
Recherche optimale de trou noir avec cailloux

Paola Flocchini1,†, David Ilcinkas2,‡et Nicola Santoro3,†

1SITE, University of Ottawa, Canada. E-mail:flocchin@site.uottawa.ca
2CNRS, LaBRI, Université Bordeaux I, France. E-mail:david.ilcinkas@labri.fr
3School of Computer Science, Carleton University, Canada. E-mail:santoro@scs.carleton.ca

Un trou noir est un nœud d’un réseau qui d́etruit tout agent (ou robot) y entrant sans laisser de trace détectable. L’em-
placement du trou noir doit̂etre d́etermińe par une unéequipe d’agents mobiles identiques déploýeeà partir d’un em-
placement sain. Pratiquement tous les résultats existants pour des agents asynchrones supposent la présencèa chaque
nœud d’une ḿemoire partaǵee (tableau blanc), de taille logarithmique, sur laquelle les agents peuvent lire etécrire. Un
méchanisme moins puissant et moins exigeant consiste en l’utilisation de cailloux identiques (qui peuventêtre d́epośes
sur les nœuds, repris, et transportés par les agents), traditionnellement employés pour l’exploration de graphes sains
(i.e.sans trou noir). Deux résultats ŕecents montrent qu’il est possible d’utiliser des cailloux comme moyen decommu-
nication pour la recherche de trou noir. Ces résultats autorisent cependant les caillouxà être plaćes non seulement sur
les nœuds mais aussi sur les liens. Ils supposentégalement que les liens sont FIFO.

Dans ce papier, nous considérons le mod̀ele des cailloux id́eaux, c’est-̀a-dire le mod̀ele òu un caillou ne peut̂etre plaće
que sur les nœuds, et pas plus d’un caillou ne peutêtre plaće sur un nœud donné. Nous prouvons que pour les réseaux de
topologie connue il est possible d’obtenir exactement les mêmes bornes optimales en utilisant des cailloux idéaux qu’en
utilisant des tableaux blancs, et ce même si les liens ne sont pas FIFO. Plus préciśement, nous prouvons qu’uneéquipe
dedeuxagents asynchrones, chacunéquiṕe d’un seul caillou indistinguable (qui ne peutêtre plaće que sur les nœuds,
avec au plus un caillou par nœud), peut localiser le trou noir. Ce résultat est obtenu en utilisant le nombre optimal de
mouvementsΘ(nlogn), où n est le nombre de nœuds. Pour résumer, nous fournissons la première preuve que, pour la
recherche de trou noir, le modèle des cailloux id́eaux est aussi puissant que le modèle des tableaux blancs.

Keywords: Calcul ŕeparti, exploration de graphes, robots autonomes, agents mobiles, graphes dangereux.

1 Introduction
Black Hole Search(BHS) is a multi-agent problem set in a graphG: a team of (identical) cooperating mobile
agents (or robots) must determine the location inG of ablack hole(BH): a node where any incoming agent
is destroyed without leaving any detectable trace. The problem is solved if at least one agent survives and
all surviving agents know the location of the black hole.

The practical interest in this problem derives from the factthat, in the pressing security concern onhost
attackson mobile agents (e.g., [Che98, Opp99]), a black hole describes a highly harmful host. Even more
important, a black hole can model several types of faults, both hardware and software, arising in networked
systems with code mobility. Clearly, in presence of such a harmful host, the first step must be toidentify it,
if possible; i.e., to determine and report its location.

From a theoretical point of view, the original interest in this problem is amplified by the fact that it is
a newexplorationproblem; in fact, the black hole can be located only after allthe nodes of the network
but one have been visited and are found to be safe. Clearly, inthis exploration process some agents may
disappear in the black hole. In other words, while the existing wide body of literature on exploration (e.g.,
see [BFRSV02, DP99, PP99]) assumes that the graph issafe, BHS opens the research problems of the
exploration ofdangerous graphs.

Indeed BHS has been extensively studied in several settings, under a variety of assumptions on the power
of the adversary and on the capabilities of the agents. The differences are on the assumptions made e.g.

