
Algorithmica manuscript No.
(will be inserted by the editor)

Optimized Silent Self-Stabilizing Scheme for
Tree-based Constructions

Stéphane Devismes∗ · David Ilcinkas ·
Colette Johnen

Received: date / Accepted: date

Abstract We propose a general scheme to compute tree-based data structures
on arbitrary networks. This scheme is self-stabilizing, silent, and despite its
generality, also efficient. It is written in the locally shared memory model
with composite atomicity assuming the distributed unfair daemon, the weakest
scheduling assumption of the model. Its stabilization time is in at most 4nmaxCC
rounds, where nmaxCC is the maximum number of processes in any connected
component of the network.

We illustrate the versatility and efficiency of our approach by proposing
several instantiations solving classical spanning tree problems such as DFS,
BFS, shortest-path, or unconstrained spanning tree/forest constructions, as
well as other fundamental problems like leader election or finding maximum-
bottleneck-bandwidth paths.

We also exhibit polynomial upper bounds on its stabilization time in steps
and process moves, holding for a large class of instantiations. In several cases,
the polynomial step and move complexities we obtain for those instantiations
match the best known complexities of existing algorithms, despite the latter
being dedicated to particular problems.

∗ Corresponding Author.

This study has been partially supported by the French ANR projects ANR-16-CE40-0023
(DESCARTES) and ANR-16-CE25-0009 (ESTATE). A preliminary version of this work has
been presented in ICDCN’2019 [28].

Stéphane Devismes
Univ. Picardie Jules Verne, France
E-mail: Stephane.Devismes@u-picardie.fr

David Ilcinkas
Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France
E-mail: david.ilcinkas@labri.fr

Colette Johnen
Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France
E-mail: Colette.Johnen@labri.fr

2 Stéphane Devismes, David Ilcinkas, and Colette Johnen

Furthermore, a significant set of instantiations of our scheme requires only
bounded memory space per process. This set includes, but is not limited to,
DFS, BFS, and shortest-path spanning tree constructions.

Keywords distributed algorithms · self-stabilization · stabilization time ·
space complexity · spanning tree · leader election · spanning forest

Mathematics Subject Classification (2010) MSC 68W15 · MSC 68M15

1 Introduction

A self-stabilizing algorithm [30] is able to recover a correct behavior in finite
time, regardless of the arbitrary initial configuration of the system, and there-
fore also after a finite number of transient faults, provided that those faults do
not alter the code of the processes. Self-stabilization makes no hypotheses on
the nature (e.g., memory corruption or topological changes) or extent of tran-
sient faults that could hit the system. A self-stabilizing system recovers from
the effects of those faults in an unified manner. Now, such versatility comes at
a price, e.g., after transient faults cease, there is a finite time period, called the
stabilization phase, during which the safety properties of the system are not
guaranteed. Hence, self-stabilizing algorithms are mainly compared according
to their stabilization time, the maximum duration of the stabilization phase.

Among the vast self-stabilizing literature, many works (see [38] for a sur-
vey) focus on tree-based constructions, i.e., constructions of specific distributed
spanning tree — or forest— shaped data structures. Most of these construc-
tions actually achieve an additional property called silence [32]: a silent self-
stabilizing algorithm converges within finite time to a configuration from which
the values of the communication registers used by the algorithm remain fixed.
Silence is a desirable property. Indeed, as noted in [32], the silent property
usually implies more simplicity in the algorithm design. Moreover, a silent al-
gorithm may utilize less communication operations and communication band-
width.

Self-stabilizing tree-based constructions are widely used as a basic build-
ing block of more complex self-stabilizing solutions. Indeed, composition is a
natural way to design self-stabilizing algorithms [47] since it allows to simplify
both the design and proofs of self-stabilizing algorithms. Various composition
techniques have been introduced so far, e.g., collateral composition [37], fair
composition [31], cross-over composition [4], and conditional composition [22];
and many self-stabilizing algorithms are actually made as a composition of a
silent tree-based construction and another algorithm designed for tree/forest
topologies, e.g. [3,7,21]. Notably, the silence property is not mandatory in
such designs, however it allows to write simpler proofs [23]. Finally, notice
that silent tree-based constructions have also been used to build very general
results, e.g., the self-stabilizing proof-labeling scheme constructions proposed
in [6].

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 3

We consider here the locally shared memory model with composite atom-
icity introduced by Dijkstra [30,2], which is the most commonly used model in
self-stabilization. In this model, executions proceed in atomic steps (in which
a subset of enabled processes move, i.e., update their local states), and the
asynchrony of the system is captured by the notion of daemon. The weakest
(i.e., the most general) daemon is the distributed unfair daemon. Hence, solu-
tions stabilizing under such an assumption are highly desirable, because they
work under any daemon assumption.

The stabilization time of self-stabilizing algorithms is usually evaluated in
terms of rounds, which capture the execution time according to the speed of
the slowest processes. However, another crucial issue is the number of local
state updates, i.e., the number of moves. Indeed, the stabilization time in
moves captures the amount of computations an algorithm needs in order to
recover a correct behavior. Notice that the number of moves and the number
of (atomic) steps are closely related: if an execution e contains x steps, then
the number y of moves in e satisfies x ≤ y ≤ n · x, where n is the number of
processes.1

The daemon assumption and the time complexity are closely related. In-
deed, to obtain practical solutions, the designer usually tries to avoid strong
assumptions on the daemon, like for example, assuming that all executions are
synchronous. Now, when the considered daemon does not enforce any bound
on the execution time of processes, the stabilization time in moves (resp. in
steps) can be bounded only if the algorithm works under an unfair daemon.
For example, if the daemon is assumed to be distributed and weakly fair (a
daemon stronger than the distributed unfair one) and the studied algorithm
actually requires the weakly fairness assumption to stabilize, then it is possi-
ble to construct executions whose convergence is arbitrarily long in terms of
atomic steps (and so in moves), meaning that, in such executions, there are
processes whose moves do not make the system progress in the convergence.
In other words, these latter processes waste computation power and so energy.
Such a situation should be therefore prevented, making the unfair daemon
more desirable than the weakly fair one.

There are many self-stabilizing algorithms proven under the distributed
unfair daemon, e.g. [1,9,24,25,34]. However, analyses of the stabilization time
in steps, or moves, remain rather unusual and this may be an important issue.
Indeed, recently, several self-stabilizing algorithms working under a distributed
unfair daemon have been shown to have an exponential stabilization time in
steps in the worst case. In [1], silent leader election algorithms from [24,25] are
shown to be exponential in steps in the worst case. In [29], the Breadth-First
Search (BFS) algorithm of Huang and Chen [39] is also shown to be exponential
in steps. Finally, in [35] authors show that the silent self-stabilizing algorithm
they proposed in [34] is also exponential in steps.

1Actually, in this paper as in most of the literature, bounds on the step complexity are
established by proving bounds on the number of moves.

4 Stéphane Devismes, David Ilcinkas, and Colette Johnen

Contribution. In this paper, we propose a general scheme to compute tree-
based data structures on bidirectional weighted networks of arbitrary topology
(n.b., the topologies are not necessarily connected). This algorithm is self-
stabilizing and silent. It is written in the locally shared memory model with
composite atomicity, assuming the distributed unfair daemon.

Despite its versatility, our scheme is efficient. Indeed, its stabilization time
is at most 4nmaxCC rounds, where nmaxCC is the maximum number of processes in
a connected component. Moreover, its stabilization time in moves (and so in
steps) is polynomial in usual cases; see the example instantiations we propose.
Precisely, we exhibit polynomial upper bounds on its stabilization time in
moves that depend on the particular problems we consider.

To illustrate the versatility and efficiency of our approach, we propose
several instantiations for solving classical tree-based problems.

Assuming an input set of roots, we propose an instantiation to compute a
spanning forest of arbitrary shaped trees, with non-rooted components detec-
tion.2 This instantiation stabilizes in O(nmaxCC · n) moves, which matches the
best known step complexity for spanning tree construction [13] with explicit
parent pointers.3

Assuming then a rooted network with positive integer weights, we propose
shortest-path spanning tree and DFS constructions, with non-rooted compo-
nents detection. The shortest-path spanning tree construction stabilizes in
O(nmaxCC

3 · n · Wmax) moves, where Wmax is the maximum weight of an edge.
This move complexity matches the best known move complexity for this prob-
lem [27].

Assuming now that the network is identified (i.e., processes have distinct
IDs), we propose two instantiations for electing a leader in each connected
component and building a spanning tree rooted at each leader. In one version,
stabilizing inO(nmaxCC

2·n) moves, the trees are of arbitrary topology. This move
complexity matches the best known step complexity for leader election [1]. In
the other version, stabilizing in O(nmaxCC

3 · n) moves, the leader is guaranteed
to be the process of minimal identifier in the connected component, and trees
are BFS.

Finally, assuming a rooted network with a bandwidth assigned to each
edge, we propose an instantiation computing for each process the maximum
bottleneck bandwidth to the root, and a corresponding path (with the fewest
edges).

Besides, most of these instantiations can be set to require only bounded
memory (at the price of providing to the processes some knowledge about
the graph topology; typically an upper bound on the number of processes).

2By non-rooted components detection, we mean that every process in a connected com-
ponent that does not contain any root should eventually take a special state notifying that
it detects the absence of a root.

3Actually, there exists a solution with implicit parent pointer [43] that achieves a better
complexity, O(n · D) moves, where D is the network diameter. However, adding a parent
pointer to this algorithm makes this solution more costly than ours in a large class of
networks, as we will explain later.

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 5

Spanning Tree
with explicit
parent pointers

Shortest-path
Spanning Tree Leader Election

Ref. [13] [27] [1]
Steps O(n2) O(WmaxnmaxCC

3n) O(n3)
Rounds ≤ 4n ≤ 3nmaxCC +D ≤ 3nmaxCC +D

Instance Forest RSP LE
Steps O(n2) O(WmaxnmaxCC

3n) O(n3)
Rounds ≤ 4n ≤ 4nmaxCC ≤ 4n

Table 1 Comparison between the stabilization time of some instances of our scheme and
solutions from the literature (to be fair, we have replaced nmaxCC by n when the paper from
the literature assumes a connected network).

Furthermore, one can easily derive from these various examples other silent
self-stabilizing tree-based constructions. A comparison table between some
instances of our scheme and solutions from the literature is given in Table 1.

Related Work. This work is inspired by [27]. This paper also considers the
composite atomicity model under the distributed unfair daemon. The pro-
posed algorithm is efficient both in terms of rounds and moves, tolerates dis-
connections, but is restricted to the case of the shortest-path tree in a rooted
network. Generalizing this work to obtain a generic yet efficient self-stabilizing
algorithm requires a fine tuning of the algorithm (presented in Section 3) and
a careful rewriting of the proofs of correctness (presented in the remaining
sections). In particular, almost all the concepts used to prove termination or
complexities need to be redefined to suit the new, more general setting. Con-
sequently, their new properties and the corresponding proofs are mostly novel.

Another closely related work is the one of Cobb and Huang [11]. In that
paper, a generic self-stabilizing algorithm is presented for constructing in a
rooted connected network a spanning tree where a given metric is maximized.
Now, since the network is assumed to be rooted (i.e., a leader process is already
known), leader election is not an instance of their generic algorithm. Similarly,
since they assume connected networks, the non-rooted components detection
cannot be expressed too. Finally, their algorithm is proven in the composite
atomicity model yet assuming a strong scheduling assumption: the sequential
weakly fair daemon.

General schemes for arbitrary connected and identified networks have been
proposed to transform almost any algorithm (specifically, those algorithms
that can be self-stabilized) into its corresponding stabilizing version [41,8,14,
36]. Such universal transformers are, by essence, inefficient both in terms of
space and time complexities: their purpose is only to demonstrate the feasi-
bility of the transformation. In [41] and [8], authors respectively consider self-
stabilization in asynchronous message-passing systems and in the synchronous
locally shared memory model, while expressiveness of snap-stabilization is
studied in [14,36] assuming the locally shared memory model with composite
atomicity and a distributed unfair daemon.

6 Stéphane Devismes, David Ilcinkas, and Colette Johnen

In [33,26], the authors propose a method to design silent self-stabilizing
algorithms for a class of fix-point problems, namely fix-point problems which
can be expressed using r-operators. Their solution works in directed networks
using bounded memory per process. In [33], they consider the locally shared
memory model with read/write atomicity, while in [26], they generalize their
approach to asynchronous message-passing systems. In both papers, they es-
tablish a stabilization time in O(D + |S|) rounds, where D is the network di-
ameter and S is the set on which the r-operator applies. However, this bound
is actually proven for the synchronous case only.

The remainder of the related work only concerns the locally shared mem-
ory model with composite atomicity assuming a distributed unfair daemon.
In [6], authors use the concept of labeling scheme introduced by Korman et
al. [42] to design silent self-stabilizing algorithms with bounded memory per
process. Using this approach, they show that every static task has a silent
self-stabilizing algorithm which converges within a linear number of rounds in
an arbitrary identified network. No step (nor move) complexity is given.

Efficient and general schemes for snap-stabilizing (non silent) waves in
arbitrary connected and rooted networks are investigated in [17]. The ob-
tained snap-stabilizing algorithms execute each wave in a polynomial number
of rounds and steps.

Few other works consider the design of particular tree-based constructions
and their step complexity. Self-stabilizing algorithms that construct BFS trees
in arbitrary connected and rooted networks are proposed in [18,19]. The al-
gorithm in [18] is not silent and has a stabilization time in O(∆ · n3) steps,
where ∆ is the maximum degree of the network. The silent algorithm given
in [19] has a stabilization time in O(D2) rounds and O(n6) steps. Silent self-
stabilizing algorithms that construct spanning trees of arbitrary topologies in
arbitrary connected and rooted networks are given in [13,43]. The solution
proposed in [13] stabilizes in at most 4 · n rounds and at most 5 · n2 steps,
while the algorithm given in [43] stabilizes in at most n ·D moves. However,
the round complexity of this latter algorithm is not analyzed, and the parent
of a process is not computed explicitly. Furthermore, Cournier [20] showed
that the straightforward variant of this algorithm where a parent pointer vari-
able is added has a stabilization time in Ω(n2 ·D) steps in an infinite class of
networks.

