
Distributed Computing with Advice:

Information Sensitivity of Graph Coloring§

Pierre Fraigniaud∗ Cyril Gavoille† David Ilcinkas† Andrzej Pelc‡

Abstract

We study the problem of the amount of information (advice) about a graph

that must be given to its nodes in order to achieve fast distributed computations.

The required size of the advice enables to measure the information sensitivity of

a network problem. A problem is information sensitive if little advice is enough

to solve the problem rapidly (i.e., much faster than in the absence of any advice),

whereas it is information insensitive if it requires giving a lot of information to the

nodes in order to ensure fast computation of the solution. In this paper, we study

the information sensitivity of distributed graph coloring.

Keywords: network algorithm, graph coloring, distributed computing.

§A preliminary version of this paper appeared in the proceedings of the 34th International Colloquium
on Automata, Languages and Programming (ICALP), July 2007.

∗CNRS, Laboratoire d’Informatique Algorithmique: Fondements et Applications (LIAFA), Université
Denis Diderot, Paris, France. E-mail: pierre.fraigniaud@liafa.jussieu.fr. Additional support from the
ANR project ALADDIN.

†CNRS, Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université Bordeaux, France.
E-mail: gavoille@labri.fr, David.Ilcinkas@labri.fr. A part of this work was done during the stay of David
Ilcinkas at the Research Chair in Distributed Computing of the Université du Québec en Outaouais, as
a postdoctoral fellow.

‡Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec J8X 3X7,
Canada. E-mail: pelc@uqo.ca. Andrzej Pelc was supported in part by NSERC discovery grant and
by the Research Chair in Distributed Computing of the Université du Québec en Outaouais.

1 Introduction

This work is a part of a recent project aiming at studying the quantitative impact of

knowledge on the efficiency when computing with distributed entities (nodes of a dis-

tributed system, mobile users in ad hoc networks, etc.). Indeed, as observed by Linial [18],

”within the various computational models for parallel computers, the limitations that fol-

low from the local nature of the computation are specific to the distributed context”. Two

frameworks have been considered for analyzing the limitations incurred by the local na-

ture of distributed computations. One aims at identifying which tasks can or cannot

be computed locally, i.e., when every node can acquire knowledge only about the nodes

that are at constant distance from it. Surprisingly, non-trivial tasks can be achieved

locally [23]. This is for instance the case for weak-coloring, a basis for a solution to some

resource allocation problems. However, many important problems in distributed com-

puting do not have a local solution [16]. This is the case of computing an approximate

minimum vertex cover or an approximate minimum dominating set.

The other framework that has been considered is distributed computing with advice.

In this framework, the computing entities can be given information about the instance

of the considered problem. The traditional approach is actually qualitative in the sense

that algorithms are designed or impossibility results are proved under the assumption

that the nodes are aware of specific parameters, e.g., the size of the network. It was

proved that the impact of knowledge concerning the environment is significant in many

areas of distributed computing, as witnessed by [8, 20] where a lot of impossibility results

and lower bounds are surveyed, many of them depending on whether or not the nodes

are provided with partial knowledge of the topology of the network. A quantitative

approach was recently introduced in [9], in which limitations of local computation can be

estimated by establishing tradeoffs between the efficiency of the computation (number of

steps, number of messages, etc.) and the amount of information provided to the nodes

about their environment, independently of what kind of information they receive.

1

More precisely, we consider network computing with advice in the following context.

A network is modeled as an undirected graph where links represent communication chan-

nels between nodes. Nodes of n-node networks have distinct IDs from {1, . . . , n}, and

communication ports at a node of degree d are labeled by distinct integers from {1, . . . , d}.

A priori, every node knows only its own ID and the labels of its ports. All additional

knowledge available to the nodes of the graph (in particular knowledge concerning the

topology and the labels of the rest of the graph) is modeled by an oracle providing ad-

vice. An oracle is a function O whose arguments are networks. The value O(G) for a

network G = (V, E), called the advice provided by the oracle to this graph, is a function

f : V → {0, 1}∗. This function assigns a finite binary string to every node v of the graph.

Intuitively, the oracle looks at the entire labeled graph with IDs and assigns to every

node some information, coded as a string of bits. A node v is informed by the oracle if

the string f(v) is non-empty. The size of the advice given by the oracle to a given graph

G is the sum of the lengths of all strings it assigns to nodes. Hence this size is a measure

of the amount of information about the graph, available to its nodes. Clearly, the size of

advice is not smaller than the number of informed nodes. The objective is to establish

tradeoffs between the size of the advice and the computational efficiency of the network.

