V Tu ;

6 R′ ← Sample(R,Sv, ε) ;
7 Tv ← Tv \ R ; Sv ← Sv ∪R′ ;
8 foreach P ∈ R′ do
9 foreach (v, w) ∈ A do

10 Tw ← Tw ∪ {P · (v, w)} ;

Algorithm 2 Meta Rank overview

The following theorem gives the complexity of Meta Rank, depending on Sample’s one.279

I Theorem 2. Let Sε be the size of Meta Rank’s output and CSample(n, Sε,∆) be the280

complexity of the repeated usage of Sample during Meta Rank. Then Meta Rank time281

complexity is CSample(n, Sε,∆)+O(∆Sε log(∆Sε)). If the weights are in J1, CK, the complexity282

is CSample(n, Sε,∆) +O(∆dn(nC)d−1 log(∆nC)).283

Proof. In order to justify precisely the claimed complexity, we provide details about the284

chosen data structures. For a better legibility, we introduce the notations T (r) (resp. T (r)
u)285

as the subset of T (resp. Tu) of paths having a rank r.286

The set T is a priority queue and its elements are the sets T (r). The priority is given287

by r (the smaller r, the higher priority). We use a strict Fibonacci heap, guaranteeing288

a constant time complexity for insertion and a O(log(∆Sε)) complexity to remove the289

highest priority element.290

N. Hanusse, D. Ilcinkas, and A. Lentz 11:9

For a given rank r, T (r) is an array. In order to do that, a unique identifier J0, n− 1K291

is given to each vertex. If the identifier of u is iu, T (r)[iu] = T (r)
u , guaranteeing a292

constant worst case time complexity for accessing or removing a T (r)
u set. Whereas this293

implementation is interesting in a theoretical point of view, a hash table would be more294

relevant in practice for memory purpose, since T may contains only a fragment of V at295

the same time. This choice would only guarantee a constant mean time complexity. A296

key would be a vertex and the associated value to a key u would be T (r)
u .297

The sets T (r)
u are represented as chained lists in order to obtain a constant time insertion.298

S is also an array and the sets Sv are chained lists.299

Given these data structures, the lines 10 and 11 (Alg. 2) are in O(log(∆Sε)), thus their300

repetition are in O(∆Sε log(∆Sε)). Line 13 has an overall O(Sε) complexity. The repetition301

of the loop at line 14 has an overall complexity of O(∆Sε) since the number of added path302

in some Tw is upper-bounded by ∆Sε. J303

3.3 Algorithms Based on Sectors304

3.3.1 Elimination Criterion305

It turns out that the framework provided by Algorithm Meta Rank (Alg. 2) can compute306

(1 + ε)-Pareto paths, by defining an appropriate Sample function. To guarantee Algorithm307

Meta Rank to output a (1 + ε)-approximated Pareto set, we require the following ε-weak308

framing property.309

I Definition 3 (ε-Weak framing property). A function Sample outputting R′ ⊆ R on input310

(R,S, ε) satisfies the ε-weak framing property if, for every path P ∈ R \ R′, there exists311

d representative paths Q(1), . . . , Q(d) in S ∪ R′ such that, for every i, Q(i)
i ≤ (1 + ε)Pi and312

∀j 6= i, Q
(i)
j ≤ Pj. Furthermore, S ∪R′ is a set of incomparable paths.313

Notice that if P ∈ R is dominated by Q ∈ S, it is sufficient to set Q(i) = Q for all i.314

Overall, this ε-weak property guarantees that the output of Meta Rank is a (1 + ε)-Pareto315

set.316

I Theorem 4. With a function Sample satisfying the ε-weak framing property, Meta Rank317

algorithm (Alg. 2) solves the (1 + ε)-approximate Multicriteria Shortest Paths problem.318

Proof. Let S be a Pareto set and Sa be the output of the algorithm. It is sufficient to show319

that for any path P ∈ S, there exists a path Q ∈ Sa such that P is (1 + ε)-covered by Q and320

rank(Q) ≤ rank(P). By contradiction, let P ′ ∈ S be a minimal rank path not (1+ε)-covered321

by any Q ∈ Sa such that rank(Q) ≤ rank(P ′). P ′ cannot be an empty path since the only322

one the algorithm can process is the one from the source to itself, and being the first one to323

leave T , it is inserted in S. Thus, we can write P ′ = P · e, with P a path and e the last arc324

of P ′. P having an inferior rank than P · e, there exists a path Q ∈ Sa (1 + ε)-covering P .325

If P is kept in Sa, then P · e is inserted in T and is either kept in Sa or removed because326

of some representatives. In either cases, it is (1 + ε)-covered, which is absurd. Otherwise,327

P is not kept in Sa and in particular, P 6= Q. Since rank(Q) ≤ rank(P), there exists a328

dimension i such that Pi ≤ Qi. Furthermore, Q ∈ Sa implies that it is extended and that329

Q · e is inserted in T . However, Q (1 + ε)-covers P , thus Q · e (1 + ε)-covers P · e and:330 {
Qi + ei ≤ Pi + ei

∀j 6= i, Qj + ej ≤ (1 + ε)(Pj + ej)331

ATMOS 2020

11:10 Approximate Multicriteria Shortest Paths

That is why Q · e cannot be in Sa. This means that Q · e is removed because of some332

representative paths, among which a path R ∈ Sa, with rank(R) ≤ rank(Q · e), that satisfies:333 {
Ri ≤ (1 + ε)(Qi + ei)
∀j 6= i, Rj ≤ Qj + ej

