Recherche optimale de trou noir avec cailloux

Paola Flocchirdi T, David licinka€:*et Nicola Santord T

1SITE, University of Ottawa, Canada. E-mdilt occhi n@i t e. uott awa. ca
2CNRS, LaBRI, UnivergitBordeaux |, France. E-maitlavi d. i | ci nkas@ abri . fr
3School of Computer Science, Carleton University, Canada. E-mailt or o@cs. carl et on. ca

Un trou noir est un nceud d'u@seau qui étruit tout agent (ou robot) y entrant sans laisser de tratecthble. Lem-
placement du trou noir doétre determiré par une unéquipe d'agents mobiles identiquespibyeea partir d’'un em-
placement sain. Pratiguement tous lesultats existants pour des agents asynchrones supposeesdaqs chaque
nceud d’'une ramoire partage (tableau blanc), de taille logarithmique, sur laquelle les agents peuesgtéarire. Un
méchanisme moins puissant et moins exigeant consiste en I'utilisation deigailentiques (qui peuvetre cepogs
sur les noeuds, repris, et transpsrpar les agents), traditionnellement emplopour I'exploration de graphes sains
(i.e.sans trou noir). Deuxésultats @cents montrent qu'il est possible d’utiliser des cailloux comme moye&orenu-
nication pour la recherche de trou noir. Césultats autorisent cependant les caillawbtre plaés non seulement sur
les nceuds mais aussi sur les liens. lls suppasgaiement que les liens sont FIFO.

Dans ce papier, nous conéins le modle des cailloux i#aux, c’est-dire le moéle ai un caillou ne peuktre plaé
que sur les nceuds, et pas plus d'un caillou ne eatplaé sur un nceud doenNous prouvons que pour lésseaux de
topologie connue il est possible d’obtenir exactement leses bornes optimales en utilisant des caillo@aigk qu’en
utilisant des tableaux blancs, et céme si les liens ne sont pas FIFO. Plusgiement, nous prouvons qu’ugguipe
dedeuxagents asynchrones, chackguige d’un seul caillou indistinguable (qui ne petite plaé que sur les nceuds,
avec au plus un caillou par nceud), peut localiser le trou noiré8eltat est obtenu en utilisant le nombre optimal de
mouvement®(nlogn), ol n est le nombre de nceuds. Poésumer, nous fournissons la prém preuve que, pour la
recherche de trou noir, le mekd des cailloux idaux est aussi puissant que le raleddes tableaux blancs.

Keywords: Calcul ieparti, exploration de graphes, robots autonomes, agents mobilesegm@angereux.

1 Introduction

Black Hole SearckBHs) is a multi-agent problem set in a gra@h a team of (identical) cooperating mobile
agents (or robots) must determine the locatio@iof ablack hole(BH): a node where any incoming agent
is destroyed without leaving any detectable trace. Thelprolis solved if at least one agent survives and
all surviving agents know the location of the black hole.

The practical interest in this problem derives from the fhet, in the pressing security concern fowst
attackson mobile agents (e.g., [Che98, Opp99]), a black hole dessra highly harmful host. Even more
important, a black hole can model several types of fault8) hardware and software, arising in networked
systems with code mobility. Clearly, in presence of suchranfid host, the first step must be ientifyit,
if possible; i.e., to determine and report its location.

From a theoretical point of view, the original interest istpbroblem is amplified by the fact that it is
a newexplorationproblem; in fact, the black hole can be located only aftettad nodes of the network
but one have been visited and are found to be safe. Clearlyjsrexploration process some agents may
disappear in the black hole. In other words, while the axistiide body of literature on exploration (e.qg.,
see [BFRSV02, DP99, PP99]) assumes that the graghfes BHS opens the research problems of the
exploration ofdangerous graphs

Indeed Bis has been extensively studied in several settings, undeteiywaf assumptions on the power
of the adversary and on the capabilities of the agents. Tierelices are on the assumptions made e.g.

TPartially supported by NSERC discovery grant.
*This work was done during the stay of David licinkas at thevdrsity of Ottawa, as a postdoctoral fellow.