Specifically, we focus on the distributed graph coloring problem, one of the most

challenging problems in network computing for its practical applications, e.g., in radio

networks [21], and for its relation with many other problems such as maximal independent

set (MIS) [16, 26] and symmetry breaking [13]. Initially, each node knows its ID from

{1, . . . , n}. The c-coloring problem requires each node to compute a color in {1, . . . , c},

under the constraint that any two adjacent nodes have different colors. Computation

proceeds in rounds following Linial’s model defined in [18] (a.k.a., LOCAL model [28]).

In each round, a node sends a message to each of its neighbors, receives messages from

each of its neighbors, and performs some local computations. The LOCAL model does

not put any limit on the message size and any restrictions on local computations because

it is designed to estimate limitations of locality. The complexity of c-coloring a graph

2

Size of advice

O(n log c)

Execution time

Information

sensitive

Information

insensitive

t(n,c)

Figure 1: Tradeoff between the execution time and the size of advice.

G is measured by the number of rounds required to compute a proper c-coloring. There

is an obvious relation between the complexity of c-coloring and the maximum distance

between two nodes that exchange information during the computation.

Coloring graphs using advice provided by an oracle O consists in designing an al-

gorithm that is unaware of the graph G at hand but colors it distributively, as long as

every node v of the graph G is provided with the string of bits f(v), where f = O(G).

Trivially, an advice of size O(n log c) bits that provides the appropriate color to each node

yields a coloring algorithm working in 0 rounds. On the other hand, an advice of size 0,

i.e., providing no information, yields an algorithm running in t(n, c) rounds where t(n, c)

is the complexity of the coloring problem in the usual distributed setting (i.e., with no

advice).

The main objective of studying network computations with advice is to establish

tradeoffs between these two extreme cases. Different forms of tradeoffs are illustrated in

Figure 1. This figure plots the execution time as a function of the size of advice (i.e., the

amount of information given to the nodes). The execution time decreases as the size of

advice increases, like, e.g., the dashed curve. Depending on how quickly the curve drops

down enables to roughly classify problems as ”sensitive” or ”insensitive” to information.

A problem is information sensitive if few bits of information given to the nodes enable to

decrease drastically the execution time. Conversely, a problem is information insensitive

3

if the oracle must give a lot of information to the nodes for the execution time to decrease

significantly. In this paper, we study the information sensitivity of graph coloring.

1.1 Our results

To study the information sensitivity of graph coloring, we focus on lower bounds on the

size of advice necessary for fast distributed coloring of cycles and trees, two important

cases analyzed in depth by Linial in his seminal paper [18] (cf. also [12]).

We show that coloring a cycle is information insensitive. Precisely, we show that, for

any constant k, Ω(n/ log(k) n) bits of advice are needed in order to beat the Θ(log∗ n)

time of 3-coloring a cycle, where log(k) n denotes k iterations of log n. This shows a huge

gap between 3-coloring in time Θ(log∗ n) and 3-coloring below this time: while the first

can be done without any advice [6], the second requires almost as much information as

if colors were explicitly assigned to nodes (which would take O(n) bits).

The result for cycles easily extends to oriented trees (i.e., rooted trees in which ev-

ery node in the tree knows its parent in the tree), proving that, for any constant k,

Ω(n/ log(k) n) bits of advice are needed in order to beat the O(log∗ n) time of 3-coloring

an oriented tree [12]. Coloring an oriented tree is thus also information insensitive.

The power of orienting a tree (i.e., giving an orientation of its edges toward a root),

from the point of view of distributed coloring, was known since Linial [18] proved that

no algorithm can color the d-regular unoriented tree of radius r in time at most 2
3
r

by fewer that 1
2

√
d colors. Hence 3-coloring unoriented trees essentially requires Θ(D)

rounds, where D is the diameter of the tree. Therefore, informing every node of the

port leading to its parent in the tree results in decreasing the time of 3-coloring from

Ω(D) to O(log∗ n). We revisit this result using our quantitative approach. Precisely, we

aim at computing the amount of advice required to reach the O(log∗ n) time bound. It

is known that O(n log log n) bits of advice enable to orient a tree (i.e., to select a root,

and to give to every node the port number of the edge leading to its parent) with an

algorithm working in 0 rounds [5], and O(n) bits of advice enable to orient a tree with

4

an algorithm working in 1 round [4]. However, 3-coloring a tree in time Θ(log∗ n) does

not necessarily require to orient the tree. Nevertheless, we show that, for any constant k,

Ω(n/ log(k) n) bits of advice are needed in order to 3-color all n-node unoriented trees in

time Θ(log∗ n). Thus, while for oriented trees 3-coloring in time O(log∗ n) can be done

without any additional information [12], achieving the same efficiency for arbitrary trees

requires almost as much information as if colors were explicitly assigned to nodes.