334

Then:335 {
Ri ≤ (1 + ε)(Qi + ei) ≤ (1 + ε)(Pi + ei)
∀j, Rj ≤ Qj + ej ≤ (1 + ε)(Pj + ej)336

Which means that P ·e is (1+ε)-covered by R. Since R is in Sa, we obtain a contradiction.337

J338

Two caracteristics of Sample are of particular interest: the time complexity and the339

number of paths the function removes. Naive greedy algorithms are not efficient for either340

of these metrics. Thus, we propose a sample algorithm guaranteeing the ε-weak framing341

property, achieving a good tradeoff for the two caracteristics. Given a d-dimensional space,342

we define d sectors for every path P .343

I Definition 5. The i-th sector of P contains every point Q with Qj ≤ Pj for j 6= i.344

Given ε, the boolean function coverSector(P,Q, i, ε) is True if Q belongs to the i-th sector345

and (1 + ε)-covers P .346

In Figure 1b, the two rectangles represent the incomparable part of the two sectors 2-covering347

B, i.e., the points Q not dominating B satisfying coverSector(B,Q, 1, 1) = True (for instance348

C, D and E), and coverSector(B,Q, 2, 1) = True respectively (such as A). For three criteria,349

the Figure 2 depicts the three sectors covering a point P .350

3.3.2 Sample Sector351

We propose Sample Sector, an algorithm implementing the Sample function. It considers352

each dimension i independently to compute a set of paths R′i ⊆ R and the output of the353

algorithm is R′ =
⋃d

i=1R′i.354

Let r be the rank of all paths in R, and let i be a dimension. We partition R into strips355

R(l)
i , for l ∈ J0, dlog1+ε re+ 1K. R(0)

i (resp. R(1)
i) contains the paths such that Pi = 0 (resp.356

Pi = 1). For l ≥ 2, P ∈ R belongs toR(l)
i if its i-th coordinate Pi is in

(
(1 + ε)l−2, (1 + ε)l−1].357

Our algorithm Sample Sector proceeds as follows: R∪ S is first preprocessed to answer358

quickly range queries. Then, for every path P ∈ R(l)
i , we add P to R′i if P is not (1 + ε)-359

covered in its i-th sector by a path of R∪ S in the same strip R(l)
i . This can be done using360

RangeQuery([0, P1]× [0, P2]×· · ·× [0, Pi−1]× [Pi, (1 + ε)l−1]× [0, Pi+1]×· · ·× [0, Pd],R∪S).361

In Figure 2, the grey z-strip contains only 6 points, the other one in the sector cannot be362

used to represent P since it is outside the grey zone.363

I Definition 6. Algorithm Sector is the Meta Rank algorithm (Alg. 2) using Sample364

Sector.365

As mentioned in the introduction, Sector solves the (1 + ε)-Multicriteria shortest path366

problem. Combined with Theorem 4, the following theorem confirms that.367

I Theorem 7. Sample Sector satisfies the ε-weak property when R and S are both Pareto368

sets such that any path of R has a larger rank than any path of S.369

N. Hanusse, D. Ilcinkas, and A. Lentz 11:11

Proof. In both Sample functions, we have to prove that if a path P of rank r has been370

removed, S ∪R′ contains d paths guaranteeing the ε-weak framing property. Let us focus on371

one dimension i.372

If the range query returns a non empty set Q for the P ’s i-th sector of its strip, we have373

two cases: (1) the corresponding subspace contains at least a permanent path in S or (2)374

only contains paths of same rank. In the first case, we are sure that path P will have a375

representative path in its i-th sector whereas in the second case, these paths might be not376

kept in R′i. This case is not possible since the path in Q with the highest value for its i-th377

coordinate is added in R′i. In both cases, if a path does not belong to R′i, then there is at378

least one path in R′i ∪ S that (1 + ε)-covers P in its i-th sector.379

By construction, any path P kept in Sample Sector has no representative path in at380

least one of its sector in the same strip. J381

The following theorem states the output-sensitive time complexity of Sector given382

in Table 1, along with the space complexity and the time complexity in the special case383

where weights are integers. In order to conclude, it is sufficient to compute the sum of the384

complexities of the Sample Sector calls in Sector, and then to use Theorem 2.385

I Theorem 8. If the arc weights are integers, the output Sε of Sector is of size Sε =386

O
(
dnC(nC)d−2 log1+ε(nC)

)
. The time complexity of Sector is O(∆Sε logd−1(∆Sε)) and387

the space complexity is Θ(∆Sε logd−1(∆Sε)).388

Proof. Assume first that the weights are integers. Given a current rank r and a strip389

R(l)
i , Sample Sector stores at most one path for every x ∈ Zd−2. Thus for every i,390

|R′(l)
i | = O(rd−2). Since we have at most d2 + log1+ε re strips and d dimensions, |R′|391

is smaller than or equal to d(r + 1)d−2(d2 + log1+ε re). Since we have dnC ranks, Sε =392

O(d(dnC)d−1 log1+ε(dnC)).393

To get bounds on CSample Sector, we have to build data structures dedicated to range394

queries. The number of insertions to do before the queries is bounded by O(∆Sε). Each of395

these insertions takes O(logd−1 ∆Sε) and a range query takes O
((

logSε

log logSε

)d−1
)

[16]. Then396

the number of range queries is at most d∆Sε. Thus CSample Sector = O(∆Sε logd−1 ∆Sε).397

From Theorem 2, we have to add O(∆Sε log(∆Sε)) time steps to get the complexity of398

both algorithms assuming d is constant. Whenever the arc weights are integers we also have399