Several other papers propose self-stabilizing algorithms stabilizing in both
a polynomial number of rounds and a polynomial number of steps, e.g. [1] (for
the leader election in arbitrary identified and connected networks), and [15,16]
(for the DFS token circulation in arbitrary connected and rooted networks).
The silent leader election algorithm proposed in [1] stabilizes in at most 3·n+D
rounds and O(n3) steps. The DFS token circulations given in [15,16] execute
each wave in O(n) rounds and O(n2) steps using O(n · logn) space per process
for the former, and O(n3) rounds and O(n3) steps using O(logn) space per
process for the latter. Note that in [15], processes are additionally assumed to
be identified.

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 7

Roadmap. In the next section, we present the computational model and basic
definitions. In Section 3, we describe our general scheme. Its proof of cor-
rectness is given in Section 4. A complexity analysis in moves is presented in
Section 5, whereas an analysis of the stabilization time in rounds is proposed
in Section 6. Various instantiations with their specific complexity analyses are
presented in Section 7. Finally, we make concluding remarks in Section 8.

2 Preliminaries

We consider distributed systems made of n ≥ 1 interconnected processes. Each
process can directly communicate with a subset of other processes, called its
neighbors. Communication is assumed to be bidirectional. Hence, the topology
of the system is conveniently represented as a simple undirected graph G =
(V,E), where V is the set of processes and E the set of edges, representing
communication links. Every (undirected) edge {u, v} actually consists of two
arcs: (u, v) (i.e., the directed link from u to v) and (v, u) (i.e., the directed
link from v to u). For every process u, we denote by Vu the set of processes
(including u) in the same connected component of G as u. In the following, Vu
is simply referred to as the connected component of u. We denote by nmaxCC the
maximum number of processes in a connected component of G. By definition,
nmaxCC ≤ n.

Every process u can distinguish its neighbors using a local labeling of a
given datatype Lbl. All labels of u’s neighbors are stored into the set Γ (u).
Moreover, we assume that each process u can identify its local label αu(v)
in the set Γ (v) of each neighbor v. Such labeling is called indirect naming in
the literature [46]. When it is clear from the context, we use, by an abuse of
notation, u to designate both the process u itself, and its local labels (i.e., we
simply use u instead of αu(v) for v ∈ Γ (u)). Let δu = |Γ (u)| be the degree of
process u. The maximal degree of G is ∆ = maxu∈V δu.

We use the composite atomicity model of computation [30,2] in which pro-
cesses communicate using a finite number of locally shared registers, called
variables. In one indivisible move, each process can read its own variables and
that of its neighbors, performs local computation, and may change only its
own variables. The state of a process is defined by the values of its local vari-
ables. A configuration of the system is a vector consisting of the states of each
process.

A distributed algorithm consists of one local program per process. The
program of each process consists of a finite set of rules of the form

label : guard→ action

Labels are only used to identify rules in the reasoning. A guard is a Boolean
predicate involving the state of the process and that of its neighbors. The
action part of a rule updates the state of the process. A rule can be executed
only if its guard evaluates to true; in this case, the rule is said to be enabled.
By extension, a process is said to be enabled if at least one of its rules is

8 Stéphane Devismes, David Ilcinkas, and Colette Johnen

enabled. We denote by Enabled(γ) the subset of processes that are enabled in
configuration γ.

When the configuration is γ and Enabled(γ) 6= ∅, a non-empty set X ⊆
Enabled(γ) is selected by a so-called daemon; then every process of X atomi-
cally executes one of its enabled rules, leading to a new configuration γ′. The
atomic transition from γ to γ′ is called a step. We also say that each process
of X executes an action or simply moves during the step from γ to γ′. The
possible steps induce a binary relation over C, denoted by 7→. An execution is
a maximal sequence of configurations e = γ0γ1 · · · γi · · · such that γi−1 7→ γi
for all i > 0. The term “maximal” means that the execution is either infinite,
or ends at a terminal configuration in which no rule is enabled at any process.

As explained before, each step from a configuration to another is driven by
a daemon. We define a daemon as a predicate over executions. We say that an
execution e is an execution under the daemon S if S(e) holds. In this paper
we assume that the daemon is distributed and unfair. “Distributed” means
that while the configuration is not terminal, the daemon should select at least
one enabled process, maybe more. “Unfair” means that there is no fairness
constraint, i.e., the daemon might never select an enabled process unless it
is the only enabled process. In other words, the distributed unfair daemon
corresponds to the predicate true, i.e., this is the most general daemon.

In the composite atomicity model, an algorithm is silent if all its possible
executions are finite. Hence, we can define silent self-stabilization as follows.

Definition 1 (Silent Self-Stabilization) Let L be a non-empty subset of
configurations, called the set of legitimate configurations. A distributed sys-
tem is silent and self-stabilizing under the daemon S for L if and only if the
following two conditions hold:
– all executions under S are finite, and
– all terminal configurations belong to L.

Three main units of measurement are used to evaluate time complexity
in our model: the number of moves, steps, and rounds. The definition of a
round uses the concept of neutralization: a process v is neutralized during a
step γi 7→ γi+1, if v is enabled in γi but not in configuration γi+1, and does
not execute any action in the step γi 7→ γi+1. Then, the rounds are inductively
defined as follows. The first round of an execution e = γ0γ1 · · · is the minimal
prefix e′ = γ0 · · · γj such that every process that is enabled in γ0 either executes
an action or is neutralized during a step of e′. Let e′′ be the suffix γjγj+1 · · ·
of e. The second round of e is the first round of e′′, and so on.

The stabilization time of a silent self-stabilizing algorithm is the maximum
time (in moves, steps, or rounds) over every execution possible under the
considered daemon (starting from any initial configuration) to reach a terminal
(legitimate) configuration.

Finally, a self-stabilizing algorithm requires bounded memory space if there
exists a finite set S such that, along any execution from any configuration in
which the states belong to S, all the reached states of any process u still belong
to S.

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 9

3 Algorithm TbC

3.1 The Problem

We propose a general silent self-stabilizing algorithm, called TbC (stands for
Tree-based Constructions), which aims at converging to a terminal configu-
ration where a specified spanning forest (maybe a single spanning tree) is
(distributedly) defined. The various definitions used in TbC and its code are
respectively summarized and formally given in Figure 1 and Algorithm 1. Fur-
thermore, a (slightly simplified) version of TbC has been implemented in Java
and some instantiations can be simulated and visualized [40]. We invite the
reader to use this tool to facilitate its understanding of the paper.

In this algorithm, each process u has three4 constant inputs.

canBeRootu: a Boolean value, which is true if u is allowed to be the root of
a tree. In this case, u is called a candidate. In a terminal configuration,
every tree root satisfies canBeRoot, but the converse is not necessarily
true. Moreover, for every connected component C, if there is at least one
candidate u ∈ C, then every process of C should belong to a tree (so there
is at least one tree root in C) in any terminal configuration.
If there is no candidate in a connected component, we require that all pro-
cesses of the component converge to a particular terminal state expressing
the local detection of the absence of candidates.

pnameu: the name of u. pnameu ∈ IDs, where IDs = N ∪ {⊥} is totally
ordered by < and min<(IDs) = ⊥. The value of pnameu is problem de-
pendent. Actually, we consider two particular cases of naming. In one case,
∀v ∈ V, pnamev = ⊥. In the other case, ∀u, v ∈ V, pnameu 6= ⊥∧ (u 6= v ⇒
pnameu 6= pnamev), i.e., pnameu is a unique global identifier.

distRootu: a distance belonging to DistSet whose description is given below.
The value distRootu is the distance value that the candidate u should take
when it is a tree root; see the variable du below.

Every tree is based on some kind of distance. We denote byDistSet the dis-
tance domain. We use distances to detect cycles. However, according to the spe-
cific problem we consider, we may also want to minimize the weight of the trees
using the distances. Distances are computed using weights on arcs. Each edge
{u, v} has then two weights belonging to DistSet: ωu(v) denotes the weight of
the arc (u, v), and ωv(u) denotes the weight of the arc (v, u). More precisely,
we need an ordered magma (DistSet,⊕,≺), i.e., ⊕ is a closed binary operation
on DistSet and ≺ is a total order on this set. The definition of (DistSet,⊕,≺)
is problem dependent. Predicates P_neighActive(u), P_rootActive(u), and
P_toBeC used in the algorithm are also problem dependent; see Figure 1. If a
process u satisfies P_neighActive(u) or P_rootActive(u), then u is required
to minimize the weight of its tree. This minimization uses the ordered magma
and the problem dependent constant distRootu.

4Actually, there might be a fourth constant input, namely the set distSetF inite, when
it is used in the predicate P_toBeC. This point will be discussed later in the description.

10 Stéphane Devismes, David Ilcinkas, and Colette Johnen

We assume that, for every arc (u, v) of G and for every values d1 and d2
in DistSet, we have

– d1 ≺ d1 ⊕ ωu(v), and
– if d1 ≺ d2, then d1 ⊕ ωu(v) � d2 ⊕ ωu(v).

Finally, for every integer i ≥ 0, we define d1 ⊕ (i · d2) as follows:

– d1 ⊕ (0 · d2) ≡ d1
– d1 ⊕ (i · d2) ≡ (d1 ⊕ ((i− 1) · d2))⊕ d2 if i > 0.

3.2 The Variables

In TbC, each process u maintains the following three variables.

stu ∈ {I, C,EB,EF}: this variable gives the status of the process. I, C, EB,
and EF respectively stand for Isolated, Correct, Error Broadcast, and Error
Feedback. The first two status, I and C, are involved in the normal behavior
of the algorithm, while the two other ones, EB and EF , are used during
the error correction. The meaning of EB and EF will be further detailed
in Subsection 3.4. In a terminal configuration, if Vu contains a candidate,
then stu = C, otherwise stu = I.

paru ∈ {⊥} ∪ Lbl: In a terminal configuration, if Vu contains a candidate, then
either paru = ⊥, i.e., u is a tree root, or paru belongs to Γ (u), i.e., paru
designates a neighbor of u, referred to as its parent. Otherwise (Vu does
not contain a candidate), the value of paru is meaningless.

du ∈ DistSet: In a terminal configuration, if Vu contains a candidate, then du
is larger than or equal to the weight of the tree path from u to its tree
root, otherwise the value of du is meaningless.

3.3 Typical Execution

Assume that the system starts from a configuration where, for every process u,
stu = I. All processes that belong to a connected component containing no
candidates are disabled forever.

Focus now on a connected component C where at least one process is a
candidate. Then, any process u of status I that is a candidate or that satisfies
the predicate P_toBeC (this latter case cannot occur during the first step)
is enabled to execute rule RR. If selected by the daemon, it executes RR(u)
to initiate a tree or to join a tree rooted at some candidate, choosing among
the different possibilities the one that minimizes its distance value. Using this
rule, it also switches its status to C and sets du to distRootu, or to dv⊕ωu(v)
if it chooses a parent v. In order to more precisely describe what happens, we
focus on the two possible definitions of P_toBeC; see Figure 1.

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 11

Case P_toBeC(u) ≡ (∃v ∈ Γ (u) | stv = C). Executions of rule RR are asyn-
chronously propagated in C until all processes of C have status C. In par-
allel, rules RU are executed to reduce the weight of the trees, if neces-
sary: when a process u with status C satisfies P_neighActive(u), resp.
P_rootActive(u), this means that u can reduce du by selecting another
neighbor with status C as parent, resp. by becoming a root, and this
reduction is required by the specification of the problem to be solved
(P_neighActive(u) and P_rootActive(u) are problem dependent). If only
P_neighActive(u) is satisfied, then u chooses as parent the neighbor which
allows to minimize the value of du. In particular, a candidate u may lose its
tree root condition if it finds a sufficiently suitable parent in its neighbor-
hood. If only P_rootActive(u) is satisfied, then u becomes a root. Finally,
if both predicates are satisfied, u chooses among the two possibilities the
one which minimizes the new value of du. Hence, the system eventually
reaches a terminal configuration, where a specific spanning forest (maybe
a single spanning tree) is defined (in a distributed manner) in every con-
nected component containing at least one candidate, while all processes
are isolated in the other components.

Case P_toBeC(u) ≡ (∃v ∈ Γ (u) | stv = C) ∧ (distNeigh(u) ∈ distSetF inite).
In that case, the variable du is restricted to belong to distSetF inite,
and thus the algorithm has bounded memory space. Note that we fur-
ther require in this case that P_neighActive(u) ≡ P_neighV alid(u) ∧
P_toBeC(u); see Figure 1. Therefore, rules RU are always enabled to re-
duce the weight of the trees if choosing some neighbor as parent makes
the value of du decrease (while keeping it in distSetF inite). Once the dis-
tance values are minimized, for any process u having status C in C, we
have du = dparu ⊕ ωu(paru). So, the distance of any process u having sta-
tus C in C and at depth i in its tree belongs to ∪0≤j≤idistCOk(j). Hence,
all processes of C have the status C, or RR is enabled at some processes
with a status different from C. Eventually the system reaches a termi-
nal configuration, where every process of C has the status C and verifies
¬P_neighV alid(·).

3.4 Error Correction

Assume now that the system is in an arbitrary configuration. Inconsisten-
cies between the states of neighboring processes are detected using Predicate
P_abRoot. We call abnormal root any process u satisfying P_abRoot(u). In-
formally (see the formal definition in Algorithm 1), a process u is an abnormal
root if u is neither a normal root (i.e., ¬P_root(u) holds), nor isolated (i.e.
stu 6= I), and satisfies one of the following three conditions:

1. its parent pointer does not designate a neighbor,
2. its distance du is inconsistent with the distance of its parent, or
3. its status is inconsistent with the status of its parent.