Finally, both for cycles and trees, even if oriented, we also show that Ω(n) bits of

advice are needed for 3-coloring in constant time (i.e., for 3-coloring to become a locally

solvable problem). Thus constant-time coloring requires essentially as much information

as if colors were explicitly assigned to nodes. In fact, our lower bounds do not hold only

for the total number of bits of advice given to nodes but also for the number of nodes that

must be informed (i.e., the number of nodes that are given at least one bit of advice).

Although we formulate our results for the task of 3-coloring, they remain true for

coloring with any constant number of colors, by slight technical modification of the proofs.

While our lower bound proofs present different technical challenges in the case of

the cycle and that of trees, the underlying idea is similar in both cases. Linial [18]

constructed the neighborhood graph N [G] of a graph G in order to estimate the time of

coloring G using the chromatic number of N [G]. Since in our case there is an oracle

giving advice to nodes, we have to use a more complex tool in the lower bound argument.

We also argue about the chromatic number of a suitably chosen graph H in order to

bound coloring time of G. However, in our case, this graph depends on the oracle as

well as on the number of communication rounds, and hence on the graph G. This makes

it very irregularly structured. We show that, if the number of nodes of G informed by

the oracle is not too large, then H has a large chromatic number, and thus forces large

coloring time of G. (Equivalently, if G can be colored fast then the advice must be large.)

The main difficulty in our argument is to show the existence of a regularly structured

subgraph (whose chromatic number can be bounded from below) in the highly irregularly

structured graph H .

5

1.2 Related work

Because of the intrinsic difficulty of computing the chromatic number of a graph in the

sequential setting [14], or even to approximate it [3, 7], the distributed computing litera-

ture dealing with graph coloring mostly focuses on the (∆+1)-coloring problem, where ∆

denotes the maximum degree of the graph. In fact, the interest expressed for the (∆+1)-

coloring problem is also due to its intriguing relation with the maximal independent set

(MIS) problem, already underlined by Linial in [18]. In particular, combining the best

known algorithms for MIS [1, 19] with the reduction from (∆ + 1)-coloring to MIS by

Linial yields a randomized (∆+1)-coloring algorithm working in expected time O(logn).

Using techniques described in [2] and [27], one can compute a (∆ + 1)-coloring (as well

as a MIS) of arbitrary graphs in deterministic time O(n1/
√

log n). For graphs of maximum

degree bounded by ∆, (∆ + 1)-coloring can be achieved in time O(∆ log n) (see [2]). [6]

described a PRAM algorithm that can be easily transformed into an algorithm working in

the LOCAL model, computing a 3-coloring of oriented cycles in O(log∗ n) rounds. This

bound is tight as proved by Linial [18] (see also [22] for a generalization to randomized

algorithms). Similarly, [12] described a 3-coloring of oriented trees working in O(log∗ n)

rounds. The O(∆2)-coloring algorithm in [18], working in O(log∗ n) rounds, can be easily

converted into a (∆ + 1)-coloring algorithm working in O(∆2 + log∗ n) rounds, reaching

the same complexity as the algorithm in [13]. [17] analyses what can be achieved in one

round, and proves that no algorithm based on iterations of the application of a 1-round

algorithm can achieve O(∆)-coloring in less than Ω(∆/ log2 ∆ + log∗ n) rounds. On the

other hand, [17] presents a (∆ + 1)-coloring algorithm working in O(∆ log∆ + log∗ n)

rounds, thus improving [2, 13, 18]. Recently, the power of orienting the network was also

demonstrated in terms of bit complexity in [15].