∆Sε ≤ dnC. J400

4 Frame (dimension 2)401

4.1 Elimination Criterion402

Sector could potentially return non optimal solutions. In order to guarantee the Pareto403

compatibility property, we introduce a stronger property, based on the idea that the repre-404

sentatives of a path have to cover themselves too. However, we will restrict the definition for405

d = 2 because it is not giving satisfying results in higher dimensions.406

We start by giving the formal definition of what we call being framed between two paths.407

This definition is commented and illustrated afterwards.408

I Definition 9 (Frame). For any paths A,P,B s.t. rank(A) ≤ rank(P) and rank(B) ≤409

rank(P), we say that A and B frame P , or that P is framed between A and B if:410

(i) A1 ≤ P1
(ii) B2 ≤ P2

(iii) A2 ≤ (rank(P)−B1)(1 + ε)
(iv) B1 ≤ (rank(P)−A2)(1 + ε)411

ATMOS 2020

11:12 Approximate Multicriteria Shortest Paths

Figure 2 In 3D, the three sectors
covering P at distance at most (1 + ε) are
depicted in green, red and blue. Only 6
points are within the grey z-strip of P .

|

2
|

4
|

6
|

8
|

10
|

12
|

14
|

16
D1

−2

−4

−6

−8

−10

−12

−14

−16
D2

×P(1)

×P(2)

×P(3)

×P(4)

×P(5)

×P(6)

×P(7)

A′

B′

×A

×B

Figure 3 Sample Frame. The paths
P (3), P (4), P (5) and P (6) are framed by A

and B for ε = 1 (see colored regions) but not
for ε = 0.5. In this latter case, the algorithm
keeps the middle point P (5).

We will note this property frame(A,P,B, ε).412

In the particular case where the two paths A and B have the same rank as the path P , if413

frame(A,P,B, ε), then A and B match the Q(1) and Q(2) representatives of P in the ε-weak414

framing property, with the additional constraint that A and B (1 + ε)-cover each other. This415

definition is extended for A and B having lower ranks than rank(P), projecting those into416

the line of paths having the same rank as P . A is projected on the second dimension, B417

on the first one. These projections of A and B are depicted in Figure 3 as A′ and B′. The418

blue (resp. green) zone corresponds to the paths 2-covered by A′ (resp. B′). Notice that the419

frame property requires the projections A′ and B′ to cover each other, but not necessarily A420

and B. Thus, in this example, for 3 ≤ i ≤ 6, frame(A,P (i), B, ε) since frame(A′, P (i), B′, ε).421

We define the ε-strong framing property as a particular case of the ε-weak framing422

property for which the representatives of a path are framing it according to Def. 9.423

I Definition 10 (ε-Strong framing property). A function Sample outputting R′ on input424

(R,S, ε) satisfies the ε-strong framing property if:425

∀P ∈ R \ R′, ∃A,B ∈ S ∪R′, frame(A,P,B, ε),426

R′ is minimal by inclusion,427

S ∪R′ is a Pareto set.428

As the name suggests, the strong property is stronger than the weak one since it requires429

some conditions between the representatives, as well as the minimality of the output.430

I Proposition 11. The ε-strong framing property implies the ε-weak framing property.431

Proof. Let Sample verifying the ε-strong framing property on inputs (R,S, ε). Let P ∈ R\R′.432

There exists A,B ∈ S ∪R′ such that frame(A,P,B, ε). Since S ∪R′ is a Pareto set, we only433

need to show that there exists two representatives Q(1), Q(2) ∈ S ∪R′, such that:434 {
Q

(1)
1 ≤ (1 + ε)P1

Q
(1)
2 ≤ P2

{
Q

(2)
2 ≤ (1 + ε)P2

Q
(2)
1 ≤ P1

435

N. Hanusse, D. Ilcinkas, and A. Lentz 11:13

Unfortunately, setting Q(1) = B and Q(2) = A is not always sufficient. We consider three436

cases:437

if A2 ≤ P2, then Q(1) = Q(2) = A is correct,438

if B1 ≤ P1, then Q(1) = Q(2) = B is correct,439

otherwise, we take Q(1) = B and Q(2) = A. Indeed:440

Q
(2)
1 = A1 ≤ P1 and Q(1)

2 = B2 ≤ P2 by (i) and (ii) (cf Def. 9),441

Q
(1)
1 = B1 ≤ (1 + ε) · (rank(P)−A2) = (1 + ε) · (P1 + P2 −A2) ≤ (1 + ε)P1 by (iv)442

Q
(2)
2 ≤ (1 + ε)P2 using symmetric arguments.443

J444

The following theorem is a direct corollary of Theorem 4 and the previous proposition.445

I Theorem 12. With a function Sample satisfying the ε-strong framing property, Meta446

Rank algorithm (Alg. 2) solves the (1 + ε)-approximate Multicriteria Shortest Paths problem.447

Proof. Corollary of Theorem 4 and Proposition 11. J448

4.2 Pareto Compatible Property449

During a Meta Rank execution, a path P could be framed, then removed. Furthermore,450

the extensions of the representatives could be themselves framed and removed, and so on.451

We show that the extensions of P are nevertheless still framed by kept paths in the ε-strong452

setting.453

I Lemma 13. Let Sε be the output of Meta Rank (Alg. 2) using a Sample function454

satisfying the ε-strong property. Any path P is framed by some paths A,B ∈ Sε.455

Proof. For paths A,B and P , if P is framed by A and B, we note: α(P) = A, β(P) = B456

(beware that α and β are not functions, A and B not being necessarily unique). By457

contradiction, let us assume that there exist paths in the Pareto Set that are not framed by458

the output. Let P ′ be such a path of minimal rank. If P ′ is an empty path, then it is the459

first path seen by the algorithm, and it is kept, giving directly a contradiction. Otherwise,460

we can write P ′ = P · e, with e being the last arc of P ′. We have rank(P)<rank(P · e), thus461