Paola Flocchini, David licinkas et Nicola Santoro

on the level of synchronization of the agents; on whetheratrthe movements of the agents on links
are FIFO; on the type of mechanisms available for inter agemtmunication and coordination. In these
investigations, the research concern has been to detetmder what conditions and at what cost mobile
agents can successfully accomplish this task. The main lexibhpmeasure of a solution protocol is the
number of agents employed. The second one is the total nushbesves performed by the agents.

In this paper we are interested in the weakest settings tiflanske the problem solvable. Thus we
will make no assumptions on timing or delays, and focus oragyachronousetting. Indeed, while the
research has also focused on iyachronousase (e.g. [CKRO06]) where all agents are synchronized and
delays are unitary, the main body of the investigations lasentrated on the asynchronous one (e.g.,
[DFKS06, DFPS06, DSS06]).

The majority of the investigations operate in thhiteboardmodel: every node provides a shared space
for the arriving agents to read and write (in fair mutual esgbn). This model is very powerful: it endows
the agents not only with direct and explicit communicatiapabilities, but also with the means to overcome
severe network limitations, such as non-FIFO links. A weakel less demanding interaction mechanism,
used in the early investigations on (safe) graph explanéidhat provided by the use of identiqabbles
(that can be placed on nodes, picked up and carried by thesgeithout any other form of marking or
communication (e.g., [BFRSV02]).

The quest now is to determine ift& can be solved using pebbles instead of whiteboards. Thetane
of this quest goes beyond the specific problem, in that it dshed some light on the relative computational
power of these two inter-agent communication mechanisms.résults have been established so far, both
assuming FIFO links. In [DFKSO06] it has been shown that 1 agents 4 denotes the maximun node
degree inG) without a map (the minimum team size under these conditi@ash endowed with an identical
pebble, can locate the black hole with a (very high but) poitgial number of moves. In [DSS06] it has
been shown that two agents with a map (the minimum team sideruhese conditions), each endowed
with a constant number of pebbles, can locate the black haeing network with®(nlogn) moves.

Although suggestive, these results are not yet proofs telblps are computationally as powerful as
whiteboards with regards toHss. This is because they anet established within thpure tokermodel used
in the traditional exploration problem; in fact, here ageate allowed to place pebbles not only on nodes
but also on links (e.g., to indicate on which link it is dejoag).

In this paper, we provide the first proof that indeed the poken model is computationally as powerful
as the whiteboard model forHs. The context we examine is the one of agents with a map in atrasb
graph. It is known that, in this case, with whiteboartigp agents are necessary and sufficient, and that
O(nlogn) moves are necessary and sufficient [DFPS06]. In this comtextrove that: (1) A team divo
asynchronous agents, each endowed with a single idengble (that can be placed only on nodes) and
a map of the graph can locate the black hole. (2) This resalteaobtained witt®(nlogn) moves. (3)
Those bounds hold even if the links are not FIFO. In other wpfor networks of known topology, using
pure tokens it is possible to obtain exactly the same opthoahds as using whiteboards.

Unlike the previous results with impure tokens, our bounald keven if the links are not FIFO. Note that
our result implies as a corollary an optimal solution for thieiteboard model using only a single bit of
shared memory per node; the existing solution [DFPS06]iresjwhiteboards ob(logn) bits in size.

2 Terminology and Definitions

Let G = (V,E) be a simple biconnected graph with= |V | nodes containing exactly one black hole. Edges
incident to a node are identified by port numbers. Operatirgis a team of identical autonomous mobile
agents (or robots). All agents enter the system from the sentde, called homebase. The agents have com-
puting capabilities, bounded computational storage, amé of G with port numbers and the indication
of the homebase; they can move from node to neighbouring, modieobey the same set of behavioral rules
(thealgorithm). Every agent has pebble all pebbles are identical. A pebble can be carried, put daian
node if no other pebble is already there, and picked up frowde ty an agent without pebbles.

When an agent enters a node, it can see if there is a pebbleadttipgre; it might be however unable to
see other agents there or to determine whether they arérgpeypebble with them.