12 Stéphane Devismes, David Ilcinkas, and Colette Johnen

Every process u that is neither an abnormal root nor isolated satisfies one of
the two following cases. Either u is a normal root (i.e., P_root(u) holds) or
u points to some neighbor (i.e., paru ∈ Γ (u)), and the state of u is coherent
w.r.t. the state of its parent. In this latter case, u ∈ Children(paru), i.e., u is
a “real” child of its parent; see Subsection 3.5 for the formal definition.

Consider a path P = u0, . . . , uk such that, for every 0 ≤ i < k, ui+1 ∈
Children(ui). P is acyclic. If u0 is either a normal or an abnormal root, then
P is called a branch rooted at u0. Let u be a root (either normal or abnormal).
We define the tree T (u) as the set of all processes that belong to a branch
rooted at u. If u is a normal root, then T (u) is said to be a normal tree,
otherwise u is an abnormal root and T (u) is said to be an abnormal tree. We
call any configuration without abnormal trees a normal configuration. So, to
recover a normal configuration, it is necessary to remove all abnormal trees.

For each abnormal tree T , we have two cases. If the abnormal root u of
T can join another tree T ′ using rule RU(u) (thus decreasing its distance
value, since, in this case, P_neighActive(u) or P_rootActive(u) must hold),
then it does so and T disappears by becoming a subtree of T ′. Otherwise, T
is entirely removed in a top-down manner, starting from its abnormal root
u. Now, in that case, we have to prevent the following situation: u leaves T ;
this removal creates some abnormal trees, each of those being rooted at a
previous child of u; and later u joins one of those (created) trees, or a tree
issued from them. (This issue is sometimes referred to as the count-to-infinity
problem [44].) Hence, the idea is to freeze T , before removing it. By freezing
we mean assigning to each member of the tree an error state, here EB or EF ,
so that (1) no member v of the tree is allowed to execute RU(v), and (2) no
process w can join the tree by executing RR(w) or RU(w). Once frozen, the
tree can be safely deleted from its root to its leaves.

The freezing mechanism (inspired from [5]) is achieved using the status
EB and EF , and the rules REB and REF. If a process is not involved into
any freezing operation, then its status is I or C. Otherwise, it has status EB
or EF and no neighbor can select it as its parent. These two latter status are
actually used to perform a “Propagation of Information with Feedback” [10,
45] in the abnormal trees. This is why status EB means “Error Broadcast”
and EF means “Error Feedback”. From an abnormal root, the status EB is
broadcast down in the tree using the rule REB. Then, once the EB wave
reaches a leaf, the leaf initiates a convergecast EF -wave using the rule REF.
Once the EF -wave reaches the abnormal root, the tree is said to be dead,
meaning that all processes in the tree have status EF and, consequently, no
other process can join it. So, the tree can be safely deleted from its abnormal
root toward its leaves. There are several possibilities for the deletion depending
on whether the process u to be deleted is a candidate or verifies P_toBeC. If
u is a candidate and does not verify P_toBeC: u becomes a normal root by
executing RR(u). If u verifies P_toBeC, again the rule RR(u) is executed:
u tries to directly join another “alive” tree. However if u is a candidate, and
becoming a normal root allows it to further minimize du, then it does so. If u

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 13

is not a candidate and does not verify P_toBeC, the rule RI(u) is executed:
u becomes isolated, but might still join another tree later.

Let u be a process belonging to an abnormal tree of which it is not the root.
Let v be its parent. From the previous explanation, it follows that during the
correction, (stv, stu) ∈ {(C,C), (EB,C), (EB,EB), (EB,EF), (EF,EF)}
until v resets by RR(v) or RI(v). Now, due to the arbitrary initialization, the
status of u and v may not be coherent, in this case u is also an abnormal root.
Precisely, as formally defined in Algorithm 1, the status of u is incoherent
w.r.t. the status of its parent v if stu 6= stv and stv 6= EB. For example, if a
process u belongs to a tree (i.e., stu 6= I) and designates an isolated process
v with paru (i.e., paru = v and stv = I), then the status of u is incoherent
w.r.t. its parent v, i.e., u is an abnormal root.

Actually, the freezing mechanism ensures that if a process is the root of an
alive abnormal tree, it is in that situation since the initial configuration; see
Lemma 9, page 20. The bounded move complexity of our scheme mainly relies
on this strong property.

Algorithm 1: Algorithm TbC, predicates, macros and rules for any
process u.

Predicates:
• P_root(u) ≡ canBeRootu ∧ stu = C ∧ paru = ⊥ ∧ du = distRootu
• P_abRoot(u) ≡ ¬P_root(u) ∧ stu 6= I∧

[paru /∈ Γ (u) ∨du ≺ dparu ⊕ωu(paru)∨ (stu 6= stparu ∧ stparu 6= EB)]
• P_reset(u) ≡ stu = EF ∧ P_abRoot(u)
• P_neighV alid(u) ≡ {∃v ∈ Γ (u) | stv = C} ∧ distNeigh(u) ≺ du
• P_rootV alid(u) ≡ canBeRootu ∧ distRootu ≺ du

Macro:
• update(u): if

[(
(P_neighActive(u)∧P_rootActive(u))∨(stu 6= C∧P_toBeC(u))

)
∧
(
distNeigh(u) � distRootu ∨ ¬canBeRootu

)]
∨[¬P_rootActive(u) ∧ stu = C

]
then

paru := argmin{v∈Γ (u) | stv=C}(dv ⊕ ωu(v));
du := dparu ⊕ ωu(paru) (which is actually distNeigh(u));

else
paru := ⊥;
du := distRootu;

end if
stu := C;

Rules:
RU(u): stu = C ∧ (P_neighActive(u) ∨ P_rootActive(u)) → update(u);
REB(u): stu = C ∧ ¬P_neighActive(u) ∧ ¬P_rootActive(u)∧ → stu := EB;

(P_abRoot(u) ∨ (paru ∈ Γ (u) ∧ stparu = EB))
REF(u): stu = EB ∧ (∀v ∈ Children(u) | stv = EF) → stu := EF ;
RI(u): P_reset(u) ∧ ¬canBeRootu ∧ ¬P_toBeC(u) → stu := I;
RR(u): (P_reset(u) ∨ stu = I)∧ [canBeRootu ∨ P_toBeC(u)] → update(u);

14 Stéphane Devismes, David Ilcinkas, and Colette Johnen

Instantiation requirements:
– (DistSet,⊕,≺): an ordered magma (used to represent the distances)
– a weight assignment (from DistSet) to all edges such that:
∀d ∈ DistSet and ∀{u, v} ∈ E, d ≺ d⊕ ωu(v)
∀d1, d2 ∈ DistSet and ∀{u, v} ∈ E, d1 ≺ d2 =⇒ d1 ⊕ ωu(v) � d2 ⊕ ωu(v)

– a choice for the predicate P_toBeC:
Either P_toBeC(u) ≡ (∃v ∈ Γ (u) | stv = C)
or P_toBeC(u) ≡ (∃v ∈ Γ (u) | stv = C) ∧ (distNeigh(u) ∈ distSetF inite)

– a predicate P_neighActive(u) such that:
– if P_toBeC(u) ≡ (∃v ∈ Γ (u) | stv = C) ∧ (distNeigh(u) ∈ distSetF inite),
we have P_neighActive(u) ≡ P_neighV alid(u) ∧ P_toBeC(u)

– otherwise P_neighActive(u) only depends on du and distNeigh(u)
• P_rootActive(u) only depends on canBeRootu, du, and distRootu
• P_neighActive(u)⇒ P_neighV alid(u)
• P_rootActive(u)⇒ P_rootV alid(u)
• Both P_neighActive(u) and P_rootActive(u) are monotone w.r.t. du. More
precisely, given d and d′ � d, if the predicate is true for du = d, then it is
also true for du = d′ when all the other parameters are kept unchanged.

Definitions:
• Children(u) = {v ∈ Γ (u) | stv 6= I ∧ parv = u ∧ dv � du ⊕ ωv(u) ∧

(stv = stu ∨ stu = EB)}
• distNeigh(u) = min{v∈Γ (u) | stv=C}(dv ⊕ ωu(v))
• distCOk(0) = {distRootv | v ∈ V }.
• distCOk(i+ 1) = {di⊕ ωu(v) | di ∈ distCOk(i) and {u, v} ∈ E}.
• distSetF inite a finite subset of DistSet containing

⋃
0≤j≤n−1distCOk(j)

Process (constant) inputs:
• canBeRootu: a Boolean value which is true if u is a candidate
• pnameu: name of u
• distRootu: distance of u if it is a root
• distSetF inite (if used in P_toBeC)

Process variables:
• stu ∈ {I, C,EB,EF}: the status of u
• paru ∈ {⊥} ∪ Lbl: the parent information at u
• du ∈ DistSet: the distance value associated to u

Fig. 1 Various inputs and definitions used in Algorithm TbC, for any process u.

3.5 Definitions

Before proceeding with the proof of correctness and the move complexity anal-
ysis, we define some useful concepts and give some of their properties.

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 15

Root, Child, and Branch.

Definition 2 (Normal and Abnormal Roots) Every process u that sat-
isfies P_root(u) is said to be a normal root. Every process u that satisfies
P_abRoot(u) is said to be an abnormal root.

Definition 3 (Alive Abnormal Root) A process u is said to be an alive
abnormal root (resp. a dead abnormal root) if u is an abnormal root and has
a status different from EF (resp. has status EF).

Definition 4 (Children) For every process v and for every process u ∈
Children(v), u is said to be a child of v. Conversely, v is said to be the parent
of u.

Observation 1 A process u is either a normal root, an isolated process (i.e.,
stu = I), an abnormal root, or a child of its parent (i.e., member of the set
Children(v), where v = paru).

Definition 5 (Branch) A branch is a sequence of processes v0, . . . , vk, for
some integer k ≥ 0, such that v0 is a normal or an abnormal root and, for
every 0 ≤ i < k, we have vi+1 ∈ Children(vi). The process vi is said to
be at depth i and vi, . . . , vk is called a sub-branch. The depth of the branch
is k. The process v0, resp. vk, is said to be the initial extremity, resp. terminal
extremity, of the branch. If v0 is an abnormal root, the branch is said to be
illegal, otherwise, the branch is said to be legal.

Observation 2 A branch depth is at most nmaxCC − 1. A process v having
status I does not belong to any branch. If a process v has status C (resp. EF),
then all processes of a sub-branch starting at v have status C (resp. EF).

Lemma 1 Let γ 7→ γ′ be a step. Let v0, . . . , vk be an illegal branch in γ
such that stv0 = EB and stvk ∈ {EB,EF}. If v0 is still an alive abnormal
root in γ′, then v0, . . . , vk is still an illegal branch such that stv0 = EB and
stvk ∈ {EB,EF} in γ′.

Proof By definition of an illegal branch, vi+1 ∈ Children(vi) in γ, for every i ∈
[0, k). Now, since stv0 = EB and stvk ∈ {EB,EF} in γ, we have stv0 · · · stvk ∈
EB+EF ∗ in γ, by definition of Children(·). So only REF may be executed,
by a single process vi with i ∈ [0, k] in γ 7→ γ′. Thus, for every i ∈ [0, k),
(stvi , stvi+1) ∈ {(EB,EB), (EB,EF), (EF,EF)} still holds in γ′. Hence, in
γ′, stvk ∈ {EB,EF} and vi+1 ∈ Children(vi), for every i ∈ [0, k). This means
that v0, . . . vk is still an illegal branch in γ′. Moreover, if v0 is still an alive
abnormal root in γ′, then stv0 = EB. ut

16 Stéphane Devismes, David Ilcinkas, and Colette Johnen

4 Correctness of TbC

Legitimate Configurations.

Definition 6 (Legitimate State) A process u is said to be in a legitimate
state of TbC if u satisfies one of the following conditions:

1. P_root(u), and ¬P_neighActive(u);
2. there is a process satisfying canBeRoot in Vu, stu = C, paru ∈ Γ (u),
du � dparu ⊕ ωu(paru), and ¬P_neighActive(u) ∧ ¬P_rootActive(u);

3. there is no process satisfying canBeRoot in Vu and stu = I.

Definition 7 (Legitimate Configuration) A legitimate configuration of
TbC is a configuration where every process is in a legitimate state.

4.1 Partial Correctness

We now prove that the terminal configurations are exactly the legitimate con-
figurations. We first prove one of the two inclusions.

Lemma 2 Any legitimate configuration of TbC is terminal.

Proof Let γ be a legitimate configuration of TbC and u be a process.
Assume first that there is no process of Vu that satisfies canBeRoot in γ.

Then, by definition of γ, every process v in Vu satisfies stv = I. Hence, since
¬canBeRootv ∧ stv = I for every process v in Vu, no rule of TbC is enabled
at any process of Vu in γ.

Assume then that there is a process that satisfies canBeRoot in γ. Then,
every process v ∈ Vu satisfies one of the first two conditions in Definition 6.
This in particular means that stv = C, for every v ∈ Vu. Hence, REF(v),
RI(v), and RR(v) are all disabled at every v ∈ Vu in γ. Moreover, we have
¬P_neighActive(u) ∧ ¬P_rootActive(u) for every v ∈ Vu (if P_root(v) is
satisfied, then P_rootV alid(v) and thus P_rootActive(v) are not), which
implies that RU(v) is disabled at every v ∈ Vu in γ. Finally, stv = C ∧
[P_root(v) ∨ (parv ∈ Γ (v) ∧ dv � dparv ⊕ ωv(parv))] for every v ∈ Vu implies
¬P_abRoot(v) ∧ stparv 6= EB for every v ∈ Vu, and so REB(v) is disabled
at every v ∈ Vu in γ. Hence, no rule of TbC is enabled at any process of Vu
in γ. ut

The following technical lemmas will help us to prove that any terminal
configuration of TbC is legitimate.