One can rephrase many recent results of the literature in the framework of advising

schemes. For instance, a 0-round algorithm with maximum advice length O(log n) bits

and average advice length O(log log n) is described in [4] for computing a spanning tree. It

is also easy to extract an O(1)-round algorithm for spanning trees with maximum advice

6

length 2 bits from the proof of the main result in [5]. [11] have designed distributed

algorithms with advice for computing minimum spanning trees (MST), and [24] have

designed distributed algorithms with advice for solving the graph searching problem,

a.k.a. the cops-and-robbers problem. Finally, [10] considers the competitive ratio of the

exploration time of a robot unaware of the topology compared to a robot knowing the

map of the graph.

2 Coloring cycles with advice

In order to prove the lower bounds listed in Section 1.1 on the size of advice needed for

fast 3-coloring of all cycles, we prove the following result.

Theorem 2.1 Suppose that an oracle O informs at most q nodes in any n-node cycle.

Then the time of 3-coloring of n-node cycles using oracle O is Ω(log∗(n/q)). This result

holds even if the cycle is oriented, i.e., even if the nodes have a consistent notion of

clockwise and counterclockwise directions.

Before proving Theorem 2.1, we make the following observation. A lower bound

argument for a scenario in which an oracle is giving advice as a function of the instance

cannot rely on arguments based solely on the existence of large sets of nodes without

advice. Indeed, these specific large sets may not need any advice. A lower bound proof

must combine arguments demonstrating the existence of large sets receiving no advice,

with arguments about the difficulty of coloring these sets. The following example should

help understanding this fact.

Example. Let K2 be the graph consisting in two nodes linked by an edge. If nodes

are labeled by IDs in {1, ..., 5}, then 3-coloring K2 in zero rounds (i.e., without commu-

nication) is impossible. Indeed, for any function f mapping {1, ..., 5} to {0, 1, 2}, there

is a pair x and y of distinct IDs such that f(x) = f(y), and thus there is an assign-

ment of the IDs that causes the two neighboring nodes of K2 to be mapped to the same

7

color. Now, consider a cycle with five nodes, C5, with distinct node IDs in {1, ..., 5}.

If an oracle informs at most two nodes, then there are two adjacent nodes of C5 that

receive no information from the oracle. Using the fact that coloring K2 in zero rounds

is impossible, it may seem at a first glance that 3-coloring a cycle of length 5 with an

oracle that informs at most 2 nodes is impossible because there is a copy of K2 in C5 that

receives no advice, and coloring such a K2 is impossible. There is a flaw in this reasoning

because the 2 adjacent nodes that receive no information may actually be easy to color.

In fact, 3-coloring C5 without communication, using an oracle that informs only 2 nodes

is possible. Here is the algorithm:

1. Nodes receiving no advice are colored 0 or 1, depending on the parity of their IDs;

2. Nodes receiving advice are colored 2.

And here is the oracle strategy for assigning advices:

1. select two adjacent nodes x and y that have IDs with different parity;

2. let x′ (resp., y′) be the neighbors of x (resp., y) that is different from y (resp., x);

3. Nodes x′ and y′ are the two nodes that receive advice.

This algorithm with advice does 3-color the cycle. Indeed, (1) nodes x and y get different

colors 0 and 1 because they have different parity; (2) nodes x′ and y′ get color 2; and (3)

the common neighbor z of x′ and y′ gets a color 0 or 1 depending on its parity.

The above example illustrates the fact that even if there exists a path P of length n/q

in Cn that receives no advice, this is not sufficient to conclude that Ω(log∗(n/q)) rounds

are required to 3-color Cn. Indeed, 3-coloring this specific path P may actually be quite

easy. We now give a complete proof of Theorem 2.1.

Proof. Recall the definition of the directed graph Bt,n from [18]. Let s = 2t+1 < n−1.

The nodes of the graph are sequences of length s of distinct integers from {1, . . . , n}.

8

Intuitively, node (x1, x2, . . . , xs) of the graph Bt,n represents the information acquired

in time t by node xt+1 of a labeled directed cycle containing a segment (x1, x2, . . . , xs).

Out-neighbors of node (x1, x2, . . . , xs) are all nodes (x2, x3, . . . , xs, y), where y 6= x1. Note

that the chromatic number χ(Bt,n) is a lower bound on the number of colors with which

an n-node cycle may be colored distributively in time t. Thus, by restricting attention

to 3-coloring algorithms, this yields a lower bound on the time of 3-coloring.

It was proved in [18] that χ(Bt,n) ≥ log(2t) n.