†Partially supported by NSERC discovery grant.
‡This work was done during the stay of David Ilcinkas at the University of Ottawa, as a postdoctoral fellow.

Paola Flocchini, David Ilcinkas et Nicola Santoro

on the level of synchronization of the agents; on whether or not the movements of the agents on links
are FIFO; on the type of mechanisms available for inter agentcommunication and coordination. In these
investigations, the research concern has been to determineunder what conditions and at what cost mobile
agents can successfully accomplish this task. The main complexity measure of a solution protocol is the
number of agents employed. The second one is the total numberof moves performed by the agents.

In this paper we are interested in the weakest settings that still make the problem solvable. Thus we
will make no assumptions on timing or delays, and focus on theasynchronoussetting. Indeed, while the
research has also focused on thesynchronouscase (e.g. [CKR06]) where all agents are synchronized and
delays are unitary, the main body of the investigations has concentrated on the asynchronous one (e.g.,
[DFKS06, DFPS06, DSS06]).

The majority of the investigations operate in thewhiteboardmodel: every node provides a shared space
for the arriving agents to read and write (in fair mutual exclusion). This model is very powerful: it endows
the agents not only with direct and explicit communication capabilities, but also with the means to overcome
severe network limitations, such as non-FIFO links. A weaker and less demanding interaction mechanism,
used in the early investigations on (safe) graph exploration is that provided by the use of identicalpebbles
(that can be placed on nodes, picked up and carried by the agents) without any other form of marking or
communication (e.g., [BFRSV02]).

The quest now is to determine if BHS can be solved using pebbles instead of whiteboards. The importance
of this quest goes beyond the specific problem, in that it would shed some light on the relative computational
power of these two inter-agent communication mechanisms. Two results have been established so far, both
assuming FIFO links. In [DFKS06] it has been shown that∆ + 1 agents (∆ denotes the maximun node
degree inG) without a map (the minimum team size under these conditions), each endowed with an identical
pebble, can locate the black hole with a (very high but) polynomial number of moves. In [DSS06] it has
been shown that two agents with a map (the minimum team size under these conditions), each endowed
with a constant number of pebbles, can locate the black hole in a ring network withΘ(nlogn) moves.

Although suggestive, these results are not yet proofs that pebbles are computationally as powerful as
whiteboards with regards to BHS. This is because they arenotestablished within thepure tokenmodel used
in the traditional exploration problem; in fact, here agents are allowed to place pebbles not only on nodes
but also on links (e.g., to indicate on which link it is departing).

In this paper, we provide the first proof that indeed the pure token model is computationally as powerful
as the whiteboard model for BHS. The context we examine is the one of agents with a map in an arbitrary
graph. It is known that, in this case, with whiteboards,two agents are necessary and sufficient, and that
Θ(nlogn) moves are necessary and sufficient [DFPS06]. In this contextwe prove that: (1) A team oftwo
asynchronous agents, each endowed with a single identical pebble (that can be placed only on nodes) and
a map of the graph can locate the black hole. (2) This result can be obtained withΘ(nlogn) moves. (3)
Those bounds hold even if the links are not FIFO. In other words, for networks of known topology, using
pure tokens it is possible to obtain exactly the same optimalbounds as using whiteboards.

Unlike the previous results with impure tokens, our bounds hold even if the links are not FIFO. Note that
our result implies as a corollary an optimal solution for thewhiteboard model using only a single bit of
shared memory per node; the existing solution [DFPS06] requires whiteboards ofO(logn) bits in size.

2 Terminology and Definitions
Let G = (V,E) be a simple biconnected graph withn = |V| nodes containing exactly one black hole. Edges
incident to a node are identified by port numbers. Operating in G is a team of identical autonomous mobile
agents (or robots). All agents enter the system from the samenode, called homebase. The agents have com-
puting capabilities, bounded computational storage, and amap ofG with port numbers and the indication
of the homebase; they can move from node to neighbouring node, and obey the same set of behavioral rules
(thealgorithm). Every agent has apebble; all pebbles are identical. A pebble can be carried, put downat a
node if no other pebble is already there, and picked up from a node by an agent without pebbles.

When an agent enters a node, it can see if there is a pebble dropped there; it might be however unable to
see other agents there or to determine whether they are carrying a pebble with them.