Lemma 3 In any terminal configuration of TbC, every process has status I
or C.

Proof Assume that there exists some process that has status EB. Consider a
process u with status EB having the maximum distance value. Note that no
process v that has status C can be a child of u, otherwise RU(v) or REB(v)

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 17

would be enabled. Therefore, by definition of Children(u) and the maximality
of du, u has only children of status EF . Thus REF(u) is enabled, a contradic-
tion.

Assume now that there exists some process that has status EF . Consider
a process u with status EF having the smallest distance value. As no process
has status EB (see the previous case), u is an abnormal root. Now, since u is
an abnormal root of status EF , P_reset(u) holds. So, either RI(u) or RR(u)
is enabled, a contradiction. ut

Lemma 4 Let γ be any terminal configuration of TbC and u be any process
such that stu = C in γ. Then, u satisfies P_root(u) or paru ∈ Γ (u)∧stparu =
C ∧ du � dparu ⊕ ωu(paru) in γ.

Proof In γ, u satisfies ¬P_abRoot(u) because, otherwise, either RU(u) or
REB(u) would be enabled, as stu = C in γ. We can thus conclude by Ob-
servation 1 that u satisfies P_root(u) or paru ∈ Γ (u) ∧ stparu = C ∧ du �
dparu ⊕ ωu(paru) in γ. ut

Corollary 1 Let γ be a terminal configuration of TbC and u be any pro-
cess such that stu = C and ¬P_neighV alid(u) hold in γ. Then, u satis-
fies P_root(u) or paru ∈ Γ (u) ∧ du = dparu ⊕ ωu(paru) in γ. Moreover, if
paru ∈ Γ (u) and dparu ∈ distCOk(i− 1), then du ∈ distCOk(i).

Definition 8 Let MinimizeFinite be any instance of Algorithm TbC where
P_toBeC(u) ≡ (∃v ∈ Γ (u) | stv = C) ∧ (distNeigh(u) ∈ distSetF inite).

Lemma 5 Let γ be a terminal configuration of MinimizeFinite and u be any
process such that stu = C in γ. Then, ¬P_neighV alid(u) holds in γ.

Proof Assume that one or several processes having status C verify the pred-
icate P_neighV alid(·) in γ. Let us consider such a process u that has the
smallest distance du.

We have P_neighActive(u) ≡ P_neighV alid(u) ∧ P_toBeC(u). As γ is
terminal, P_neighActive(u) is not verified : hence P_toBeC(u) is not ver-
ified. By definition of u, a neighbor of u, named v, verifies dv ⊕ ωu(v) =
distNeigh(u) ≺ du, and stv = C. Let v0, · · · , vk = v be the branch whose
terminal extremity is v (n.b., by definition, for 0 < i ≤ k, vi−1 ∈ Γ [vi]).
We have dvi ≺ du, for 0 ≤ i ≤ k; so ¬P_neighV alid(vi) is verified. Ac-
cording to Corollary 1, P_root(v0) is verified and for 0 ≤ i ≤ k, we have
dvi ∈ distCOk(i), Moreover u is not in this branch, so k ≤ n−2. We conclude
that distNeigh(u) ∈ distSetF inite, leading to a contradiction: P_toBeC(u)
is verified. ut

By the Lemma 5 and Corollary 1, we obtain the following result.

Corollary 2 Let γ be any terminal configuration of MinimizeFinite and u be
any process such that stu = C in γ. If u is at depth k, then du ∈ distCOk(k).

18 Stéphane Devismes, David Ilcinkas, and Colette Johnen

Lemma 6 Let γ be a terminal configuration of TbC and u be a process such
that Vu contains at least one process satisfying canBeRoot. In γ, u satisfies:

– stu = C,
– ¬P_neighActive(u) and ¬P_rootActive(u), and
– P_root(u), or paru ∈ Γ (u) ∧ du � dparu ⊕ ωu(paru).

Proof Let v be a process of Vu such that canBeRootv in γ. We have stv ∈
{C, I}, by Lemma 3. Now, stv 6= I, because otherwise RR(v) would be enabled
in γ. Therefore stv = C in γ.

Assume then, by contradiction, that there exists some process of Vu that
has status I in γ. Consider now a process w of Vu such that w has status I and
at least one of its neighbors has status C in γ (such a process exists because
every process has status I or C in γ, by Lemma 3, whereas at least one process,
e.g. v, of Vu has status C, and Vu is connected). According to the definition
of P_toBeC(w), we have two cases:

Case 1: P_toBeC(w) ≡ (∃v ∈ Γ (w) | stv = C).
RR(w) would be enabled in γ, a contradiction.

Case 2: P_toBeC(w) ≡ (∃v ∈ Γ (w) | stv = C)∧(distNeigh(w) ∈ distSetF inite).
Any neighbor w′ of w that has the status C is at depth smaller than n− 1
in their legal branch. Therefore, dw′ belongs to

⋃
0≤j≤n−2 distCOk(j) by

Corollary 2, and thus distNeigh(w) ∈ distSetF inite. Hence, RR(w) is
enabled in γ, a contradiction.

Hence, we conclude that every process of Vu (including u) has status C in γ.
Moreover, since stu = C in γ, ¬P_neighActive(u) and ¬P_rootActive(u)

hold in γ (otherwise, RU(u) would be enabled).
Finally, Lemma 4 allows us to conclude the proof. ut

Lemma 7 Let γ be a terminal configuration of TbC and u be a process such
that Vu contains no process satisfying canBeRoot in γ. In γ, stu = I.

Proof Assume, for the purpose of contradiction, that u is not isolated in γ.
By Lemma 3, u has status C in γ. Without loss of generality, assume u is a
process subject to that condition with the smallest distance du in γ. Then,
u is an abnormal root and enabled to execute REB(u) or RU(u) in γ, a
contradiction. ut

Therefore, by Lemmas 6 and 7, we obtain the following result.

Theorem 1 Any terminal configuration of TbC is legitimate.

4.2 Bounded Memory Space

Consider MinimizeFinite. By definition, distSetF inite is a finite set. Then,
there are two rules that allow to update the variable du: RU(u) and RR(u).
These rules use the macro update(u) to compute the new value of du. If du

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 19

takes value distRootu, then du trivially remains in distSetF inite. Otherwise,
we should remark that P_neighActive(u) ⇒ P_toBeC(u) and if the exe-
cuted rule is RR(u), then stu 6= C. Consequently, P_toBeC(u) holds, which
implies that du also remains in distSetF inite in this case. Hence, we obtain
the following result.

Observation 3 MinimizeFinite only requires bounded memory space.

Moreover, such instantiations have terminal configurations which are es-
sentially the same as those using unbounded memory space. More precisely, by
Definition 6, Lemmas 2 and 5, and Theorem 1, we have the following property.

Corollary 3 Consider any instantiation I identical to MinimizeFinite ex-
cept that P_toBeC(u) ≡ (∃v ∈ Γ (u) | stv = C) and P_neighActive(u) ≡
P_neighV alid(u).

In MinimizeFinite, we have P_neighActive(u) ≡ P_neighV alid(u) ∧
P_toBeC(u), so MinimizeFinite and I have the same terminal configura-
tions.

In other words, any instantiation requiring unbounded memory space such
that P_neighActive(u) ≡ P_neighV alid(u) can be turned into a bounded
memory space version with the same terminal configurations and, as we will
see, the same upper bounds on the number of steps and rounds.

5 Step Complexity of TbC

In this section, we establish some properties on every execution of TbC under a
distributed unfair daemon. These properties allow us to show the termination
under a distributed unfair daemon and to exhibit an upper bound on the move
complexity of any instance of TbC.

5.1 C-Segments

Definition 9 (AAR) Let C be a connected component of G and let γ be a
configuration. AAR(γ, C) is the set of processes u ∈ C such that, in γ, u is an
alive abnormal root, or P_rootActive(u) ∧ stu = C holds.

We now prove that AAR(γ, C) can never gain any new element.

Lemma 8 Let γ 7→ γ′ be a step where a process u executes the rule RU or RR.
Then, u is not an alive abnormal root in γ′.

Proof We have paru ∈ Γ (u) ∪ {⊥} in γ′. We separately deal with these two
cases.

First assume that paru = ⊥ in γ′. We claim that, in this case, the constant
canBeRootu is true. Recall that P_rootActive(u) implies P_rootV alid(u),

20 Stéphane Devismes, David Ilcinkas, and Colette Johnen

which in turn implies canBeRootu. Thus, for the purpose of contradiction,
assume that neither canBeRootu nor P_rootActive(u) hold. Note that paru =
⊥ in γ′ implies that umust have executed the else part of update(u) in γ 7→ γ′.
Therefore, the second part of the main disjunction of the if condition must
not hold. This means that stu 6= C, and thus that u has executed the rule
RR in γ 7→ γ′. For this rule to be enabled, the second part of the conjunction
in its guard must hold, which implies that P_toBeC(u) holds. However, this
last property, combined with the preceding ones, validates the if condition in
update(u), which contradicts paru = ⊥ in γ′. Therefore, canBeRootu is indeed
true and thus P_root(u) is true in γ′, which, in turn, implies ¬P_abRoot(u).

Assume now that paru = v ∈ Γ (u) in γ′. Then stv = C in γ, because paru
is chosen in the set {v ∈ Γ (u) | stv = C}; see update(u). Consequently, the
only rules that v may execute in γ 7→ γ′ are RU or REB. In γ 7→ γ′, v either
takes the status EB, decreases its distance value, or does not change the value
of its variables. In all cases, u belongs to Children(v) in γ′, which prevents u
from being an alive abnormal root in γ′, by Observation 1. More precisely, if v
decreases its distance value, the fact that u still belongs to Children(v) in γ′
comes from the hypothesis on ⊕ stating that for any distances d1 and d2 and
any weight ω of an edge, we have d1 ⊕ ω � d2 ⊕ ω if d1 ≺ d2. ut

One of the key properties allowing us to prove that TbC has a polynomial
move complexity is the following result.

Lemma 9 No alive abnormal root is created along any execution of TbC.

Proof Let γ 7→ γ′ be a step and u be a process that is not an alive abnormal
root in γ. Assume, by contradiction, that u is an alive abnormal root in γ′.

If the status of u is EF or I in γ′, then u is not an alive abnormal root in γ′.
If u executes RU or RR during this step, then u is not an alive abnormal root
in γ′ either, by Lemma 8. So the only rule that umay execute is REB in γ 7→ γ′.
Furthermore, both in γ and γ′, u has status C or EB, and paru ∈ Γ (u)∪{⊥}
(because u is not an abnormal root in γ).

Assume first that paru = ⊥ in γ′. Then, paru = ⊥ already holds in γ.
We thus have P_root(u) in γ because ¬P_abRoot(u) in γ. Consequently, u
executes no move in γ 7→ γ′, and u is still a normal root in γ′, a contradiction.

Assume now that paru = v ∈ Γ (u) in γ′. Whether u executes REB or
not, paru already designates v in γ. Also, ¬P_abRoot(u) in γ implies that
u ∈ Children(v) and stv ∈ {C,EB} in γ, further implying that the only rules
that v may execute in γ 7→ γ′ are RU or REB. Moreover, if stu = EB in γ
or u executes REB in γ 7→ γ′, then stv = EB too in γ and v does not move
in γ 7→ γ′. Consequently, ¬P_abRoot(u) still holds in γ′, a contradiction.
Otherwise, stu = C in γ and u does not move in γ 7→ γ′. In γ 7→ γ′, v either
takes the status EB, decreases its distance value, or does not change the value
of its variables. In all cases, u still belongs to Children(v) in γ′, which prevents
u from being an alive abnormal root in γ′ (by Observation 1), a contradiction.

ut

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 21

Lemma 10 If a process u satisfies P_rootActive(u) ∧ stu = C, then it does
so, and it never performed any move, since the beginning of the execution.

Proof Let u be a process satisfying P_rootActive(u) ∧ stu = C. Note that
the property does only depend on the local state on u. Assume thus, for the
purpose of contradiction, that u did perform at least a move since the beginning
of the execution, and consider the last such move, say during the step γ 7→ γ′.

Since stu = C holds in γ′, u must have executed RU or RR during that
step. For P_rootActive(u) to hold in γ′, u must have executed the then part
of update(u); otherwise du = distRootu in γ′ and so ¬P_rootV alid(u), which
implies ¬P_rootActive(u).

If it did so because of the first part of the disjunction in the if of update(u),
then distNeigh(u) � distRootu, which implies that du � distRootu in γ′.
Thus, in that case, P_rootActive(u) cannot hold in γ′, a contradiction.

Otherwise (it did so because of the second part of the disjunction), in γ,
stu = C holds but P_rootActive(u) does not. During γ 7→ γ′, u executed
RU and decreased its distance du. As P_rootActive(u) is monotone w.r.t. du,
¬P_rootActive(u) in γ implies ¬P_rootActive(u) in γ′, leading to a contra-
diction. ut

By the two preceding Lemmas, we obtain the following result.

Corollary 4 For every step γ 7→ γ′, AAR(γ′, C) ⊆ AAR(γ, C).

Based on Corollary 4, we can use the notion of C-segment defined below
to bound the total number of moves in an execution.

Definition 10 (C-Segment) Let e = γ0γ1 · · · be an execution of TbC and C
be a connected component of G.

– If there is no step γi 7→ γi+1 in e such that |AAR(γi, C)| > |AAR(γi+1, C)|,
then the first C-segment of e is e itself and there is no other C-segment.

– Otherwise, let γi 7→ γi+1 be the first step of e such that |AAR(γi, C)| >
|AAR(γi+1, C)|. The first C-segment of e is the prefix γ0 · · · γi+1. The second
C-segment of e is the first C-segment of the suffix γi+1γi+2 · · · , and so forth.

