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Nous considérons les problèmes de décision qui sont résolusde manière répartie par des agents mobiles synchrones
évoluant dans un réseau inconnu et anonyme. Chaque agent dispose d’un identifiant unique et d’une chaîne d’entrée, et
ces agents doivent décider collectivement de la validité d’une propriété qui peut être basée sur les chaînes d’entrée, le
graphe dans lequel les agents évoluent, et leurs positions de départ. Poursuivant un travail récent de Friagniaud et Pelc
[LATIN 2012, LNCS 7256, p. 362–374], nous introduisons plusieurs nouvelles classes naturelles de calculabilité par
agents mobiles, nous permettant d’obtenir une classification plus fine des problèmes inclus dansco-MAV ouMAV, cette
dernière étant la classe des problèmes vérifiables lorsque les agents disposent d’un certificat approprié. Dans cet article,
nous exhibons des résultats d’inclusion ou de séparation entre toutes ces classes. Nous déterminons également leurs
propriétés de clôture vis-à-vis des opérations classiquesde la théorie des ensembles. Notre principal outil technique,
intéressant en soi, est un nouveau méta-protocole qui permet l’exécution essentiellement en parallèle d’un nombre
potentiellement infini de protocoles d’agents mobiles, de façon similaire à la technique classique de déployeur universel
(dovetailing) présente en calculabilité classique.
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1 Introduction
Recent years have seen a surge of research interest in the direction of putting forth computability and

complexity theories for various aspects of distributed computing. Significant examples of this trend include
the investigation of unreliable failure detectors [2], as well as wait-free hierarchies [8]. A more recent line
of work studies the impact of randomization, non-determinism, and identifiers in what concerns the compu-
tational capabilities of theLOCAL model [3, 4, 5]. A different approach considers the characterization of
problems that can be solved under various notions of termination detection or various types of knowledge
about the network in message-passing systems [1, 7]. Finally, a recent work focuses on the computational
power of teams of mobile agents [6]. Our work lies in this latter direction.

More specifically, we consider the setting of a distributed system in which the computation is performed
by one or several deterministic mobile agents, operating inan unknown, anonymous, synchronous network.
As usual in anonymous networks, we assume that on each node there is a local port labeling (from 1 up
to the degree of the node) of its incident edges. Each agent has a unique identifier and is provided with an
input string, and they have to collectively decide a property which may involve their input strings, the graph
on which they are operating, and their particular starting positions. The execution proceeds in synchronous
steps, in the beginning of each of which each agent becomes aware of the port number of the edge through
which it entered the current node, the degree of the node, andthe configurations of other agents on the same
node. Then, the agent performs a local computation and decides whether to halt (byacceptingor rejecting)
or to move to a neighboring node (or stay put). We assume that all local computations take the same amount
of time. The decision problems that the agents are required to solve are sets of triples of the form(G,~s,~x),
whereG is a port labeled graph,~s is a list of nodes representing the starting positions of theagents, and~x is
the list of input strings of the agents.

In [6], Fraigniaud and Pelc introduced two natural computability classes,MAD andMAV, as well as their
counterpartsco-MAD andco-MAV (the classes of all problems whose complements are inMAD andMAV,
respectively). The classMAD, for “Mobile Agent Decidable”, is the class of all mobile agent decision
problems which can be decided by teams of mobile agents, in the sense that there exists a mobile agent
protocol such that in “yes” instances all agents accept, while in “no” instances at least one agent rejects.
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Definition Closure Properties
“yes” instances “no” instances Union Intersection Complement

MADs (∀ certificate :)yes (∀ certificate :)no ✓ ✓ ✓

MAD (∀ certificate :)yes (∀ certificate :)Ùno ✗ ✓ ✗

co-MAD (∀ certificate :)ıyes (∀ certificate :)no ✓ ✗ ✗

MAVs ∃ certificate : yes ∀ certificate : no ✓ ✓ ✗

co-MAVs ∀ certificate : yes ∃ certificate : no ✓ ✓ ✗

MAV ∃ certificate : yes ∀ certificate : Ùno ✗ ✓ ✗

co-MAV ∀ certificate : ıyes ∃ certificate : no ✓ ✗ ✗

MAV′ ∃ certificate : ıyes ∀ certificate : no ✓ ✓ ✗

co-MAV′ ∀ certificate : yes ∃ certificate : Ùno ✓ ✓ ✗

TABLE 1: Overview of mobile agent decidability and verifiability classes. The notationyes (resp.no) means that all
agents accept (resp. reject). Similarly,ıyes (resp.Ùno) means that at least one agent accepts (resp. rejects).