For any set X ⊆ {1, . . . , n} of size > s + 1, we define Bt,n(X) as the subgraph of Bt,n

induced by all nodes (x1, x2, . . . , xs) with xi ∈ X, for all 1 ≤ i ≤ s. The graph Bt,n(X) is

isomorphic to Bt,|X|. To see why, just sort the elements of X in, say, increasing order, and

consider the mapping ρ : X → {1, . . . , |X|} defined by ρ(x) = rankX(x). By extension,

ρ induces an isomorphism ρ̂ between Bt,n(X) and Bt,|X|, defined by ρ̂(x1, x2, . . . , xs) =

(ρ(x1), ρ(x2), . . . , ρ(xs)).

Fix an oracle O giving advice to all cycles of length n. Let q be the maximum

number of nodes informed by oracle O in any of these cycles. Without loss of gen-

erality we may assume that the number of bits given to any node is not more than

needed to code all directed labeled cycles of length n, i.e., ⌈log(n − 1)!⌉. Consider a

3-coloring algorithm for cycles of length n using oracle O and running in time t. If

t ≥ n/(2q) − 1, we are done. Hence suppose that t < n/(2q) − 1 which implies s < n/q.

We define the directed graph Bt,n,O that will be crucial in our argument. The nodes

of the graph are sequences ((x1, α1), (x2, α2), . . . , (xs, αs)), where xi are distinct integers

from {1, . . . , n} and αi are binary strings of length at most ⌈log(n − 1)!⌉. Intuitively,

node ((x1, α1), (x2, α2), . . . , (xs, αs)) represents the total information acquired in time t

by node xt+1 of a labeled directed cycle containing a segment (x1, x2, . . . , xs), including

labels of nodes at distance at most t and advice given to them by the oracle. There

exists a (directed) edge from node v = ((x1, α1), (x2, α2), . . . , (xs, αs)) to a node w, if

w = ((x2, α2), . . . , (xs, αs), (y, β)) and if there exists a labeled directed cycle of length n

containing the segment (x1, x2, . . . , xs, y), such that oracle O applied to this cycle gives

9

advice α1, α2, . . . , αs, β to nodes x1, x2, . . . , xs, y, respectively. We will say that the seg-

ment (x1, x2, . . . , xs, y) of such a cycle induces this directed edge. Similarly as above, the

chromatic number χ(Bt,n,O) is a lower bound on the number of colors with which the cycle

may be colored distributively in time t, using oracle O. Note that a coloring algorithm us-

ing oracle O does not need to assign a color to all nodes ((x1, α1), (x2, α2), . . . , (xs, αs)) of

Bt,n,O. Indeed, it is possible that there is no cycle containing the segment (x1, x2, . . . , xs),

such that oracle O applied to this cycle gives advice α1, α2, . . . , αs to nodes x1, x2, . . . xs,

respectively. However, by definition, such “non-legitimate” nodes are isolated in the

graph Bt,n,O and hence they do not affect its chromatic number.

We will establish a lower bound on the chromatic number of Bt,n,O, and then show

how to deduce from it a lower bound on the time of 3-coloring with oracle O. To

this end it is sufficient to focus on the subgraph B̃t,n,O of Bt,n,O induced by the nodes

((x1, α1), (x2, α2), . . . , (xs, αs)), with all αi being empty strings. By definition, the graph

B̃t,n,O is isomorphic to a subgraph of Bt,n and has the same number of nodes as Bt,n. By

a slight abuse of notation we will identify B̃t,n,O with this subgraph of Bt,n.

Claim 2.1 For n/q sufficiently large, there exists a set X of size k =

⌊

(

n
q(s+1)

)1/(s+1)
⌋

such that Bt,n(X) is a subgraph of B̃t,n,O.

We will establish an upper bound on the number of edges from the graph Bt,n missing

in B̃t,n,O. This upper bound will allow us to prove that B̃t,n,O contains a subgraph Bt,n(X),

for some set X of size k. Fix a directed labeled cycle of length n. When the oracle O

informs a node of this cycle, exactly s + 1 of its segments (those containing the node)

induce s+1 edges in Bt,n,O that are different than in Bt,n,O′, where oracle O′ differs from

O by not informing this node. Moreover, these s + 1 edges in Bt,n,O are outside B̃t,n,O.

For a given cycle, at most q(s + 1) of the edges induced by all the n possible segments of

the cycle are outside B̃t,n,O. There are (n− 1)! directed labeled cycles of length n. For a

given edge e of Bt,n not to appear in B̃t,n,O, each of the (n− s− 1)! cycles that induces e

in Bt,n must not induce e in B̃t,n,O. That is, the oracle must give advice to each of these

10

many cycles in the segment corresponding to edge e. Let µ be the number of edges in

Bt,n that do not appear in B̃t,n,O. Then

µ ≤ q(s + 1) · (n − 1)!