Recherche optimale de trou noir avec cailloux

The system issynchronousHowever, the action of determining the presence of a peditdenode and
dropping or picking up the pebble (depending on the algarjtis locally atomic; no other action can occur
at the same node at the same time. Links are not FIFO: two sigemting on the same link in the same
direction at the same time might arrive at destination inrditrary order.

3 Optimal black hole search with pebbles

We first describe an algorithm for rings and then we brieflywshow to generalize it to arbitrary graphs.

3.1 Preliminaries

Without loss of generality, we can assume that the clock{aseght) direction is the same for both agents.
An agent exploring to the right (resp. left) is said to beght (resp. left) agent. Foii > 0, the node at
distance to the right, resp. to the left, of the home base will be catledei, resp. nodei-

In the algorithm the agents obey the two following metaru{@3 an agent always ensures that a pebble
is lying atu before traversing an unknown ed@e v} fromutov (i.e. an edge that it does not know to be
safe); (2) an agent never traverses an unknown ¢dgg from u to v if a pebble lies ati but the pebble
was not dropped here by this agent.

These two metarules imply that the two agents never die ifldek hole coming from the same edge.
Moreover, each agent keeps track of its progress by stonegamber of the most-right, resp. most-left,
node in a variabléast _Ri ght , resp.Last _Lef t. These two variables are used to detect termination:
when only one node remains unexplored, this node is the lalekand the agent can stop.

An agent is said to traverse an edgev} from u to v usingcautious walkf it has one pebble, it drops
it at u, traverses the edge, comes backitaetrieves the pebble and goes agaiwv.tdAn agent is said to
traverse an edggu, v} from u to v usingdouble cautious walk it has one pebble and the other isuatit
goes tov carrying one pebble, drops the pebble at nedeomes back ta, retrieves the other pebble and
goes again te. Note that these two cautious explorations obey the firsarab.

3.2 The algorithm for rings

Our algorithm is divided in two phases. The second phase robgxist in all possible executions.

Phase 1. Inthe first phase, exploration to the right is always donagisautious walk, while exploration to
the left is always done using double cautious walk. Note #iate an agent exploring to the right uses one
pebble and an agent exploring to the left uses two pebblegghants cannot make progress simultaneously
in two different directions because there are only two pebbi total. This also implies that while an agent
is exploring new nodes it knows all the nodes that have ajréaen explored, as well as the position of
the only unexplored node where the other agent possibly died prevents the agents from exploring the
same node and thus from dying in the black hole from two difiédirections.

Phase 1 proceeds as follows. Initially both agents exptotied right. Since links are not FIFO, an agent
may pass the other and take the lead without any of the twaeingtit. Nevertheless it eventually happens
that one agent finds the pebble of the other ageRt say at nodep (at the latest it happens when one
agent locates or dies in the black hole). When this happafeps its pebble at node— 1 (if its pebble
is not already there) and ste&s pebble. Having control on the two pebblésstarts to explore left using
double cautious walk. When/R comes back t@ to retrieve its pebble, it does not find it. It then goes
left until it finds a pebble. AgerRR does eventually find a pebble because Adenever removes a pebble
before putting the other pebble further to the left. At thisip R retrieves the pebble and goes right again to
explore to the right. Whenl/if realizes that one of its pebble has been stolen, it chandgeamd explores
to the right using its remaining pebble. At this point, bogeats explore to the right. Again, one agent
will find and steal the pebble of the other. To ensure progireesploration, a right agent puts down its
token only when it reaches the last visited node to the rigkhows (using its variabléast _Ri ght).
Consequently a stealing on the right always occurs at lessnhode further to the right from the previous
time. Hence the algorithm of Phase 1 is in fact correct byfitagt the number of moves can &(n?)
in the worst case (one explored node ev®(y) moves). To decrease the worst case number of moves to
O(nlogn), the agents switch to Phase 2 as soon as at least two nodelsdeavexplored to the right.