FIGURE 1: Containments between classes belowMAV

andco-MAV. All inclusions are provably strict. Separating
problems are displayed next to the arrows.
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The classMAV, for “Mobile Agent Verifiable”, is the class of all mobile agent decision problems which can
be verified by teams of mobile agents. This means that, in a “yes” instance, there must exist a certificate for
each agent such that if the agent receives it alongside its input string, then all agents must accept, whereas in
a “no” instance, for every possible certificate, at least oneagent must reject. Note that the certificates of the
agents must be independent of the agent identifiers. Fraigniaud and Pelc proved in [6] thatMAD is strictly
included inMAV, and they exhibited a problem which is complete forMAV under an appropriate notion of
oracle reduction.

The contributions of our paper can be summarized as follows :
— We introduce several new mobile agent computability classes which play a key role in our endeavor

for a finer classification of problems belowMAV andco-MAV. The classesMADs andMAVs are
strict versions ofMAD andMAV, respectively, in which unanimity is required in both “yes”and “no”
instances. Furthermore, we consider the classco-MAV′ of mobile agent decision problems that admit
a certificate for “no” instances, while retaining the system-wide acceptance mechanism ofMAV.
Table 1 contains an overview of the classes we consider.

— We perform a thorough investigation of the relationships between the newly introduced and pre-
existing classes. In particular, for every pairA,B of classes, we either prove thatA is included inB, or
we separate them by exhibiting a mobile agent decision problem that belongs toA but not toB. This
leads to the class diagram of Figure 1.

— We complement our results with a complete study of the closure properties of these classes under
the standard set-theoretic operations of union, intersection, and complement. These properties are
summarized in Table 1.

— The main technical tool which we use to obtain these resultsis a new meta-protocol which is of inde-
pendent interest, as it enables the execution of a possibly infinite number of mobile agent protocols
essentially in parallel. This can be seen as a mobile agent computing analogue of the well-known
dovetailing technique from classical recursion theory.
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2 Mobile Agent Computability Classes
Decidability classes. By definition,MADs is a subset of bothMAD andco-MAD and it is easy to check
thatMADs = co-MADs. Moreover, all of these classes are subsets of∆0

1 (the class of centrally decidable
problems), since a centralized algorithm, provided with anencoding of the graph and the starting positions,
inputs, and IDs of the agents, can simulate the corresponding mobile agent protocol and decide appro-
priately. As mentioned in [6],path= {(G,~s,~x) : G is a path} is an example of a decision problem which is
in ∆0

1\MAD, since, intuitively, an agent cannot distinguish a long path from a cycle. In fact, this observation
yieldspath ∈∆0

1\ (MAD∪ co-MAD).
A nontrivial problem inMADs is treesize = {(G,~s,~x) : G is a tree of sizen and∀i xi = n}. The problem

was already shown to be inMAD in [6], and the protocol given there can be modified to show thestronger
property thattreesize ∈MADs. However, it is not always possible to strengthen aMAD protocol to yield
aMADs protocol. This is witnessed, for example, by the problemallempty = {(G,~s,~x) : ∀i xi = ε}, which
separatesMAD from MADs : allempty ∈MAD \MADs. As a corollary,allempty ∈ co-MAD \MADs and
thus we obtain a separation betweenco-MAD andMADs. As we mentioned,MADs is included in bothMAD

andco-MAD. In fact,MADs =MAD∩ co-MAD. This can be obtained as a corollary of Theorems 2 and 3.

Theorem 1 MADs =MAD∩ co-MAD.

By Theorem 1, ifallempty was included inco-MAD, we would obtainallempty ∈ MADs, which we
know to be false. Thus,allempty /∈ co-MAD and we obtain a separation betweenMAD and co-MAD.
Symmetrically,allempty ∈ co-MAD\MAD.

Verifiability classes. By definition,MAVs ⊆ MAV. Moreover,MAV ⊆ Σ0
1 (Σ0

1 is the class of all semi-
decidable problems, i.e., in a “no” instance the algorithm may not terminate), since a centralized algorithm
can simulate theMAV protocol for all possible certificate vectors (by classicaldovetailing) and accept if it
finds a certificate for which all agents accept. This yields immediately thatco-MAVs ⊆ co-MAV ⊆ Π0

1 =
co-Σ0

1.
The classMAV is, in fact, a strict superset ofMAVs, since we show that, for the problemdegree =

{(G,~s,~x) : ∀i ∃v dv = xi}, we havedegree ∈MAV\MAVs. As a corollary,degree ∈ co-MAV \ co-MAVs. In
order to separateΣ0

1 from MAV andΠ0
1 from co-MAV, we observe thatteamsize= {(G,~s,~x) : ∀i xi = |~s|},

which is clearly in∆0
1 = Σ0

1∩Π0
1, is neither inMAV nor in co-MAV.