(n − s − 1)!
≤ q · (s + 1) · ns.

Consider all graphs Bt,n(X), for X of size k > s + 1. Every edge

((x1, x2, . . . , xs), (x2, . . . , xs, xs+1))

of Bt,n belongs to at most
(

n−s−1
k−s−1

)

such graphs Bt,n(X), where all xi are in X. Thus there

exist at most q · (s+1) ·ns ·
(

n−s−1
k−s−1

)

graphs Bt,n(X), for X of size k, such that at least one

of their edges does not appear in B̃t,n,O. We will now prove that this number of graphs is

strictly smaller than the total number
(

n
k

)

of graphs Bt,n(X), for X of a suitably chosen

size k. Indeed,
(

n
k

)

(

n−s−1
k−s−1

) =
n(n − 1) · · · (n − s)

k(k − 1) · · · (k − s)
>

(n

k

)s+1

.

Let

k =

⌊

(

n

q(s + 1)

)1/(s+1)
⌋

.

Note that we have k > s + 1, for n/q sufficiently large. Hence
(

n
k

)s+1 ≥ q · (s + 1) · ns.

Hence there exists a graph Bt,n(X) all of whose edges appear in B̃t,n,O. This proves

Claim 2.1.

In view of Claim 2.1, the chromatic number of Bt,n,O can be bounded as follows (for

n/q sufficiently large):

χ(Bt,n,O) ≥ log(s−1) k = log(s−1)

(

n

q(s + 1)

)1/(s+1)

.

Since t is the running time of a 3-coloring algorithm for cycles of length n using oracle

O, we have χ(Bt,n,O) ≤ 3, which implies log(s−1)
(

n
q(s+1)

)1/(s+1)

≤ 3. In order to finish

the argument, it is enough to prove that s ≥ 1
5
log∗(n/q). Suppose not. Thus n/q ≥ 2216

.

11

For such large n/q we have

log
n

q(s + 1)
> log

n

q
− log log∗ n

q
≥ 1

2
log

n

q
.

Hence

1

s + 1
log

n

q(s + 1)
>

1

2(s + 1)
log

n

q
≥ 1

2 log∗ n
q

log
n

q
≥ log log

n

q
.

This implies
(

n

q(s + 1)

)1/(s+1)

> log
n

q
,

and

3 ≥ log(s−1)

(

n

q(s + 1)

)1/(s+1)

> log(s) n

q
.

Thus s ≥ log∗ n
q
− 2, which contradicts the assumption s < 1

5
log∗(n/q).

Theorem 2.1 has several interesting consequences. The following corollary proves that

transforming the 3-coloring problem into a locally solvable problem (in the sense of [23])

essentially requires to give the solution to the nodes.

Corollary 2.1 Any distributed algorithm that produces a 3-coloring of all cycles of length

n in constant time requires advice for Ω(n) nodes.

The next corollary proves that 3-coloring of cycles is information insensitive.

Corollary 2.2 Any distributed algorithm that produces a 3-coloring of all cycles of length

n in time o(log∗ n) requires advice for Ω(n/ log(k) n) nodes, for any constant k.

3 Coloring trees with advice

Theorem 2.1 concerning cycles has an interesting consequence concerning trees, that

proves that 3-coloring is information insensitive in oriented trees. Recall that a tree is

oriented if it is rooted, and every node is aware of which of its incident edges leads to its

parent in the tree. If there exists an oracle O informing at most q nodes in any n-node

12

oriented tree, and a 3-coloring algorithm A using O and working in t(n) rounds, then

there exists an oracle O′ informing at most q +2 nodes in any n-node oriented cycle, and

a 3-coloring algorithm A′ using O′ and working in t(n) + 1 rounds. O′ picks arbitrarily

two neighboring nodes x and y in the cycle. Assume that y is the neighbor of x in the

counterclockwise direction. O′ gives the advice (tail) to x, and the advice (t(n), root)

to y. The ith node v in the cycle, counting counterclockwise from x, receives from O′

the advice f(vi) given by O to the node vi at distance i from the root of the oriented

path P rooted at one of its two extremities, where f = O(P). A′ proceeds in t(n) + 1

rounds. During rounds 1 to t(n), A′ simply executes A, for which nodes x and y just

act as if they would be respectively the tail and the root of a directed path from x to y.