Recherche optimale de trou noir avec cailloux

The system isasynchronous. However, the action of determining the presence of a pebbleat a node and
dropping or picking up the pebble (depending on the algorithm) is locally atomic; no other action can occur
at the same node at the same time. Links are not FIFO: two agents moving on the same link in the same
direction at the same time might arrive at destination in an arbitrary order.

3 Optimal black hole search with pebbles
We first describe an algorithm for rings and then we briefly show how to generalize it to arbitrary graphs.

3.1 Preliminaries
Without loss of generality, we can assume that the clockwise(or right) direction is the same for both agents.
An agent exploring to the right (resp. left) is said to be aright (resp. left) agent. Fori ≥ 0, the node at
distancei to the right, resp. to the left, of the home base will be callednodei, resp. node -i.

In the algorithm the agents obey the two following metarules: (1) an agent always ensures that a pebble
is lying atu before traversing an unknown edge{u,v} from u to v (i.e. an edge that it does not know to be
safe); (2) an agent never traverses an unknown edge{u,v} from u to v if a pebble lies atu but the pebble
was not dropped here by this agent.

These two metarules imply that the two agents never die in theblack hole coming from the same edge.
Moreover, each agent keeps track of its progress by storing the number of the most-right, resp. most-left,
node in a variableLast Right, resp.Last Left. These two variables are used to detect termination:
when only one node remains unexplored, this node is the blackhole and the agent can stop.

An agent is said to traverse an edge{u,v} from u to v usingcautious walkif it has one pebble, it drops
it at u, traverses the edge, comes back tou, retrieves the pebble and goes again tov. An agent is said to
traverse an edge{u,v} from u to v usingdouble cautious walkif it has one pebble and the other is atu, it
goes tov carrying one pebble, drops the pebble at nodev, comes back tou, retrieves the other pebble and
goes again tov. Note that these two cautious explorations obey the first metarule.

3.2 The algorithm for rings
Our algorithm is divided in two phases. The second phase may not exist in all possible executions.

Phase 1. In the first phase, exploration to the right is always done using cautious walk, while exploration to
the left is always done using double cautious walk. Note that, since an agent exploring to the right uses one
pebble and an agent exploring to the left uses two pebbles, the agents cannot make progress simultaneously
in two different directions because there are only two pebbles in total. This also implies that while an agent
is exploring new nodes it knows all the nodes that have already been explored, as well as the position of
the only unexplored node where the other agent possibly died. This prevents the agents from exploring the
same node and thus from dying in the black hole from two different directions.

Phase 1 proceeds as follows. Initially both agents explore to the right. Since links are not FIFO, an agent
may pass the other and take the lead without any of the two noticing it. Nevertheless it eventually happens
that one agentL finds the pebble of the other agentR, say at nodep (at the latest it happens when one
agent locates or dies in the black hole). When this happensL drops its pebble at nodep−1 (if its pebble
is not already there) and stealsR’s pebble. Having control on the two pebbles,L starts to explore left using
double cautious walk. When/ifR comes back top to retrieve its pebble, it does not find it. It then goes
left until it finds a pebble. AgentR does eventually find a pebble because AgentL never removes a pebble
before putting the other pebble further to the left. At this point R retrieves the pebble and goes right again to
explore to the right. When/ifL realizes that one of its pebble has been stolen, it changes role and explores
to the right using its remaining pebble. At this point, both agents explore to the right. Again, one agent
will find and steal the pebble of the other. To ensure progressin exploration, a right agent puts down its
token only when it reaches the last visited node to the right it knows (using its variableLast Right).
Consequently a stealing on the right always occurs at least one node further to the right from the previous
time. Hence the algorithm of Phase 1 is in fact correct by itself but the number of moves can beΘ(n2)
in the worst case (one explored node everyO(n) moves). To decrease the worst case number of moves to
O(nlogn), the agents switch to Phase 2 as soon as at least two nodes havebeen explored to the right.