By Corollary 4, and since by definition |AAR(γi, C)| ≤ nmaxCC for every
connected component C and every configuration γi, we have:

Observation 4 Let C be a connected component of G. For every execution e
of TbC, e contains at most nmaxCC + 1 C-segments.

We now prove some properties on the moves made by a process in a C-
segment.

Lemma 11 Let C be a connected component of G, u be any process of C, and
S be a C-segment. During S, if u executes the rule REF, then u does not
execute any other rule in the remaining of S.

22 Stéphane Devismes, David Ilcinkas, and Colette Johnen

Proof Let γ1 7→ γ2 be a step of S in which u executes REF. Note that u has
status EB in γ1. Let γ3 7→ γ4 be the next step in which u executes a rule. (If
one of these two steps does not exist, then the lemma trivially holds.)

Let v be the root (at depth 0) of any branch in γ1 containing u. By Defini-
tion 4, v must have status EB (and so satisfies ¬P_rootActive(u) ∨ stu 6= C
forever, by Lemma 10), and must therefore be an alive abnormal root. This
implies that v ∈ AAR(γ1, C). Note that we may have v = u. On the other
hand, in γ3, u is the dead abnormal root of all branches it belongs to since
stu = EF in γ3 and u necessarily executes RI or RR in this step. By Observa-
tion 1, either u = v or u no more belongs to a branch whose initial extremity
is v. In either case, v is no more an alive abnormal root in γ3. Indeed, in the
first case, u = v has status EF , while in the second case, if v were still an alive
abnormal root, then u would still be in a branch with v as initial extremity, by
Lemmas 1 and 9. Therefore v /∈ AAR(γ3, C). Consequently, the steps γ1 7→ γ2,
and γ3 7→ γ4 belong to two distinct C-segments of the execution, by Corollary 4
and Definition 10. ut

By Lemma 11 and from the code of the algorithm, we obtain the following
result.

Corollary 5 Let C be a connected component of G and u be any process of C.
The sequence of rules executed by u during a C-segment belongs to the following
language:

(RI + ε)(RR + ε)(RU)∗(REB + ε)(REF + ε) .

By Observation 4 and Corollary 5, we obtain the following result.

Theorem 2 If #U is an upper bound on the number of rules RU executed by
any process of C in any C-segment for any connected component C, then the
total number of moves in any execution is bounded by (#U+4) ·(nmaxCC +1) ·n.

5.2 Causal Chains

We now use the notion of causal chain defined below to further analyze the
number of moves and steps in a C-segment.

Definition 11 (Causal Chain) Let C be a connected component of G, v0
be a process of C, and S be any C-segment. A causal chain of S rooted at v0
is a non-empty sequence of actions a1, a2, . . . , ak executed in S such that the
action a1 sets parv1 to v0 and for all 2 ≤ i ≤ k, the action ai sets parvi to vi−1
after the action ai−1 but not later than vi−1’s next action.

Observation 5 Let C be a connected component of G, v0 be a process of
C, and S be any C-segment. Let a1, a2, . . . , ak be a causal chain of S rooted
at v0. Denote by vi the process that executes ai, for all i ∈ {1, . . . , k}.
– For all 1 ≤ i ≤ k, ai consists in the execution of update(vi) (i.e., vi

executes the rule RU or RR), and vi is a process of C.

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 23

– Assume a1 is executed in the step γ 7→ γ′ of S. Denote by ds0 the distance
value of process v0 in γ; we call this value the initiating value of the causal
chain. For all 1 ≤ i ≤ k, ai sets dvi to ((ds0 ⊕ ωv1(v0))⊕ · · ·)⊕ ωvi(vi−1).

Lemma 12 Let C be a connected component of G and S be a C-segment. All
actions in a causal chain of S are executed by different processes of C, none
of them being the root of the causal chain.

Proof Assume, by contradiction, that there exists a process v such that, in
some causal chain a1, a2, . . . , ak of S, v is designated as parent in some action
ai executed in step γi 7→ γi+1 and executes the action aj in step γj 7→ γj+1,
with j > i. Process v has status C in γi, and the value of dv is strictly larger
in γj+1 than in γi (by Observation 5, second item). However, any rule RU
executed by v makes the value of dv decrease. Finally, since Process v has
status C in γi, RR(v) will be no more executed in S from that configuration,
by Corollary 5 and from the rules’ guards. Hence, we obtain a contradiction
(by Observation 5, first item). ut

5.3 Maximal Causal chains

Definition 12 (Maximal causal chain) Let C be a connected component
of G, v0 be a process of C, and S be any C-segment. A maximal causal chain of
S rooted at v0 is a causal chain a1, a2, . . . , ak of S such that the causal chain
is maximal and, either v0 is a normal root or the action a1 sets parv1 to v0
not later than any action executed by v0 in S.

The following lemma adds a property to Observation 5 for the specific case
of maximal causal chains.

Lemma 13 Given any connected component C, any C-segment S, and any
process v ∈ C, all maximal causal chains of S rooted at v have the same
initiating value.

Proof For the purpose of contradiction, assume that there exist such C, S,
and v such that two maximal causal chains of S rooted at v have different
initiating values d1 and d2. At least one of them, say d1, must be different from
distRootv. This value d1 is necessarily the distance value of v at the beginning
of S, otherwise v would not be the root of the corresponding maximal causal
chain. As a consequence, we must have d2 = distRootv.

Since d1 is the distance value of v at the beginning of S, there must exist
an action a executing the else part of update(v) in S. Moreover, since the
maximal causal chain of S rooted at v with initiating value d1 exists, stv = C
initially (otherwise, no neighbor can choose v as parent before any action of v
in C). Thus, by Corollary 5, the action a is an execution of RU in the case
when P_rootActive(v)∧stv = C holds. By definition of a C-segment, Lemmas
8-10, and Corollary 4, the action a is thus executed during the last step of S
and thus no maximal causal chains of S (which are never empty by definition)

24 Stéphane Devismes, David Ilcinkas, and Colette Johnen

can be rooted at v with initiating value d2 = distRootv. This contradiction
concludes the proof. ut

Definition 13 (SIS,v) Let C be a connected component of G, v be a process
of C, and S be a C-segment. We define SIS,v as the set of all the distance
values obtained after executing an action belonging to the maximal causal
chains of S rooted at v.

The following lemma will be used to establish the termination of TbC in
any case. It will also lead to a huge upper bound on the move complexity.
However, we will see that in many practical cases, the upper bound in moves
can be refined to be polynomial, see Theorem 3 and Corollary 8.

Lemma 14 Let C be a connected component of G, v0 be a process of C, and
S be a C-segment. The size of the set SIS,v0 is bounded by (nmaxCC − 1)! (the
factorial of nmaxCC − 1).

Proof Let us consider a distance value d obtained after executing an action ai
belonging to a maximal causal chain a1, a2, . . . , ak of S rooted at v0. Denote
by vi the process that executes ai, for all i ∈ {1, . . . , k}. By Observation 5,
we have d = ((ds0 ⊕ ωv1(v0))⊕ · · ·)⊕ ωvi(vi−1), with ds0 being the initiating
value common to all maximal causal chains of S rooted at v0 (see Lemma 13).
In other words, the value d is fully determined by the sequence of processes
v1, . . . , vi (v0 and S being fixed). Moreover, note that all the vj , 0 ≤ j ≤ i are
different processes and v0 does not execute any action of any causal chain it is
the root of, by Lemma 12. Therefore, |SIS,v0 | is bounded by (nmaxCC − 1)!. ut

5.4 Move Complexity of TbC

Lemma 15 Let C be a connected component of G, u ∈ C, and S be a C-
segment. If the size of SIS,v is bounded by X for any process v ∈ C, then the
number of RU moves done by u in S is bounded by X · (nmaxCC − 1) + 1.

Proof By Corollary 5, RU(u) executions in S are not interrupted by the ex-
ecutions of other rules at u, and they make the value of du decrease. There-
fore, all the values of du obtained by the RU executions done by u in S
are different. By Definitions 12 and 13, all these values belong to the set⋃
v∈C\{u} SIS,v ∪ {distRootu}, which has size at most X · (nmaxCC − 1) + 1. ut

By Theorem 2 and Lemma 15, we obtain the following result.

Corollary 6 If the size of SIS,v is bounded by X for any connected compo-
nent C, any process v ∈ C, and any C-segment S, then the total number of
moves during any execution is bounded by (X · (nmaxCC−1)+5) · (nmaxCC +1) ·n.

Combined with Lemma 14, this corollary already allows us to prove that
TbC always terminates and has a bounded move complexity.

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 25

Corollary 7 Algorithm TbC is silent self-stabilizing under the distributed un-
fair daemon and has a bounded move (and step) complexity, a valid bound
being 5n · (nmaxCC + 1)!.

Let Wmax = max{ωu(v) | u ∈ V ∧ v ∈ Γ (u)}. If all weights are strictly
positive integers and ⊕ is the addition operator, then the size of any SIS,u is
bounded by Wmax(nmaxCC−1) for every connected component C, every C-segment
S, and every process u ∈ C because, by Observation 5 and Lemma 12, SIS,u ⊆
[dsS,u+1, dsS,u+Wmax(ncc−1)], where ncc ≤ nmaxCC is the number of processes
in C, and dsS,u is the common (by Lemma 13) initiating value of the maximal
causal chains of S rooted at u. Hence, we deduce the following theorem from
Corollaries 6 and 7.

Theorem 3 Algorithm TbC is silent self-stabilizing under the distributed un-
fair daemon and, when all weights are strictly positive integers and ⊕ is the
addition operator, its stabilization time in moves (and steps) is at most (Wmax ·
(nmaxCC − 1)2 + 5) · (nmaxCC + 1) · n.

Lemma 16 Let C be a connected component of G, v ∈ C, and S be a C-
segment. If all edges have the same weight, then |SIS,v| < nmaxCC.

Proof Assume that all edges have the same weight ω. According to Observa-
tion 5 and Lemma 12, we have SIS,v ⊆ {dsS,v ⊕ (i.ω) | 1 ≤ i ≤ nmaxCC − 1},
where dsS,v is the common (by Lemma 13) initiating value of the maximal
causal chains of S rooted at v. ut

By Corollary 6 and Lemma 16, we obtain the following result.

Corollary 8 If all edges have the same weight, then the total number of moves
(and steps) during any execution is bounded by ((nmaxCC−1)2+5)·(nmaxCC+1)·n.

6 Round Complexity of TbC

6.1 Normal Configurations

We first introduce the notion of normal configurations, which will help us to
partition the proof on the round complexity of TbC.

Definition 14 (Normal Process) A process u is said to be normal if u
satisfies the following two conditions:

1. stu /∈ {EB,EF}, and
2. ¬P_abRoot(u).

Definition 15 (Normal Configuration) Let γ be a configuration of TbC.
γ is said to be normal if every process is normal in γ; otherwise γ is said to
be abnormal.

26 Stéphane Devismes, David Ilcinkas, and Colette Johnen

Observation 6 In a normal configuration of TbC, only the rules RU or RR
may be enabled at any process.

We first prove that, once a normal configuration is reached, all subsequent
configurations will be normal as well.

Lemma 17 Any step from a normal configuration of TbC reaches a normal
configuration of TbC.

Proof Let γ 7→ γ′ be a step such that γ is a normal configuration and let u be
a process.

In γ, every process v satisfies stv /∈ {EB,EF} and ¬P_abRoot(v). Hence,
both REB(u) and REF(u) are disabled in γ, and consequently stu /∈ {EB,EF}
still holds in γ′.

Moreover, since u is not an alive abnormal root in γ, Lemma 9 implies that
u is not an alive abnormal root in γ′ either. Since stu 6= EF in γ′, we obtain
¬P_abRoot(u) in γ′. ut

6.2 From an Arbitrary Configuration to a Normal Configuration

The lemma below essentially claims that all the processes that are in illegal
branches progressively switch to status EB within nmaxCC rounds, in order of
increasing depth; see Definition 5, page 15, for the definition of depth.

Lemma 18 Let i ∈ N. From the beginning of Round i+1, there does not exist
any process both in state C and at depth less than i in an illegal branch.

Proof We prove this lemma by induction on i. The base case (i = 0) is trivially
true, so we assume that the lemma holds for some integer i ≥ 0.

From the beginning of Round i + 1, no process can ever choose a parent
which is at depth smaller than i in an illegal branch because those processes
(if they exist) will never have status C, by induction hypothesis.

Then, let u be a process of status C in an illegal branch at the beginning
of Round i + 1. Its depth is thus at least i. By induction hypothesis, each
of its ancestor at depth smaller than i has status EB and has at least one
child not having status EF . Thus, no such ancestors can execute any rule,
and consequently they cannot make the depth of u decrease to i or smaller.
Therefore, no process can take status C at depth smaller than or equal to i in
an illegal branch from the beginning of Round i+ 1.

Consider any process u with status C at depth i in an illegal branch at the
beginning of Round i+ 1. It remains to prove that u will not stay so until the
end of Round i + 1. By induction hypothesis, u is an abnormal root, or the
parent of u has not status C (i.e., it has status EB). During Round i + 1, u
will execute rule either REB or RU and thus either switch to status EB, or
join another branch (at a depth greater than i if that branch is illegal), or
become a normal root turning its branch to be legal. This concludes the proof
of the lemma. ut

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 27

Definition 16 (Almost Normal Configuration)
A configuration γ of TbC is said to be almost normal if in γ, every process u

satisfies stu = C ⇒ ¬P_abRoot(u)∧[P_root(u)∨(paru ∈ Γ (u)∧stparu = C)].
Lemma 19 Any step from an almost normal configuration of TbC leads to
an almost normal configuration of TbC.
Proof Let γ 7→ γ′ be a step of TbC such that γ is an almost normal config-
uration. Assume, for the purpose of contradiction, that γ′ is not an almost
normal configuration. Then, by Definition 16, at least one process u satisfies
one of the following two cases.
– stu = C ∧ P_abRoot(u) in γ′. Then, Lemma 9 (page 20) implies that u is

already an alive abnormal root in γ. However, since γ is an almost normal
configuration, u cannot be an alive abnormal root of status C in γ. So,
we necessarily have stu = EB in γ. But, in this case, stu 6= C in γ′, a
contradiction.