P is framed by two paths α(P), β(P) ∈ Sε framing P . Notice that if P is kept, we can say462

that P is framed by (P, P). We will note: A = α(P) · e and B = β(P) · e. Since α(P) and463

β(P) are kept, A and B will be considered by the algorithm but not necessarily kept.464

We consider three cases:465

1. If the algorithm keeps both A and B, then they frame P · e, since they have inferior ranks466

and:467

(i) A1 = α(P)1 + e1 ≤ P1 + e1
(ii) B2 = β(P)2 + e2 ≤ P2 + e2
(iii) A2 = α(P)2 + e2

≤ (1 + ε)(rank(P)− β(P)1) + e2
≤ (1 + ε)(rank(P)− β(P)1) + (1 + ε)e2
≤ (1 + ε)(rank(P)− β(P)1) + (1 + ε)(rank(e)− e1)
≤ (1 + ε)(rank(P) + rank(e)− β(P)1 − e1)
≤ (1 + ε)(rank(P · e)−B1)

(iv) B1 ≤ (rank(P · e)−A2)(1 + ε) by a reasoning similar to (iii)

468

2. The algorithm keeps only one. W.l.o.g., we can consider that A is kept. B being removed,469

it is framed by α(B) and β(B).470

ATMOS 2020

11:14 Approximate Multicriteria Shortest Paths

Either α(B)1 ≤ P1 + e1, in which case, P ′ is framed by α(B) and β(B) too. Indeed,471

we have β(B)2 ≤ B2 ≤ P2 + e2 = P ′2 giving (ii). And (iii), (iv) are given by the fact472

that rank(B) ≤ rank(P ′).473

Otherwise A and α(B) frame P ′. Indeed,474

(i) A1 = α(P)1 + e1 ≤ P1 + e1 = P ′1475

(ii) α(B)2 = rank(α(B))− α(B)1 ≤ rank(P · e)− (P1 + e1) ≤ P2 + e2 = P ′2476

(iii) A2 ≤ (1 + ε)(rank(P)− β(P)1) + e2 ≤ (1 + ε)(rank(P · e)−B1) ≤ (1 + ε)(rank(P ·477

e)− α(B)1)478

(iv) α(B)1 ≤ B1 ≤ (1 + ε)(rank(P)− α(P)2) + e1 ≤ (1 + ε)(rank(P · e)−A2)479

3. The last case corresponds to removing both A and B. As in the previous case, if480

α(B)1 ≤ P1 + e1, P is framed by α(B) and β(B). Otherwise, A and α(B) frame P ′ and481

we can use the same reasoning than before, replacing B by α(B).482

We have proved that P ′ is framed, leading to a contradiction.483

J484

The idea is, by contradiction, to consider, among the paths not framed, one with minimum485

rank. This path cannot be empty, thus it can be written P · e, with P a path and e an arc.486

By definition of P · e, P is framed. Using paths A and B framing P , we can show that their487

extentions A · e and B · e are framing P · e. These extentions are either kept in Sε or in turn488

framed by some paths of Sε framing P · e too.489

It can be deduced from this lemma that the ε-strong property implies the Pareto compat-490

ibility.491

I Theorem 14. Meta Rank (Alg. 2) using a Sample function satisfying the ε-strong492

property is Pareto compatible property.493

Proof. By contradiction, we assume that some P ∈ Sε is dominated by some path Q. If494

Q ∈ Sε, then P cannot be kept since it is processed after Q and is dominated. Therefore,495

Q /∈ Sε. According to Lemma 13, there exists A,B ∈ Sε framing Q. Thus, A,B frame P ,496

which would mean that P is not kept since Sε is minimal. J497

4.3 Frame Algorithm498

We provide an efficient algorithm for Sample: Sample Frame. The algorithm is first499

presented in a simplified version, which is generalized afterwards. Let R = {P (1), · · · , P (k)}500

be a set of paths of rank r. We assume the paths P (i) to be sorted in lexicographic order.501

The simplified algorithm consists in finding the maximal index j such that P (1) and502

P (j) cover each other. Then, ∀ 1 < i < j, frame(P (1), P (i), P (j), ε) holds, and those paths503

in-between are removed. Next, the algorithm is repeated recursively on R′ = {P (j), · · · , P (k)}504

until R′ contains at most two paths. The output of the simplified algorithm consists of the505

set of paths from R that were not removed. See Alg. 3 for a more formal description of the506

simplified algorithm.507

In order to improve the pruning capability, paths from lower ranks are actually used508

to frame current rank paths. Assume that A and B are two paths of rank lower than r509

such that ∀P ∈ R, A1 ≤ P1 ≤ B1 and B2 ≤ P2 ≤ A2. Then Sample Frame performs the510

following three steps:511

1. Paths from R dominated by A are removed.512

2. Let A′ = (r −A2, A2) and B′ = (B1, r −B1) be projections of A and B on the current513

rank r. If P (i), · · · , P (j) are the paths from R non dominated by A or B, and sorted in514

lexicographic order, then the simplified algorithm is applied on {A′, P (i), · · · , P (j), B′}.515

N. Hanusse, D. Ilcinkas, and A. Lentz 11:15

Input: k paths (P (1), · · · , P (k)) sorted in lexicographic order, ε > 0
1 imin ← 1 ;
2 for i = 2 to k − 1 do
3 if frame(P (imin), P (i), P (i+1), ε) then
4 Remove P (i) ;
5 else
6 imin ← i ;