Paola Flocchini, David licinkas et Nicola Santoro

Phase 2. Phase 2 uses thalvingtechnique, reminiscent of the one of [DFPS06], but highlynpbcated

by the absence of whiteboards and by the lack of FIFO. Theiglearegularly divide the workload (the
unexplored part) in two. One agent has the left half to explarhile the second agent explores the right
half. These explorations are performed concurrently bypgigsimple) cautious walk. After finite time,
exactly one agent finishes its part and joins the other inagpg the other part. At some point, one agent
A will see the other agent’s tokerA steals the token and moves it by one position to indicate agga
of stage to the second ageht It then computes the new workload, divide it into two pasisd goes and
explores its newly assigned part. This can happen sevarast{ifB remains blocked by the asynchronous
adversary or if it is dead in the black hole). When/if agBromes back to retrieve its pebble, it does not
find it. It further goes back to retrieve its pebble. The numidfenoves it has to perform to find the pebble
indicates how many halvings (pair of stages) it misses. Kngwhat, it can compute what is the current
unexplored part and what is its current workload. It themtst# explore its part. Since there are at most
O(logn) stages ofo(n) moves each, this leads to a total number of move3(oflogn).

The reason why the algorithm starts with a few stages of Phaséhat the algorithm of Phase 2 needs
some safe nodes to put the pebble that is used as a messaggimndihe current partition of the workload.
Several other technical details and precautions have talkes tecause of asynchrony and lack of FIFO.

3.3 The main result

The algorithm we propose for arbitrary networks is an adapteof the algorithm that we described for
rings. To be able to apply this latter algorithm in a generapy, each agent will maintain a partial mapping
between the node numbers used in the algorithm and the axtdas in the network (or its map), such that
at any point in time an agent knows what means “go left” or ‘ight”. If an agent lies at some nodlghen
going one step right, resp. left, from nodmeans going to nodet 1, resp.i — 1, by a shortest safe path.

Since these paths are not necessarily of constant lenggtetinique can increase the number of moves.
To decrease it t®(nlogn), we also use (safe) shortcuts. More precisely, in some fipeases, an agent
is allowed to go directly (by a shortest safe path) from sowdeinto some other node > i without going
through nodes+ 1 to j — 1 (and similarly ifj < i).

Theorem 1 Consider a n-node graph containing a homebase and a blagk had two agents running our
algorithm from the home base. After at mogh@®gn) moves in total, there remains at least one surviving
agent and all surviving agents have terminated and locatedtack hole.

The optimality of the algorithm follows from the fact tham, an arbitrary graph, the problem cannot be
solved with less agents or (asymptotically) less moves [B08}, and clearly not with less pebbles.

References

[BFRSV02] M. A. Bender, A. Ferandez, D. Ron, A. Sahai, and S. P. Vadhan. The power of a peBjgoring and mapping
directed graphslnformation and Computatiqri76(1):1-21, 2002

[Che98] D.M. Chess. Security issues in mobile code syst&r. Conference on Mobile Agent SecurltiNCS 1419, 1-14,1998.

[CKRO6] C. Cooper, R. Klasing, and T. Radzik. Searching fack-hole faults in a network using multiple agentsPioc. 10th Int.
Conference on Principles of Distributed Systg@®0DIS), 320-332, 2006.

[DP99] X. Deng and C. Papadimitriou, Exploring an unknowrpgrd. Graph TheorB2(3), 265-297, 1999.

[DFKS06] S. Dobreyv, P. Flocchini, R. Kralovic, and N. SaatoExploring a dangerous unknown graph using tokens. BtbdFIP
Int. Conf. on Theoretical Computer Scier@s), 131-150, 2006.

[DFPS06] S. Dobrev, P. Flocchini, G. Prencipe, and N. Sant@earching for a black hole in arbitrary networks: optimabiteo
agents protocolDistributed Computind.9 (1), 1-19, 2006.

[DSS06] S. Dobrev, N. Santoro, and W. Shi. Black hole searasynchronous rings using tokens. Pt Conf. on Algorithms
and Complexityf{CIAC), 139-150, 2006.

[PP99] P. Panaite and A. Pelc, Exploring unknown undiregtapghs Journal of Algorithms33, 281-295, 1999.

[Opp99] R. Oppliger. Security issues related to mobile cauagent-based systemSomputer Communication2(12), 1165 —
1170, 1999.