– stu = C ∧¬P_abRoot(u)∧¬P_root(u)∧ [paru /∈ Γ (u)∨stparu 6= C] in γ′.
Now, ¬P_abRoot(u)∧¬P_root(u) implies paru ∈ Γ (u) by Observation 1
(page 15) and thus stparu = EB in γ′ from paru /∈ Γ (u)∨stparu 6= C. Let v
be the process paru in γ′. By definition of an almost normal configuration
(Definition 16), v does not execute REB in γ 7→ γ′. So, in γ, we have
stv = EB. If u executes RR or RU in γ 7→ γ′ then paru 6= v in γ′. If
u executes REB, REF or RI in γ 7→ γ′ then stu 6= C in γ′. So u does
not execute any rule in γ 7→ γ′. Hence, we have stu = C, paru = v, and
stv = EB in γ, meaning that γ is not an almost normal configuration, a
contradiction. ut
From Lemmas 18 and 19, we obtain the following corollary.

Corollary 9 After at most nmaxCC rounds, the system is in an almost normal
configuration and remains so forever.

The next lemma essentially claims that once no process in an illegal branch
has status C, processes in illegal branches progressively switch to status EF
within at most nmaxCC rounds, in order of decreasing depth.
Lemma 20 Let i ∈ N∗. From the beginning of Round nmaxCC + i, any process
at depth larger than nmaxCC − i in an illegal branch has status EF .
Proof We prove this lemma by induction on i. The base case (i = 1) is trivial
(by Observation 2, page 15), so we assume that the lemma holds for some
integer i ≥ 1. At the beginning of Round nmaxCC + i, any process at depth
larger than nmaxCC − i has status EF (by induction hypothesis). Therefore,
processes with status EB at depth nmaxCC − i in an illegal branch are enabled
to execute the rule REF at the beginning of Round nmaxCC + i. These processes
will thus all execute within Round nmaxCC + i (they cannot be neutralized as no
children can connect to them) and obtain status EF . We conclude the proof
by noticing that, from Corollary 9, once Round nmaxCC has terminated, any
process in an illegal branch that executes some rule either gets status EF , or
will be outside any illegal branch forever. ut

28 Stéphane Devismes, David Ilcinkas, and Colette Johnen

Definition 17 (Quasi Normal Configuration) An almost normal config-
uration γ of TbC is said to be quasi normal if no process has status EB in γ.

Observation 7 There is no alive abnormal root in a quasi normal configura-
tion.

Lemma 21 Any step from a quasi normal configuration of TbC leads to a
quasi normal configuration of TbC.

Proof Let γ 7→ γ′ be a step of TbC such that γ is a quasi normal configuration.
First, by definition, a quasi normal configuration is also an almost normal
configuration. So, γ′ is almost normal (Lemma 19) and no process has status
EB in γ′ since no rule REB is enabled in γ. Hence, γ′ is a quasi normal
configuration. ut

From Lemmas 20 and 21, we obtain the following corollary.

Corollary 10 After at most 2nmaxCC rounds, the system is in a quasi normal
configuration and remains so forever.

The next lemma essentially claims that after the propagation of status EF
in illegal branches, the maximum length of illegal branches progressively de-
creases until all illegal branches vanish.

Lemma 22 Let i ∈ N∗. From the beginning of Round 2nmaxCC + i, there does
not exist any process at depth larger than nmaxCC − i in an illegal branch.

Proof We prove this lemma by induction on i. The base case (i = 1) is trivial
(by Observation 2, page 15), so we assume that the lemma holds for some
integer i ≥ 1. By induction hypothesis, at the beginning of Round 2nmaxCC + i,
no process is at depth larger than nmaxCC− i in an illegal branch. All processes
in an illegal branch have the status EF (by Lemma 20). So, at the beginning
of Round 2nmaxCC +i, any abnormal root satisfies the predicate P_reset, and is
enabled to execute either RI, or RR. So, all abnormal roots at the beginning
of Round 2nmaxCC + i are no more in an illegal branch at the end of this round:
the maximal depth of the illegal branches has decreased, since by Corollary 9,
no process can join an illegal tree after nmaxCC rounds have occurred. ut

By Lemmas 17-22, we obtain the following result.

Theorem 4 After at most 3nmaxCC rounds, a normal configuration of TbC is
reached, and the configuration remains normal forever.

6.3 From a Normal Configuration to a Terminal Configuration

From a normal configuration, Algorithm TbC needs additional rounds to prop-
agate the status C and the correct distances in the components of the graph
containing at least one process satisfying canBeRoot. First, we observe the
following fact.

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 29

Observation 8 In a normal configuration of TbC, all processes in connected
components containing no process satisfying canBeRoot are in state I and
thus are disabled.

Let u be a process having the status C in a normal configuration γ. Along
any execution from γ, the distance of u cannot increase and u keeps the sta-
tus C.

From the previous observation, we only need to focus on any connected
component C containing at least one process satisfying canBeRoot.

Let us fix an arbitrary execution ex of TbC in C starting from a normal con-
figuration γ. By Corollary 7 (page 25), a terminal configuration is eventually
reached after a finite number of steps along ex.

Lemma 23 Let STC(i, ex) be the set of processes defined as {u ∈ C | u performs
a move along ex after the beginning of Round i}. If |STC(i, ex)| > 0 then
|STC(i+ 1, ex)| < |STC(i, ex)|.

Proof By definition, STC(i + 1, ex) ⊆ STC(i, ex). It is thus sufficient to prove
that at least one process of STC(i, ex) is enabled at the beginning of the ith
round and will do its last action during the ith round of ex.

Let γi be the configuration at the beginning of Round i of ex, and let γf
be the terminal configuration of ex. Let us consider the process u ∈ STC(i, ex)
having the minimum distance du in γf , denoted by dmin(i). According to the
definition of u and Observation 8, (*) every process w′ of STC(i, ex) satisfies
dmin(i) � dw′ or stw′ = I along ex from γi.

Case 1. In γf , paru = ⊥.
This means that P_root(u) holds in γf . This further implies that, along ex
from γi, the last action of u consists in executing the else part of update(u).
At that time, u satisfies P_rootActive(u)∨stu = I. Actually, by Lemma 10
page 21 and Observation 8, not only this must already hold from γi, but
this action is the unique action of u along ex. This action is thus done
during the ith round of ex, and u 6∈ STC(i+ 1, ex), concluding the case.

Case 2. In γf , paru = w ∈ Γ (u).
Along ex from γi, u executes its last move in some step γj 7→ γj+1. In
this step, u executes the then part of update(u) since paru 6=⊥ in γf .
In γj , distNeigh(u) = dmin(i). By Observation 8 and (*), we can con-
clude that distNeigh(u) is constantly equal to dmin(i) and P_toBeC(u)
is constantly true since γi. From the properties of P_rootActive(u) and
P_neighActive(u), this also implies that the values of those two predicates
only depends on du from γi (other influencing parameters being constant
from γi). Furthermore, since P_rootActive(u) and P_neighActive(u) are
monotone w.r.t. du, their respective values are constant from γi until u
moves. Assume now, by contradiction, that umoves in some step γk 7→ γk+1
with i ≤ k < j. Without loss of generality, assume that k is maximum.
Then, u necessarily executes the else part of update(u) in γk 7→ γk+1 (oth-
erwise, u is not enabled in γj). Thus, distNeigh(u) � distRootu so that

30 Stéphane Devismes, David Ilcinkas, and Colette Johnen

u is enabled in γj . In this case, u necessarily has status C in γk (u oth-
erwise executes the then part of update(u)). Again to execute the else
part of update(u) during γk 7→ γk+1, we should have P_rootActive(u) and
¬P_neighActive(u) in γk. Overall, from γk to γj , we have stu = C; and
from γk+1 to γj we have du = distRootu, which implies ¬P_rootActive(u).
Moreover, ¬P_neighActive(u) holds in γj since it is monotone w.r.t. du
and by Observation 8. So, u is disabled in γj , a contradiction. Hence, the
only move of u from γi is during the step γj 7→ γj+1 and u was enabled
since γi, i.e., u executes its last move during Round i, which means that
u 6∈ STC(i+ 1, ex), concluding the case. ut

From the previous lemma, and Theorems 1 and 4, we obtain the following
result.

Corollary 11 A terminal legitimate configuration of any instantiation of TbC
is reached in at most 4nmaxCC rounds from any configuration.

7 Instantiations

In this section, we illustrate the versatility of Algorithm TbC by proposing
several instantiations that solve various classical problems.

By Definition 7 and Theorem 1 (pages 16 and 18, respectively), any process
u in a terminal configuration of an instance of TbC satisfies one of the three
following properties.

Property 1: P_root(u) and ¬P_neighActive(u).
Property 2: There is a process satisfying canBeRoot in Vu, stu = C, paru ∈

Γ (u), du � dparu⊕ωu(paru), and ¬P_neighActive(u)∧¬P_rootActive(u).
Property 3: There is no process satisfying canBeRoot in Vu and stu = I.

By Corollaries 7 and 11 (pages 25 and 30, respectively), all instances of
TbC reach under the unfair daemon a terminal configuration in at most 4nmaxCC
rounds, starting from an arbitrary one.

Observation 9 Let C be a connected component of G containing a process
satisfying canBeRoot in an instance of TbC. In any terminal configuration of
this instance, at least one process of C verifies P_root(u). In particular, every
process u that has the smallest du value in C verifies P_root(u).

7.1 Spanning Forest and Non-Rooted Components Detection

Given an input set of processes rootSet, Algorithm Forest is the instantiation
of TbC with the parameters given in Algorithm 2. Algorithm Forest computes
(in a self-stabilizing manner) a spanning forest in each connected component
of G containing at least one process of rootSet. The forest consists of trees (of
arbitrary topology), whose tree roots are processes of rootSet. Each process of

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 31

Algorithm 2: Parameters for any process u in Algorithm Forest –
Versions 1 and 2

Inputs:
• canBeRootu is true if and only if u ∈ rootSet
• pnameu is ⊥
• ωu(v) = 1 for every v ∈ Γ (u)

Ordered Magma:
• DistSet = N
• i1⊕ i2 = i1 + i2
• i1 ≺ i2 ≡ (i1 < i2)
• distRoot(u) = 0

Predicates:
• P_neighActive(u) ≡ false
• In Version 1, P_rootActive(u) ≡ P_rootV alid(u)
In Version 2, P_rootActive(u) ≡ false
• P_toBeC(u) ≡ (∃v ∈ Γ (u) | stv = C)

rootSet is required to be a tree root in Version 1 of Algorithm Forest, but not
in Version 2. Moreover, in any component containing no process of rootSet,
the processes eventually detect the absence of root by finally taking the status
I (Isolated).

Correctness of Forest. In a terminal configuration of Forest, each process u
satisfies one of the following conditions:

1. P_root(u), i.e., u is a tree-root and u ∈ rootSet.
2. There is a process of rootSet in Vu, stu = C, paru ∈ Γ (u), du ≥ dparu + 1,
u belongs to a tree rooted at some process of rootSet – its neighbor paru
is its parent in the tree. In Version 1 of the algorithm, u /∈ rootSet.

3. There is no process of rootSet in Vu and stu = I, i.e., u is isolated.

Move Complexity of Forest. Rule RU is executed at most once by each process
u in any Vu-segment. Hence, the total number of moves (and steps) during any
execution is bounded by 5 · (nmaxCC + 1) · n, by Theorem 2 (page 22).

7.2 Leader Election

Assuming the network is identified, Algorithm LE is the instantiation of TbC
with the parameters given in Algorithm 3. In each connected component, Al-
gorithm LE elects a process ` (i.e., P_leader(`) holds) and builds a tree (of
arbitrary topology) rooted at ` that spans the whole connected component.

32 Stéphane Devismes, David Ilcinkas, and Colette Johnen

Algorithm 3: Parameters for any process u in Algorithm LE

Inputs:
• canBeRootu is true for any process
• pnameu is the identifier of u (n.b., pnameu ∈ N)
• ωu(v) = (⊥, 1) for every v ∈ Γ (u)

Ordered Magma:
• DistSet = IDs× N; for every d = (a, b) ∈ DistSet, we let d.id = a and d.h = b

• (id1, i1)⊕ (id2, i2) = (id1, i1 + i2)
• (id1, i1) ≺ (id2, i2) ≡ (id1 < id2) ∨ [(id1 = id2) ∧ (i1 < i2)]
• distRoot(u) = (pnameu, 0)

Predicates:
• P_neighActive(u) ≡ (∃v ∈ Γ (u) | stv = C ∧ dv .id < du.id)
• P_rootActive(u) ≡ false
• P_toBeC(u) ≡ (∃v ∈ Γ (u) | stv = C)
• P_leader(u) ≡ P_root(u)

The variable du of a process u has two fields. The first one, id, eventually
contains the identifier of the leader in Vu. The second one, h, contains an upper
bound on the distance to the leader in the built tree rooted at `.

Correctness of LE. As canBeRoot is true for all processes, in a terminal con-
figuration of LE no process verifies Property 3 (i.e. no process has the status
I).

Observation 10 In a terminal configuration of LE, each process u satisfies
one of the following conditions: (1) P_root(u), or (2) stu = C, paru ∈ Γ (u),
du = (dparu .id,−), and du.h ≥ dparu .h+ 1.

In a terminal configuration of Algorithm LE, each process u satisfies du =
(pname`,−) where ` is the single process in Vu verifying P_root(`).