Algorithm 3 Sample Frame Same Rank

3. Paths from R dominated by B are removed.516

An example of this case is depicted in Figure 3 for ε = 0.5. The first step removes P (1)
517

and P (2) since they are dominated by A. Then the second step computes the fact that A′518

and P (5) cover each other but not A′ and P (6). Thus, P (3) and P (4) are removed too. Since519

P (5) and B′ cover each other, P (6) is removed. Finally, during the third step, P (7) is removed520

because B dominates it. Sample Frame’s output is {P (5)}.521

Sample Frame Algorithm.522

In a general setting, an unordered set R = {P (1), · · · , P (k)} of paths of rank r is given as523

input to Sample Frame, along with a Pareto set S of paths of rank lower than r. Algorithm524

Sample Frame proceeds as follows. First, R is sorted in lexicographic order. Then, let525

A = arg max
Q∈S

{Q1|Q1 ≤ P
(1)
1 } and B = arg min

Q∈S
{Q1|Q1 > P

(1)
1 }. Note that B is the path526

following A in S in lexicographic order. Let j be the maximal index such that P (j)
1 < B1.527

Intuitively, the paths P (1), · · · , P (j) are the paths between A and B as in the previously528

described situation. Sample Frame applies the corresponding three steps to these paths.529

Then, this algorithm is recursively applied on {P (j+1), · · · , P (k)}.530

If A is not defined, then A′ = P (1) and the algorithm is applied to R = {P (2), · · · , P (k)}.531

Symmetrically, if B is not defined, then B′ = P (k) and the algorithm is applied to532

R = {P (1), · · · , P (k−1)}.533

To search A and B among S efficiently, S is a balanced search tree allowing a logarithmic534

time search. Similarily to Sector using Sample Sector, we can now define our algorithm535

Frame using Sample Frame.536

I Definition 15. Algorithm Frame is the Meta Rank algorithm (Alg. 2) using Sample537

Frame.538

In order to confirm that Frame is Pareto compatible, it is sufficient to verify that Sample539

Frame satisfies the ε-strong property thanks to Theorem 14. Intuitively, one can see on the540

example depicted in Figure 3 that any removed path is either between two consecutive (in541

lexicographic order) kept paths, or dominated, thus framed by the dominating path.542

I Theorem 16. Sample Frame algorithm satisfies the ε-strong framing property.543

Proof. Deleted paths are always framed by kept paths. Furthermore, the output is minimal544

since the algorithm is framing the largest interval possible. Finally, for A and B fixed, steps545

1 and 3 remove dominated paths, guaranteeing to have a Pareto Set as output. J546

Sample Frame(S,R, ε) is efficient since it processes sequencially the paths from R, and547

potentially for each one of those, performs a logarithmic search through S.548

ATMOS 2020

11:16 Approximate Multicriteria Shortest Paths

I Proposition 17. Let R (resp. S) be the number of paths of rank r (resp. inferior to r).549

The complexity of the Sample Frame algorithm is O(R(logR+ logS)}).550

Proof. Paths of rank r are sorted in O(R logR) time. Then these paths are considered only551

once and each one may require to search for A and B in O(logS) time. J552

With the previous proposition and Theorem 2, the time complexity of Frame, claimed553

in Table 1, is computable by summing the complexities of each call to Sample Frame.554

I Theorem 18. Let Sε be the size of the output of Frame. The time complexity of Frame555

is in O (∆Sε log(∆Sε)).556

Proof. For each vertex u and rank r, let T r
u be the size of the first parameter of Sample, and557

S<r
u be the size of the second parameter of Sample. Then the complexity of Sample using558

Sample Frame is O(T r
u(logS<r

u +log T r
u)) which is in O(T r

u(log(∆Sε))) since T r
u ≤ ∆Sε. Re-559

peating this operation over each vertex and rank gives CSample(n, Sε,∆) = O(∆Sε log(∆Sε).560

Furthermore, recall that adding an optimal path to the set of permanent paths costs O(logSε),561

therefore the overall complexity for the line 13 of Meta Rank (Alg. 2) is O(Sε logSε). Ap-562

plying Theorem 2 allows us to conclude. J563

5 Is the Pareto-compatible property practically relevant ?564

Although Frame is Pareto compatible, it is interesting to check whenever Sε given by Frame565

is really smaller than S in practice. We run shortest path queries for d = 2 for two types of566

graphs: small synthetic graphs but with large exact Pareto sets and large real-life graphs, up567

to 1 millions arcs with relatively small exact Pareto sets. For these experiments, we take568

ε = 1. Then, we study the impact of the variation of ε on the size of Sε. S is computed569

using an optimized version of MC Dijkstra dedicated to d = 2.570

Algorithms have been implemented in C++, using data structures which guarantee the571

desired complexities for dimension 2. Temporary and permanent solution sets (Tu and Su)572

are implemented using std::set class template. For MC Dijkstra, a global temporary573

solution is used to store the minimum path of each Tu. It is also a set, and the priority list of574

Meta Rank is implemented using std::map class template. The program is compiled with575

g++-8 and the option -o2, since the used space can be huge. It is executed on a computer576

running Ubuntu 18.04.3, having 16GB RAM and an Intel Core i7-6700 processor.577

Oriented complete graphs. We use the graphs construction proposed by Breugem et al.578

(see [3] for the exact description) to get oriented complete graphs −→Kn with large exact Pareto579

sets (2n−2 for n vertices), and, for given n (n = 19 for us), to generate intermediate graphs580

between −→Kn and the standard Erdös-Renyi random graphs. Parameter p defines the closeness581

to these two extreme graphs: every arc of −→Kn is changed (removed or redirected) with582

probability p. Whenever p = 0, we get −→Kn, and for p = 1, we have a pure random graph.583