Decision problems with “no” certificates. In classical computability, the classΠ0
1 = co-Σ0

1 can be seen
as the class of problems that admit a “no” certificate, i.e. : for “no” instances, there exists a certificate that
leads to rejection, whereas for “yes” instances, no certificate can lead to rejection. In this respect, while
MAV can certainly be considered as the mobile agent analogue ofΣ0

1, co-MAV is not quite the analogue
of Π0

1. Problems inco-MAV indeed admit a “no” certificate, but the acceptance mechanism is reversed :
for “no” instances, there exists a certificate that leads allagents to reject. This motivates us to define and
studyco-MAV′, the class of mobile agent problems that admit a “no” certificate while retaining theMAV

acceptance mechanism, as well as its complementMAV′. By definition, we have thatMAVs ⊆MAV′ and
co-MAVs ⊆ co-MAV′. In fact, we show that these hold as equalities :

Theorem 2 MAV′ =MAVs andco-MAV′ = co-MAVs.

Connections with the decidability classes.From the definitions, we deduce immediately thatMAD ⊆
co-MAV′, therefore, by Theorem 2,MAD⊆ co-MAVs. Similarly,co-MAD⊆MAVs. Therefore, sinceMADs ⊆
MAD∩ co-MAD, we also have thatMADs ⊆MAVs∩ co-MAVs. In fact, we obtain the following result :

Theorem 3 MADs =MAVs∩ co-MAVs.

It turns out that we can characterize in a similar way the classesMAD andco-MAD :

Theorem 4 MAD=MAV∩ co-MAVs andco-MAD=MAVs∩ co-MAV.

It was shown in [6] that, for the restrictionsMAD1 (resp.MAV1) of MAD (resp.MAV) to problems
decidable (resp. verifiable) by a single agent, it holds thatMAD1 =MAV1 ∩ co-MAV1. Theorems 3 and 4
can be seen as generalizations of that result to multiagent classes.
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For any fixedγ ≥ 1, let degreeγ = {(G,~s,~x) : ∃v dv = γ}. It holds thatdegreeγ ∈ MAVs \ co-MAD and

degreeγ ∈ co-MAVs \MAD. In view of Theorem 4, this yields a separation betweenMAVs andco-MAV, as
degreeγ ∈MAVs \ co-MAV, and a separation betweenco-MAVs andMAV, asdegreeγ ∈ co-MAVs \MAV.

3 Simulated Parallel Execution of Mobile Agent Protocols
The key technical tool for the proofs of Theorems 1–4 is a new method for executing a (possibly infinite)

number of mobile agent protocols essentially in parallel. This is similar in spirit to dovetailing in classical
computing, except that the situation is considerably more complicated when mobile agents are concerned,
due to the fact that there are several agents computing in an unknown graph, each knowing only part of the
input. The meta-protocol that enables this parallel execution of protocols is parameterized byN , f ,g. The
setN is a possibly infinite, recursively enumerable set of mobileagent protocols. The functionsf andg are
computable functions which represent local computations.The functionf (global decider) receives as input
the full instance including the agent identifiers and decides irrevocably (the agent either accepts or rejects).
The functiong (local decider) receives as input an arbitrary-length listof histories of executions of some of
the protocols inN for a certain number of steps, as experienced by a particularagent, and it may accept,
reject, or refuse to decide. The local decider must satisfy the property that, for sufficiently large number of
steps and for sufficiently large number of histories, there will be a decisive output fromg.

The meta-protocol works in iterated phases, which correspond to increasing values of a variableT that
represents an assumed upper bound on the total execution time, the length of agent identifiers, and the
number of nodes in the graph. In each phase, each agent first attempts to explore the 2T-ball around its
starting node. If it meets an agent with a lexicographicallylarger identifier, it continues to execute the
current phase but enters a specialneutralizedstate, meaning that at the end of the current phase it will
become idle and wait for some other agent to provide it with the full knowledge of the current instance so as
to decide via the global decider. On the other hand, if it meets a halted or idle agent, it becomes amapseeker.
Mapseekers attempt subsequently to construct a full map of the network, treating the halted or idle agent
they located as a fixed mark. If they succeed, they then informall agents about the full instance (including
agent identifiers) and they all decide via the global decider. If not, then each agent executesT steps of the
first T protocols inN , returning each time back to its starting node. If, during the 2T-ball exploration at
the beginning of the phase, the agent did not meet any other agent and if it did not find any node of degree
greater thanT and, finally, if its own identifier is not longer thanT bits, then the agent feeds the histories of
theseT-step executions into the local decider and either halts or continues to the next phase.
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