Move Complexity of LE. During a C-segment, a process can only execute RU
to improve its ID. Let u by any process. At the beginning of a segment, at
most nmaxCC−1 distinct IDs are stored in the distance variables of processes in
Vu \ {u}. In the worst case, u can successively adopt each of them along the
segment. Hence, the total number of moves (and steps) during any execution is
bounded by (nmaxCC+3)·(nmaxCC+1)·n (Theorem 2, page 22), i.e., O(nmaxCC

2 ·n).

7.3 Shortest-Path Tree and Non-Rooted Components Detection

Assuming the existence of a unique root r and (strictly) positive integer weights
for each edge, Algorithm RSP is the instantiation of TbC with the parameters

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 33

given in Algorithm 4. Algorithm RSP computes (in a self-stabilizing manner)
a shortest-path tree spanning the connected component of G containing r.
Moreover, in any other component, the processes eventually detect the absence
of r by taking the status I (Isolated).

Recall that the weight of a path is the sum of its edge weights. The weighted
distance between the processes u and v, denoted by d(u, v), is the minimum
weight of a path from u to v. A shortest path from u to v is a path whose
weight is d(u, v). A shortest-path (spanning) tree rooted at r is a tree rooted
at r that spans Vr and such that, for every process u, the unique path from u
to r in the built tree is a shortest path from u to r in Vr.

Algorithm 4: Parameters for any process u in Algorithm RSP

Inputs:
• canBeRootu is false for any process except for u = r

• pnameu is ⊥
• ωu(v) = ωv(u) ∈ N∗, for every v ∈ Γ (u)

Ordered Magma:
The same as for Algorithm Forest (Algorithm 2)

Predicate:
• P_neighActive(u) ≡ P_neighV alid(u)
• P_rootActive(u) ≡ P_rootV alid(u)
• P_toBeC(u) ≡ (∃v ∈ Γ (u) | stv = C)

Correctness of RSP. By definition, r is the unique process satisfying canBeRoot.
So, only r can satisfy P_root. By Observation 9, P_root(r) holds in any ter-
minal configuration of RSP.

Observation 11 In a terminal configuration of Algorithm RSP, each pro-
cess u satisfies one of the following three conditions: (1) u = r and P_root(r)
holds; (2) u ∈ Vr \ {r}, stu = C, paru ∈ Γ (u), and du =dparu + ωu(paru); or
(3) u /∈ Vr and stu = I.

In a terminal configuration of Algorithm RSP, each process u satisfies u /∈
Vr, or du = d(u, r).

Move Complexity of RSP. All edge weights are strictly positive and ⊕ is the
addition operator, so the total number of moves (and steps) during any exe-
cution is bounded by (Wmax · (nmaxCC − 1)2 + 5) · (nmaxCC + 1) · n (Theorem 3,
page 25), i.e., O(nmaxCC

3 · n · Wmax).

34 Stéphane Devismes, David Ilcinkas, and Colette Johnen

Construction of BFS tree rooted at r. If all edge weights have the same value
(for instance, 1) then Algorithm RSP builds a BFS tree rooted at r in Vr. In
any other component, the processes take the status I (Isolated). As edges have
the same weight, the total number of moves (and steps) during any execution
is bounded by ((nmaxCC − 1)2 + 5) · (nmaxCC + 1) · n (Corollary 8, page 25), i.e.,
O(nmaxCC

3 · n).

Bounded Memory Space version of RSP. Corollary 3 (page 19) describes the
instantiation of TbC requiring only bounded memory space that is similar to
RSP (i.e., a terminal configuration of this instantiation is a terminal configu-
ration of RSP). The set distSetF inite can be any finite set containing every
distance d that may be assumed in a terminal configuration of RSP. Therefore,
each process only needs to know an upper bound BL on the maximum weighted
distance to r. This corresponds to setting distSetF inite = {d ∈ N | d ≤ BL}.
This could also be done by providing an upper bound B on the network size
and an upper bound BW on the edge weights, and setting BL = B · BW. Finally,
the move complexity of the Bounded Memory Space version of RSP remains
the same as the one of the initial version of RSP, i.e., O(nmaxCC

3 · n · Wmax).

7.4 Leader Election of the process with the smallest identifier and
Shortest-Path-Tree construction requiring bounded memory space

Assuming the network is identified, Algorithm LEM_SP_BD is the instantia-
tion of TbC with the parameters given in Algorithm 5. The variable d has two
fields. The first one, id, eventually contains the identifier of the elected process.
The second one, h, contains the weighted distance to the elected process.

In each connected component, Algorithm LEM_SP_BD elects (in a self-
stabilizing manner) the process ` (i.e., P_leader(`) holds) of smallest identifier
and builds a shortest-path tree rooted at `.

The memory space required by Algorithm LEM_SP_BD on each process is
bounded by O(log(B · BW)) bits, where B is an upper bound on the maximum
value of a process identifier and BW is an upper bound on the edge weights
(an upper bound on the maximum weighted distance could also be used; see
the discussion on that matter in Section 7.3). However, each process needs to
know both B and BW.

Correctness of LEM_SP_BD. As canBeRoot is true for all processes, in a
terminal configuration of LEM_SP_BD, no process has the status I. According
to Corollary 3 (page 19), we have the following observation.

Observation 12 In a terminal configuration of Algorithm LEM_SP_BD, each
process u satisfies one of the following conditions: (1) P_root(u), or (2)
stu = C, paru ∈ Γ (u), du = (dparu .id, dparu .h+ ωu(paru)).

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 35

Algorithm 5: Parameters for any process u in Algorithm
LEM_SP_BD

Inputs:
• canBeRootu is true for any process
• pnameu is the identifier of u (n.b., pnameu ∈ N)
• ωu(v) = (⊥, weightu(v)) for every v ∈ Γ (u) with weightv(u) = weightu(v) ∈ N∗
being the weight of the edge {u, v}
• distSetF inite = {(id, h) ∈ N2 | id ≤ B and h ≤ B · BW}

B is an upper bound on the maximum identifier and
BW is an upper bound on the edge weights

Ordered Magma:
The same as for Algorithm LE (Algorithm 3)

Predicates:
• P_neighActive(u) ≡ P_neighV alid(u) ∧ P_toBeC(u)
• P_rootActive(u) ≡ P_rootV alid(u)
• P_toBeC(u) ≡ (∃v ∈ Γ (u) | stv = C) ∧ distNeigh(u) ∈ distSetF inite
• P_leader(u) ≡ P_root(u)

In a terminal configuration of Algorithm LEM_SP_BD, for every process
u of C, du = (pname`, d(u, `)) with ` being the process having the smallest
identifier in C.

Move Complexity of LEM_SP_BD. SIS,v is the set of d values obtained after
executing an action belonging to the maximal causal chains rooted at v in the
segment S; see definition 13.
SIS,v ⊆ {dsS,v ⊕ (i · (⊥, 1)) | 1 ≤ i ≤ Wmax · (nmaxCC − 1)}, dsS,v being the
initiating value common to all maximal causal chains of S rooted at v. So,
|SIS,v| ≤ Wmax · (nmaxCC − 1). According to Corollary 6 (page 24), the total
number of moves (and steps) during any execution is bounded by (Wmax ·
(nmaxCC − 1)2 + 5) · (nmaxCC + 1) · n, i.e., O(nmaxCC

3 · n · Wmax).

Construction of a BFS tree rooted at the process having the smallest identifier
and requiring bounded memory space. If all edge weights have the same value
(for instance, 1) then in each connected component C, Algorithm LEM_SP_BD
builds a BFS tree rooted at the process having the smallest identifier of C. As
edges have the same weight, the total number of moves (and steps) during
any execution is bounded by ((nmaxCC − 1)2 + 5) · (nmaxCC + 1) · n (Corollary 8,
page 25), i.e., O(nmaxCC

3 · n).

Version of LEM_SP_BD without any knowledge about the identifiers and the
edge weights. Corollary 3 (page 19) presents the instantiation of TbC not re-
quiring any network knowledge and similar to LEM_SP_BD (i.e. a terminal

36 Stéphane Devismes, David Ilcinkas, and Colette Johnen

configuration of this instantiation is a terminal configuration of LEM_SP_BD).
The memory space required by this instance on each process is unbounded
though. Indeed, given any bound B on the second component h of a distance,
such a value B for h could be initially present at some process u and another
process v might connect to u and obtain a second component larger than the
bound B. The move complexity of this instance is also O(nmaxCC

3 · n · Wmax).

7.5 Depth-First Search Tree and Non-Rooted Components Detection

Assume the existence of a unique root r. Algorithm RDFS is the instantiation
of TbC with the parameters given in Algorithm 6. Algorithm RDFS computes
(in a self-stabilizing manner) a depth-first search (DFS) tree spanning the
connected component of G containing r. Moreover, in any other component,
processes eventually detect the absence of r by taking the status I (Isolated).

Here, the weight of the arc (u, v) is αu(v), the local label of u in Γ (v).
Let P = uk, uk−1, . . . u0 = r be a (directed) path from process uk to the root
r. We define the weight of P as the sequence 0, α1(u0), α2(u1), . . . , αk(uk−1).
The lexicographical distance from process u to the root r, denoted by drlex(u),
is the minimum weight of a path from u to r (according to the lexicographical
order).

Algorithm 6: Parameters for any process u in Algorithm RDFS

Inputs:
• canBeRootu is false for any process except for u = r

• pnameu is ⊥
• ωu(v) = αu(v) ∈ {1, . . . , δu} (the local label of u in Γ (v)), for every v ∈ Γ (u)

Ordered Magma:
• DistSet = {0, . . . , ∆}∗

• w1⊕ w2 = w1.w2 (the concatenation of w1 and w2)
• ≺ is the lexicographical order
• distRoot(u) = 0

Predicate:
The same as for Algorithm RSP (Algorithm 4)

Correctness of RDFS. Algorithm RDFS self-stabilizes to a terminal legitimate
configuration that satisfies the following requirements.

Observation 13 In a legitimate configuration of Algorithm RDFS, each pro-
cess u satisfies one of the following three conditions:

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 37

1. u = r and P_root(r) holds;
2. u 6= r, u ∈ Vr, stu = C, paru ∈ Γ (u), and du = dlex(u, r) = dparu .ωu(paru);

or
3. u /∈ Vr and stu = I.

Let T be a tree rooted at r that spans Vr. Following the result of [12], if
for every process u ∈ Vr, the weight of the path from u to r in T is equal to
drlex(u), then T is a (first) DFS spanning tree of Vr.

Move Complexity of RDFS. For this instance, we cannot apply Corollary 6
(page 24) to obtain a polynomial move complexity. However, by Lemma 14
we have a rough estimation of the move complexity, i.e., at most (nmaxCC − 1)!
moves. We outline that this estimation is coarse-grained, and so can be further
refined.

Bounded Memory Space version of RDFS. Corollary 3 (page 19) describes the
instantiation of TbC requiring only bounded memory space that is similar to
RDFS (i.e., a terminal configuration of this instantiation is a terminal configu-
ration of RDFS). The set distSetF inite can be any finite set containing every
distance d that may be assumed in a terminal configuration of RDFS. There-
fore, each process only needs to know an upper bound B on the network size
and an upper bound BD on ∆ (the maximum degree of G). This corresponds to
setting distSetF inite = {0, . . . , BD}≤B , the set of words of length at most B
over the alphabet {0, . . . , BD}.

7.6 Optimum-bandwidth-path (spanning) tree

Assume the existence of a unique root r. Algorithm RBW is the instantiation
of TbC with the parameters given in Algorithm 7. The variable d on v contains
the multiset of the edge bandwidths in the path from v to r. Note that storing
only the bottleneck bandwidth or the set of edge bandwidths (even combined
with the distance to r) would not satisfy the constraints on ⊕ and ≺ stated
in Fig. 1.

Algorithm RBW computes (in a self-stabilizing manner) a spanning tree
rooted at r in Vr. The path from u to r in the spanning tree is one that maxi-
mizes the bandwidth. Moreover, in any other component, processes eventually
detect the absence of r by taking the status I (Isolated).

The bandwidth of a path is the minimum of its edge bandwidths. The band-
width capability between the processes u and v, denoted by bwc(u, v), is the
maximum bandwidth of a path from u to v. An optimum bandwidth path
from u to v is a path whose bandwidth is bwc(u, v). An optimum-bandwidth-
path (spanning) tree rooted at r is a tree rooted at r that spans Vr and such
that, for every process u, the unique path from u to r in the built tree is an
optimum-bandwidth-path from u to r in Vr.

38 Stéphane Devismes, David Ilcinkas, and Colette Johnen

Algorithm 7: Parameters for any process u in Algorithm RBW

Inputs:
• canBeRootu is false for any process except for u = r

• pnameu is ⊥
• ωu(v) = {bwu(v)}, for every v ∈ Γ (u) with bwu(v) ∈ N∗ is the bandwidth of the
directed link from u to v

Ordered Magma:
• DistSet = the set of the finite multisets of elements in N∗

• d1 ⊕ d2 = d1] d2, where] is the sum (disjoint union) on multisets
• Inductive definition of the total order ≺ on DistSet:
d1 ≺ d2 ≡ (d1 = ∅ ∧ d2 6= ∅) ∨

[
d1 6= ∅ ∧ d2 6= ∅ ∧

[min d1 > min d2 ∨ (min d1 = min d2 ∧ d1 \ {min d1} ≺ d2 \ {min d2})]
]

(s \ {x} is the multiset s in which one occurrence of x has been removed)
• distRoot(u) = ∅, the empty multiset

Predicate:
The same as for Algorithm RSP (Algorithm 4)

Correctness of RBW. First note that the ordered magma and the weight as-
signment satisfy the constraints on ⊕ and ≺ stated in Fig. 1. By definition,
r is the unique process satisfying canBeRoot. So, only r can satisfy P_root.
By Observation 9, P_root(r) holds in any terminal configuration of RBW.

Observation 14 In a terminal configuration of Algorithm RBW, each process
u satisfies one of the following three conditions:

1. u = r and P_root(r) holds;
2. u ∈ Vr \ {r}, paru ∈ Γ (u), du =dparu] {bwu(v)}, and stu = C; or
3. u /∈ Vr and stu = I.