For this extreme case, Sε is much smaller than S for small values of p. Figure 6 shows584

that Frame is at least 105 times quicker than MC Dijkstra for −−→K19 (p = 0). For p < 0, 5,585

Frame is still several orders of magnitude faster than MC Dijkstra. However, MC586

Dijkstra performance improves whenever p increases and that of Frame remains stable.587

This is explained by S being small for p close to 1.588

N. Hanusse, D. Ilcinkas, and A. Lentz 11:17

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 0 0.2 0.4 0.6 0.8 1

Ti
m

e
 (

m
s)

p

Frame Dijkstra

Figure 4 Time for −−→K19

variations

 1

 10

 100

 1000

 10000

 100000

 1x106

 0 0.2 0.4 0.6 0.8 1

S
o
lu

ti
o
n
 s

iz
e

p

Frame Dijkstra

Figure 5 Sε for −−→K19

variations

 60

 70

 80

 90

 100

 110

 120

 0.001 0.01 0.1 1 10

S
o
lu

ti
o
n
 s

iz
e

Epsilon

Frame Dijkstra

Figure 6 The impact of ε on
Su,ε

Graph Vertices Arcs MC Dijkstra Time Frame Time S̄u S̄u,1(Frame)
DC 9559 14909 79.34 76.02 4.84 4.22
RI 53658 69213 154.78 148.49 5.24 4.37
WY 253077 304014 309.18 253.28 7.73 5.31
NM 467529 567084 1333.5 1209.93 22.09 14.92
VA 630639 714809 10943.98 7475.28 62.87 48.84
NC 887630 1009846 25206.34 17637.98 66.78 49.93

Figure 7 MC Dijkstra vs Frame on DIMACS (time in ms)

Real-life graphs. The previous graphs are small and dense. We now study the impact of589

the number of vertices for sparse graphs. We take the graphs given by the 9th challenge of590

DIMACS [7]. It offers bicriteria (distance and edge traversal time) datasets on road networks591

for different USA states. On these graphs, 100 shortest path queries are performed randomly592

and we report the average Pareto set size S̄u for a random destination u. We remark that593

for small S̄u, Frame and MC Dijkstra performs similarly (Tab. 7), whereas for larger S̄u,594

Frame has a gain of 30%.595

Impact of ε. Up to now, we set up ε to 1. We now introduce the variation of ε = 10k
596

with k ∈ J−3, 1K on square grids of 10000 sommets. The arcs weights are randomly drawn597

between 1 and 100. The sources and the destinations are also randomly chosen. We observe598

in Figure 6 that whenever ε goes to 0, the output of Frame converges to S. For ε larger599

than 1, Sε is almost constant (around 60) whereas two paths are enough to cover S. It shows600

the limitation of the Pareto compatibility property of Frame.601

6 Conclusion602

In the current description of Meta Rank, we assume that the rank of each edge is non-null.603

We can easily handle this limitation: in order to be able to consider at once all paths having604

the same rank, we can add a step before applying Sample. It consists simply in extending605

recursively every path with null rank arcs whenever it is possible.606

In this article, we get the first approximated algorithm being Pareto compatible. It would607

be interesting to provide other algorithms with this property but in dimension ≥ 3. Moreover,608

Frame and Sector are promising from a practical point of view. Experiments comparing609

them with the best exact and approximated algorithms would be an interesting future work.610

In our experiments, we observed that Frame is always competitive with respect to MC611

Dijkstra in various situations. The bigger the Pareto set, the better Frame. However,612

even if Sε < S, it can be far from S∗ε . We let open the question of getting a constant613

approximation of S∗ε with a polynomial time algorithm whenever C is bounded. Another614

ATMOS 2020

11:18 Approximate Multicriteria Shortest Paths

question is to get an efficient algorithm in 3 dimensions. Algorithm Sector is promising615

but is not Pareto compatible, limiting the theoritical gain.616

References617

1 Florian Barth, Stefan Funke, and Sabine Storandt. Alternative multicriteria routes. In618

2019 Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments619

(ALENEX), pages 66–80. SIAM, 2019.620

2 Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor,621

Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in Transportation622

Networks. In Algorithm Engineering, volume 9220 of Lecture Notes in Computer Science,623

pages 19–80. Springer, Cham, 2016. URL: https://link.springer.com/chapter/10.1007/624

978-3-319-49487-6_2, doi:10.1007/978-3-319-49487-6_2.625

3 Thomas Breugem, Twan Dollevoet, and Wilco van den Heuvel. Analysis of FPTASes for626

the multi-objective shortest path problem. Computers & Operations Research, 78(Supple-627

ment C):44–58, February 2017. URL: http://www.sciencedirect.com/science/article/628

pii/S030505481630154X, doi:10.1016/j.cor.2016.06.022.629

4 Fritz Bökler and Markus Chimani. Approximating Multiobjective Shortest Path in Practice.630

In 2020 Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX),631

Proceedings, pages 120–133. Society for Industrial and Applied Mathematics, December632

2019. URL: https://epubs.siam.org/doi/10.1137/1.9781611976007.10, doi:10.1137/1.633

9781611976007.10.634

5 Daniel Delling, Julian Dibbelt, and Thomas Pajor. Fast and exact public transit routing635

with restricted pareto sets. In 2019 Proceedings of the Twenty-First Workshop on Algorithm636

Engineering and Experiments (ALENEX), pages 54–65. SIAM, 2019.637

6 Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-Based Public Transit Routing.638