Paola Flocchini, David Ilcinkas et Nicola Santoro

Phase 2. Phase 2 uses thehalving technique, reminiscent of the one of [DFPS06], but highly complicated
by the absence of whiteboards and by the lack of FIFO. The ideais to regularly divide the workload (the
unexplored part) in two. One agent has the left half to explore, while the second agent explores the right
half. These explorations are performed concurrently by using (simple) cautious walk. After finite time,
exactly one agent finishes its part and joins the other in exploring the other part. At some point, one agent
A will see the other agent’s token.A steals the token and moves it by one position to indicate a change
of stage to the second agentB. It then computes the new workload, divide it into two parts,and goes and
explores its newly assigned part. This can happen several times (ifB remains blocked by the asynchronous
adversary or if it is dead in the black hole). When/if agentB comes back to retrieve its pebble, it does not
find it. It further goes back to retrieve its pebble. The number of moves it has to perform to find the pebble
indicates how many halvings (pair of stages) it misses. Knowing that, it can compute what is the current
unexplored part and what is its current workload. It then starts to explore its part. Since there are at most
O(logn) stages ofO(n) moves each, this leads to a total number of moves ofO(nlogn).

The reason why the algorithm starts with a few stages of Phase1 is that the algorithm of Phase 2 needs
some safe nodes to put the pebble that is used as a message indicating the current partition of the workload.

Several other technical details and precautions have to be taken because of asynchrony and lack of FIFO.

3.3 The main result
The algorithm we propose for arbitrary networks is an adaptation of the algorithm that we described for
rings. To be able to apply this latter algorithm in a general graph, each agent will maintain a partial mapping
between the node numbers used in the algorithm and the actualnodes in the network (or its map), such that
at any point in time an agent knows what means “go left” or “go right”. If an agent lies at some nodei, then
going one step right, resp. left, from nodei means going to nodei +1, resp.i −1, by a shortest safe path.

Since these paths are not necessarily of constant length, this technique can increase the number of moves.
To decrease it toO(nlogn), we also use (safe) shortcuts. More precisely, in some specific cases, an agent
is allowed to go directly (by a shortest safe path) from some nodei to some other nodej > i without going
through nodesi +1 to j −1 (and similarly if j < i).

Theorem 1 Consider a n-node graph containing a homebase and a black hole, and two agents running our
algorithm from the home base. After at most O(nlogn) moves in total, there remains at least one surviving
agent and all surviving agents have terminated and located the black hole.

The optimality of the algorithm follows from the fact that, in an arbitrary graph, the problem cannot be
solved with less agents or (asymptotically) less moves [DFPS06], and clearly not with less pebbles.

References
[BFRSV02] M. A. Bender, A. Ferńandez, D. Ron, A. Sahai, and S. P. Vadhan. The power of a pebble: Exploring and mapping

directed graphs.Information and Computation, 176(1):1–21, 2002

[Che98] D.M. Chess. Security issues in mobile code systems.Proc. Conference on Mobile Agent Security, LNCS 1419, 1–14,1998.

[CKR06] C. Cooper, R. Klasing, and T. Radzik. Searching for black-hole faults in a network using multiple agents. InProc. 10th Int.
Conference on Principles of Distributed Systems(OPODIS), 320-332, 2006.

[DP99] X. Deng and C. Papadimitriou, Exploring an unknown graph.J. Graph Theory32(3), 265–297, 1999.

[DFKS06] S. Dobrev, P. Flocchini, R. Kralovic, and N. Santoro. Exploring a dangerous unknown graph using tokens. Proc.5th IFIP
Int. Conf. on Theoretical Computer Science(TCS), 131-150, 2006.

[DFPS06] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole in arbitrary networks: optimal mobile
agents protocol.Distributed Computing19 (1), 1-19, 2006.

[DSS06] S. Dobrev, N. Santoro, and W. Shi. Black hole search in asynchronous rings using tokens. Proc.6th Conf. on Algorithms
and Complexity(CIAC), 139-150, 2006.

[PP99] P. Panaite and A. Pelc, Exploring unknown undirectedgraphs,Journal of Algorithms, 33, 281-295, 1999.

[Opp99] R. Oppliger. Security issues related to mobile code and agent-based systems.Computer Communications, 22(12), 1165 –

1170, 1999.