In a terminal configuration of Algorithm RBW, each process u satisfies
u /∈ Vr, or du is the multiset of the edge bandwidths of a path such that
min du = bwc(u, r).

Move Complexity of RBW. SIS,v is the set of distance values obtained after
executing an action belonging to the maximal causal chains rooted at v in the
segment S; see Definition 13. Let k be the number of different edge bandwidths
in the network. The size of SIS,v is at most the number of multisets of at
most nmaxCC− 1 elements from the set of the k possible edge bandwidths, such
a multiset being added (by successive disjoint unions of singletons) to the
initiating multiset dsS,v. So the size of SIS,v is bounded by

(
k+nmaxCC−1
nmaxCC−1

)
=(

k+nmaxCC−1
k

)
. According to Corollary 6 (page 24), the total number of moves

during any execution, is bounded by (
(
k+nmaxCC−1

k

)
(nmaxCC−1)+5)(nmaxCC +1)n.

In practice, the number k of different bandwidth values may be small (one per

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 39

technology for example), or the bandwidth values may be grouped in a small
number of ranges. When k is constant, the total number of moves during any
execution becomes polynomial, in O(nmaxCC

k+2 · n).

Bounded Memory Space version of RBW. Corollary 3 (page 19) describes the
instantiation of TbC requiring only bounded memory space similar to RBW
(i.e., a terminal configuration of this instantiation is a terminal configuration
of RBW). The set distSetF inite can be any finite set containing every distance
d that may be assumed in a terminal configuration of RBW, for example the set
of all multisets of at most nmaxCC−1 elements from the set of the k possible edge
bandwidths. Therefore, each process only needs to know an upper bound B
on the network size and an upper bound BW on the edge bandwidths. Even
better than the knowledge of BW would be the complete knowledge of the k
possible edge bandwidths. In this case, and when k is constant, the memory
requirement for the distance d value would be logarithmic in nmaxCC.

8 Conclusion

We proposed a general scheme, called Algorithm TbC, to compute tree-based
data structures on arbitrary (not necessarily connected) bidirectional net-
works.

Algorithm TbC is self-stabilizing and silent. It is written in the locally
shared memory model with composite atomicity. We have proven its correct-
ness under the distributed unfair daemon hypothesis, the weakest scheduling
assumption of the model. We have also shown that its stabilization time is at
most 4nmaxCC rounds, where nmaxCC is the maximum number of processes in a
connected component.

We illustrated the versatility of our approach by proposing several instan-
tiations of TbC that solve classical problems in various settings. For exam-
ple, we can instantiate TbC to solve leader election and/or spanning tree or
forest constructions in identified or semi-anonymous (e.g., rooted) networks.
These spanning structures may be of different types, e.g., arbitrary, BFS, DFS,
shortest-path, ... Note also that, whenever the network is not connected, TbC
also achieves the non-rooted components detection.

In most of the cases, we exhibited polynomial upper bounds on the stabi-
lization time in steps and process moves of the considered instantiations. Fi-
nally, in many cases, instantiations can be easily modified to handle bounded
local memories, without any overhead.

References

1. Altisen, K., Cournier, A., Devismes, S., Durand, A., Petit, F.: Self-stabilizing leader
election in polynomial steps. Information and Computation 254, 330–366 (2017). DOI
10.1016/j.ic.2016.09.002. URL https://doi.org/10.1016/j.ic.2016.09.002

40 Stéphane Devismes, David Ilcinkas, and Colette Johnen

2. Altisen, K., Devismes, S., Dubois, S., Petit, F.: Introduction to Distributed Self-
Stabilizing Algorithms. Synthesis Lectures on Distributed Computing Theory. Morgan
& Claypool Publishers (2019). DOI 10.2200/S00908ED1V01Y201903DCT015. URL
https://doi.org/10.2200/S00908ED1V01Y201903DCT015

3. Arora, A., Gouda, M., Herman, T.: Composite routing protocols. In: the 2nd IEEE
Symposium on Parallel and Distributed Processing (SPDP’90), pp. 70–78 (1990)

4. Beauquier, J., Gradinariu, M., Johnen, C.: Cross-over composition - enforcement of
fairness under unfair adversary. In: 5th International Workshop on Self-Stabilizing
Systems, (WSS 2001), Springer LNCS 2194, pp. 19–34 (2001)

5. Blin, L., Cournier, A., Villain, V.: An improved snap-stabilizing PIF algorithm. In:
S. Huang, T. Herman (eds.) Self-Stabilizing Systems, 6th International Symposium,
SSS 2003, Lecture Notes in Computer Science, vol. 2704, pp. 199–214. Springer, San
Francisco, CA, USA (2003)

6. Blin, L., Fraigniaud, P., Patt-Shamir, B.: On proof-labeling schemes versus silent self-
stabilizing algorithms. In: 16th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS 2014), Springer LNCS 8756, pp. 18–32 (2014)

7. Blin, L., Potop-Butucaru, M., Rovedakis, S., Tixeuil, S.: Loop-free super-stabilizing
spanning tree construction. In: the 12th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS’10), Springer LNCS 6366, pp. 50–64
(2010)

8. Boldi, P., Vigna, S.: Universal dynamic synchronous self–stabilization. Distributed Com-
puting 15(3), 137–153 (2002)

9. Carrier, F., Datta, A.K., Devismes, S., Larmore, L.L., Rivierre, Y.: Self-stabilizing (f, g)-
alliances with safe convergence. J. Parallel Distrib. Comput. 81-82, 11–23 (2015). DOI
10.1016/j.jpdc.2015.02.001. URL http://dx.doi.org/10.1016/j.jpdc.2015.02.001

10. Chang, E.J.H.: Echo Algorithms: Depth Parallel Operations on General Graphs. IEEE
Trans. Software Eng. 8(4), 391–401 (1982)

11. Cobb, J.A., Huang, C.T.: Stabilization of Maximal-Metric Routing without Knowledge
of Network Size. In: 2009 International Conference on Parallel and Distributed Comput-
ing, Applications and Technologies, pp. 306–311 (2009). DOI 10.1109/PDCAT.2009.75

12. Collin, Z., Dolev, S.: Self-stabilizing depth-first search. Inf. Process. Lett. 49(6), 297–301
(1994)

13. Cournier, A.: A new polynomial silent stabilizing spanning-tree construction algorithm.
In: International Colloquium on Structural Information and Communication Complex-
ity, pp. 141–153. Springer (2009)

14. Cournier, A., Datta, A.K., Devismes, S., Petit, F., Villain, V.: The expressive power of
snap-stabilization. Theor. Comput. Sci. 626, 40–66 (2016). DOI 10.1016/j.tcs.2016.01.
036. URL https://doi.org/10.1016/j.tcs.2016.01.036

15. Cournier, A., Devismes, S., Petit, F., Villain, V.: Snap-stabilizing depth-first search on
arbitrary networks. The Computer Journal 49(3), 268–280 (2006)

16. Cournier, A., Devismes, S., Villain, V.: A snap-stabilizing dfs with a lower space re-
quirement. In: Symposium on Self-Stabilizing Systems, pp. 33–47. Springer (2005)

17. Cournier, A., Devismes, S., Villain, V.: Light enabling snap-stabilization of fundamental
protocols. TAAS 4(1), 6:1–6:27 (2009). DOI 10.1145/1462187.1462193. URL http:
//doi.acm.org/10.1145/1462187.1462193

18. Cournier, A., Devismes, S., Villain, V.: Light enabling snap-stabilization of fundamental
protocols. ACM Transactions on Autonomous and Adaptive Systems 4(1) (2009)

19. Cournier, A., Rovedakis, S., Villain, V.: The first fully polynomial stabilizing algorithm
for BFS tree construction. In: the 15th International Conference on Principles of Dis-
tributed Systems (OPODIS’11), Springer LNCS 7109, pp. 159–174 (2011)

20. Cournier, Alain: A lower bound for the Max + 1 algorithm. https://home.mis.
u-picardie.fr/~cournier/MaxPlusUn.pdf (2009). Online; accessed 11 February 2009

21. Datta, A.K., Devismes, S., Heurtefeux, K., Larmore, L.L., Rivierre, Y.: Competitive
self-stabilizing k-clustering. Theor. Comput. Sci. 626, 110–133 (2016). DOI 10.1016/j.
tcs.2016.02.010. URL https://doi.org/10.1016/j.tcs.2016.02.010

22. Datta, A.K., Gurumurthy, S., Petit, F., Villain, V.: Self-stabilizing network orientation
algorithms in arbitrary rooted networks. Stud. Inform. Univ. 1(1), 1–22 (2001)

23. Datta, A.K., Larmore, L.L., Devismes, S., Heurtefeux, K., Rivierre, Y.: Self-stabilizing
small k-dominating sets. IJNC 3(1), 116–136 (2013)

Optimized Silent Self-Stabilizing Scheme for Tree-based Constructions 41

24. Datta, A.K., Larmore, L.L., Vemula, P.: An o(n)-time self-stabilizing leader election
algorithm. jpdc 71(11), 1532–1544 (2011)

25. Datta, A.K., Larmore, L.L., Vemula, P.: Self-stabilizing leader election in optimal space
under an arbitrary scheduler. Theoretical Computer Science 412(40), 5541–5561 (2011)

26. Delaët, S., Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators revisited.
Journal of Aerospace Computing, Information, and Communication (JACIC) 3(10),
498–514 (2006). DOI 10.2514/1.19848

27. Devismes, S., Ilcinkas, D., Johnen, C.: Self-stabilizing disconnected components detec-
tion and rooted shortest-path tree maintenance in polynomial steps. In: P. Fatourou,
E. Jiménez, F. Pedone (eds.) 20th International Conference on Principles of Distributed
Systems, OPODIS 2016, December 13-16, 2016, Madrid, Spain, LIPIcs, vol. 70, pp.
10:1–10:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

28. Devismes, S., Ilcinkas, D., Johnen, C.: Silent self-stabilizing scheme for spanning-tree-
like constructions. In: R.C. Hansdah, D. Krishnaswamy, N. Vaidya (eds.) Proceedings of
the 20th International Conference on Distributed Computing and Networking, ICDCN
2019, Bangalore, India, January 04-07, 2019, pp. 158–167. ACM (2019)

29. Devismes, S., Johnen, C.: Silent self-stabilizing {BFS} tree algorithms revisited. Journal
of Parallel and Distributed Computing 97, 11 – 23 (2016). DOI http://dx.doi.org/10.
1016/j.jpdc.2016.06.003. URL http://www.sciencedirect.com/science/article/pii/
S0743731516300685

30. Dijkstra, E.W.: Self-stabilizing Systems in Spite of Distributed Control. Commun. ACM
17(11), 643–644 (1974)

31. Dolev, S.: Self-stabilization. MIT Press (2000)
32. Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabilization.

Acta Informatica 36(6), 447–462 (1999)
33. Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators. Distributed Computing

14(3), 147–162 (2001). DOI 10.1007/PL00008934. URL https://doi.org/10.1007/
PL00008934

34. Glacet, C., Hanusse, N., Ilcinkas, D., Johnen, C.: Disconnected components detection
and rooted shortest-path tree maintenance in networks. In: the 16th International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems (SSS’14), Springer
LNCS 8736, pp. 120–134 (2014)

35. Glacet, C., Hanusse, N., Ilcinkas, D., Johnen, C.: Disconnected components detection
and rooted shortest-path tree maintenance in networks. Journal of Parallel and Dis-
tributed Computing (2019). DOI https://doi.org/10.1016/j.jpdc.2019.05.006. URL
http://www.sciencedirect.com/science/article/pii/S0743731519303934

36. Godard, E.: Snap-Stabilizing Tasks in Anonymous Networks. In: Stabilization, Safety,
and Security of Distributed Systems (SSS’16), Lecture Notes in Computer Science, pp.
170–184. Springer, Cham (2016)

37. Gouda, M.G., Herman, T.: Adaptive programming. IEEE Trans. Software Eng. 17(9),
911–921 (1991)

38. Gärtner, F.C.: A survey of self-stabilizing spanning-tree construction algorithms. Tech.
rep., Swiss Federal Institute of Technolog (EPFL) (2003)

39. Huang, S.T., Chen, N.S.: A self-stabilizing algorithm for constructing breadth-first trees.
Information Processing Letters 41(2), 109–117 (1992)

40. Ilcinkas, D., Johnen, C., Laplace, R.: STlC meta-algorithm on JBotSim, SWHID:
〈swh:1:rev:65238c18e332117de59682903f828be18ad6a91f;origin=https://gitlab.com/re
mikey/jbotsim-stlc.git〉. URL https://archive.softwareheritage.org/{SWHID}

41. Katz, S., Perry, K.J.: Self-stabilizing extensions for message-passing systems. Dis-
tributed Computing 7(1), 17–26 (1993)

42. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distributed Computing
22(4), 215–233 (2010). DOI 10.1007/s00446-010-0095-3. URL https://doi.org/10.
1007/s00446-010-0095-3

43. Kosowski, A., Kuszner, L.: A self-stabilizing algorithm for finding a spanning tree in a
polynomial number of moves. In: 6th International Conference Parallel Processing and
Applied Mathematics, (PPAM’05), Springer LNCS 3911, pp. 75–82 (2005)

44. Leon-Garcia, A., Widjaja, I.: Communication Networks, 2 edn. McGraw-Hill, Inc., New
York, NY, USA (2004)

42 Stéphane Devismes, David Ilcinkas, and Colette Johnen

45. Segall, A.: Distributed Network Protocols. IEEE Transactions on Information Theory
29(1), 23–34 (1983)

46. Sloman, M., Kramer, J.: Distributed systems and computer networks. Prentice Hall
(1987)

47. Tel, G.: Introduction to distributed algorithms. Cambridge University Press, Cambridge,
UK (Second edition 2001)