Transportation Science, 49(3):591–604, October 2014. URL: https://pubsonline.informs.639

org/doi/10.1287/trsc.2014.0534, doi:10.1287/trsc.2014.0534.640

7 Camil Demetrescu, Andrew Goldberg, and David Johnson. 9th DIMACS Implementation641

Challenge: Shortest Paths. URL: http://users.diag.uniroma1.it/challenge9/.642

8 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly Simple and643

Fast Transit Routing. In Experimental Algorithms, Lecture Notes in Computer Science, pages644

43–54. Springer, Berlin, Heidelberg, June 2013. URL: https://link.springer.com/chapter/645

10.1007/978-3-642-38527-8_6, doi:10.1007/978-3-642-38527-8_6.646

9 Matthias Ehrgott. Multicriteria optimization. Springer, Berlin ; New York, 2nd ed edition,647

2005.648

10 Pierre Hansen. Bicriterion Path Problems. In Günter Fandel and Tomas Gal, editors,649

Multiple Criteria Decision Making Theory and Application, Lecture Notes in Economics and650

Mathematical Systems, pages 109–127. Springer Berlin Heidelberg, 1980.651

11 J. Hrnčíř, P. Žilecký, Q. Song, and M. Jakob. Practical Multicriteria Urban Bicycle Routing.652

IEEE Transactions on Intelligent Transportation Systems, 18(3):493–504, March 2017. doi:653

10.1109/TITS.2016.2577047.654

12 H. T. Kung, F. Luccio, and F. P. Preparata. On Finding the Maxima of a Set of Vectors.655

Journal of the ACM, 22(4):469–476, October 1975. URL: http://portal.acm.org/citation.656

cfm?doid=321906.321910, doi:10.1145/321906.321910.657

13 E. Machuca and L. Mandow. Multiobjective heuristic search in road maps. Expert Systems658

with Applications, 39(7):6435–6445, June 2012. URL: https://linkinghub.elsevier.com/659

retrieve/pii/S0957417411016939, doi:10.1016/j.eswa.2011.12.022.660

14 Lawrence Mandow and José. Luis Pérez De La Cruz. Multiobjective A* search with consistent661

heuristics. Journal of the ACM, 57(5):1–25, June 2010. URL: http://portal.acm.org/662

citation.cfm?doid=1754399.1754400, doi:10.1145/1754399.1754400.663

https://link.springer.com/chapter/10.1007/978-3-319-49487-6_2
https://link.springer.com/chapter/10.1007/978-3-319-49487-6_2
https://link.springer.com/chapter/10.1007/978-3-319-49487-6_2
http://dx.doi.org/10.1007/978-3-319-49487-6_2
http://www.sciencedirect.com/science/article/pii/S030505481630154X
http://www.sciencedirect.com/science/article/pii/S030505481630154X
http://www.sciencedirect.com/science/article/pii/S030505481630154X
http://dx.doi.org/10.1016/j.cor.2016.06.022
https://epubs.siam.org/doi/10.1137/1.9781611976007.10
http://dx.doi.org/10.1137/1.9781611976007.10
http://dx.doi.org/10.1137/1.9781611976007.10
http://dx.doi.org/10.1137/1.9781611976007.10
https://pubsonline.informs.org/doi/10.1287/trsc.2014.0534
https://pubsonline.informs.org/doi/10.1287/trsc.2014.0534
https://pubsonline.informs.org/doi/10.1287/trsc.2014.0534
http://dx.doi.org/10.1287/trsc.2014.0534
http://users.diag.uniroma1.it/challenge9/
https://link.springer.com/chapter/10.1007/978-3-642-38527-8_6
https://link.springer.com/chapter/10.1007/978-3-642-38527-8_6
https://link.springer.com/chapter/10.1007/978-3-642-38527-8_6
http://dx.doi.org/10.1007/978-3-642-38527-8_6
http://dx.doi.org/10.1109/TITS.2016.2577047
http://dx.doi.org/10.1109/TITS.2016.2577047
http://dx.doi.org/10.1109/TITS.2016.2577047
http://portal.acm.org/citation.cfm?doid=321906.321910
http://portal.acm.org/citation.cfm?doid=321906.321910
http://portal.acm.org/citation.cfm?doid=321906.321910
http://dx.doi.org/10.1145/321906.321910
https://linkinghub.elsevier.com/retrieve/pii/S0957417411016939
https://linkinghub.elsevier.com/retrieve/pii/S0957417411016939
https://linkinghub.elsevier.com/retrieve/pii/S0957417411016939
http://dx.doi.org/10.1016/j.eswa.2011.12.022
http://portal.acm.org/citation.cfm?doid=1754399.1754400
http://portal.acm.org/citation.cfm?doid=1754399.1754400
http://portal.acm.org/citation.cfm?doid=1754399.1754400
http://dx.doi.org/10.1145/1754399.1754400

N. Hanusse, D. Ilcinkas, and A. Lentz 11:19

15 Ernesto Queirós Vieira Martins. On a multicriteria shortest path problem. European Journal664

of Operational Research, 16(2):236–245, May 1984. URL: http://www.sciencedirect.com/665

science/article/pii/0377221784900778, doi:10.1016/0377-2217(84)90077-8.666

16 Christian Worm Mortensen. Fully Dynamic Orthogonal Range Reporting on RAM. SIAM Jour-667

nal on Computing, 35(6):1494–1525, January 2006. Publisher: Society for Industrial and Ap-668

plied Mathematics. URL: https://epubs.siam.org/doi/abs/10.1137/S0097539703436722,669

doi:10.1137/S0097539703436722.670

17 Matthias Müller-Hannemann and Karsten Weihe. On the cardinality of the Pareto set in671

bicriteria shortest path problems. Annals of Operations Research, 147(1):269–286, Octo-672

ber 2006. URL: http://link.springer.com/10.1007/s10479-006-0072-1, doi:10.1007/673

s10479-006-0072-1.674

18 C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and optimal675

access of Web sources. In Proceedings 41st Annual Symposium on Foundations of Computer676

Science, pages 86–92, 2000. doi:10.1109/SFCS.2000.892068.677

19 Andrea Raith and Matthias Ehrgott. A comparison of solution strategies for biobjec-678

tive shortest path problems. Computers & Operations Research, 36(4):1299–1331, April679

2009. URL: https://linkinghub.elsevier.com/retrieve/pii/S0305054808000233, doi:680

10.1016/j.cor.2008.02.002.681

20 Michael Shekelyan, Gregor Josse, and Matthias Schubert. Linear path skylines in multicriteria682

networks. In 2015 IEEE 31st International Conference on Data Engineering, pages 459–683

470, Seoul, South Korea, April 2015. IEEE. URL: http://ieeexplore.ieee.org/document/684

7113306/, doi:10.1109/ICDE.2015.7113306.685

21 George Tsaggouris and Christos Zaroliagis. Multiobjective Optimization: Improved FPTAS686

for Shortest Paths and Non-Linear Objectives with Applications. Theory of Computing687

Systems, 45(1):162–186, June 2009. URL: https://link.springer.com/article/10.1007/688

s00224-007-9096-4, doi:10.1007/s00224-007-9096-4.689

22 Chi Tung Tung and Kim Lin Chew. A multicriteria Pareto-optimal path algo-690

rithm. European Journal of Operational Research, 62(2):203–209, October 1992. URL:691

http://www.sciencedirect.com/science/article/pii/0377221792902488, doi:10.1016/692

0377-2217(92)90248-8.693

23 Sibo Wang, Xiaokui Xiao, Yin Yang, and Wenqing Lin. Effective indexing for approximate694

constrained shortest path queries on large road networks. Proceedings of the VLDB En-695

dowment, 10(2):61–72, October 2016. URL: http://doi.org/10.14778/3015274.3015277,696

doi:10.14778/3015274.3015277.697

24 Arthur Warburton. Approximation of Pareto Optima in Multiple-Objective, Shortest-Path698

Problems. Operations Research, 35(1):70–79, February 1987. URL: http://pubsonline.699

informs.org/doi/abs/10.1287/opre.35.1.70, doi:10.1287/opre.35.1.70.700

25 Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. Path Problems701

in Temporal Graphs. Proc. VLDB Endow., 7(9):721–732, May 2014. URL: http://dx.doi.702

org/10.14778/2732939.2732945, doi:10.14778/2732939.2732945.703

ATMOS 2020

http://www.sciencedirect.com/science/article/pii/0377221784900778
http://www.sciencedirect.com/science/article/pii/0377221784900778
http://www.sciencedirect.com/science/article/pii/0377221784900778
http://dx.doi.org/10.1016/0377-2217(84)90077-8
https://epubs.siam.org/doi/abs/10.1137/S0097539703436722
http://dx.doi.org/10.1137/S0097539703436722
http://link.springer.com/10.1007/s10479-006-0072-1
http://dx.doi.org/10.1007/s10479-006-0072-1
http://dx.doi.org/10.1007/s10479-006-0072-1
http://dx.doi.org/10.1007/s10479-006-0072-1
http://dx.doi.org/10.1109/SFCS.2000.892068
https://linkinghub.elsevier.com/retrieve/pii/S0305054808000233
http://dx.doi.org/10.1016/j.cor.2008.02.002
http://dx.doi.org/10.1016/j.cor.2008.02.002
http://dx.doi.org/10.1016/j.cor.2008.02.002
http://ieeexplore.ieee.org/document/7113306/
http://ieeexplore.ieee.org/document/7113306/
http://ieeexplore.ieee.org/document/7113306/
http://dx.doi.org/10.1109/ICDE.2015.7113306
https://link.springer.com/article/10.1007/s00224-007-9096-4
https://link.springer.com/article/10.1007/s00224-007-9096-4
https://link.springer.com/article/10.1007/s00224-007-9096-4
http://dx.doi.org/10.1007/s00224-007-9096-4
http://www.sciencedirect.com/science/article/pii/0377221792902488
http://dx.doi.org/10.1016/0377-2217(92)90248-8
http://dx.doi.org/10.1016/0377-2217(92)90248-8
http://dx.doi.org/10.1016/0377-2217(92)90248-8
http://doi.org/10.14778/3015274.3015277
http://dx.doi.org/10.14778/3015274.3015277
http://pubsonline.informs.org/doi/abs/10.1287/opre.35.1.70
http://pubsonline.informs.org/doi/abs/10.1287/opre.35.1.70
http://pubsonline.informs.org/doi/abs/10.1287/opre.35.1.70
http://dx.doi.org/10.1287/opre.35.1.70
http://dx.doi.org/10.14778/2732939.2732945
http://dx.doi.org/10.14778/2732939.2732945
http://dx.doi.org/10.14778/2732939.2732945
http://dx.doi.org/10.14778/2732939.2732945

	Introduction
	Context and Motivation
	Problem Description and State of the Art
	Exact and Approximated Pareto Sets

	Contributions

	Preliminaries
	General Algorithms
	Reminder on MC Dijkstra
	Meta Rank Algorithm
	Algorithms Based on Sectors
	Elimination Criterion
	Sample Sector

	Frame (dimension 2)
	Elimination Criterion
	Pareto Compatible Property
	Frame Algorithm

	Is the Pareto-compatible property practically relevant ?
	Conclusion