At round t(n) + 1 of A′, the root node y checks if its color is different from x. If not, it

takes a color distinct from the colors if its two neighbors. This simple reduction enables

to establish the following corollary of Theorem 2.1 proving that 3-coloring oriented trees

is information insensitive.

Corollary 3.1 Suppose that an oracle O informs at most q nodes in any n-node oriented

tree. Then the time of 3-coloring of n-node oriented trees using oracle O is Ω(log∗(n/q)).

Thus in particular any distributed algorithm that produces a 3-coloring of all n-node

oriented trees in time o(log∗ n) requires advice for Ω(n/ log(k) n) nodes, for any constant k.

The main result of this section is a lower bound on the size of advice necessary for

fast coloring of all n-node unoriented trees. In fact we will show that this bound holds

already for the class of all unoriented complete d-regular trees. These are rooted trees

Td,r such that each leaf is at distance r from the root, and each internal node (i.e., a

node that is not a leaf) has degree d. Thus the root has d children, and all other internal

nodes have d − 1 children. It should be stressed that the notion of root and children is

brought up only to facilitate the definition. From the point of view of nodes, the tree is

not rooted (a node does not have information which neighbor is its parent).

13

Theorem 3.1 Fix d ≥ 37. Any 3-coloring algorithm working in time t for the class of

n-node unoriented complete d-regular trees requires advice for at least n

dd2t nodes.

Proof. Fix d ≥ 37, t > 0, and r > 2t + 3. Consider any node v of the tree Td,r at

distance at least t + 1 from all leaves. The number of nodes at distance at most t from v

will be denoted by α(t). We have α(t) = d ·∑t−1
i=0(d−1)i ≤ 2(d−1)t−1. Consider an edge

e of the tree Td,r whose both extremities are at distance at least t+1 from all leaves. The

subtree induced by the set of nodes at distance at most t from one of these extremities

will be called the bow-tie of Td,r based on edge e, denoted by BT(e). The number of nodes

in this bow-tie will be denoted by β(t). We have β(t) = α(t) + 1 + (d − 1)t ≤ 3(d − 1)t.

Consider the tree Td,r with a labeling Φ of nodes and ports. Φ labels all nodes by

distinct integers from {1, . . . , n}, where n = 1 + α(r), and labels all ports at internal

nodes by integers from {1, . . . , d}. For any such labeled tree, consider its subtrees of the

form N(v, t, Φ), where t is a positive integer and v is a node of Td,r at distance at least

t + 1 from any leaf of Td,r. N(v, t, Φ) is defined as the labeled subtree of Td,r induced by

all nodes at distance at most t from v. Note that if restrictions of labelings Φ and Φ′ to

the subtree of Td,r induced by all nodes at distance at most t from v are identical, then

N(v, t, Φ) = N(v, t, Φ′).

Consider the following graph, denoted by Gt(Td,r). The nodes of Gt(Td,r) are all

subtrees N(v, t, Φ) of Td,r for all possible nodes v, and all possible labelings Φ of nodes

and ports of Td,r. Two nodes N(v, t, Φ) and N(v′, t, Φ′) of Gt(Td,r) are adjacent, if and

only if there exist two adjacent nodes w and w′ in Td,r, and a labeling Ψ, such that

N(v, t, Φ) = N(w, t, Ψ) and N(v′, t, Φ′) = N(w′, t, Ψ).

Note that the graph Gt(Td,r) is a subgraph of the t-neighborhood graph of Td,r, defined

in [18]. Moreover, it follows from [18] that the chromatic number χ(Gt(Td,r)) is a lower

bound on the number of colors with which the tree Td,r may be colored distributively in

time t, and that χ(Gt(Td,r)) ≥ 1
2

√
d, if t < 2r/3. Also, for any set X ⊆ {1, . . . , n}, we

define the graph G(X) as the subgraph of Gt(Td,r) induced by nodes with labels from the

set X. For |X| = 1+α(s), for some positive integer s ≤ r, the graph G(X) is isomorphic

14

to Gt(Td,s). To see why, observe first that there are precisely 1+α(s) nodes in Td,s, labeled

from 1 to 1 + α(s). To set the isomorphism between G(X) and Gt(Td,s), just sort the

elements of X in, say, increasing order, and consider the mapping ρ : X → {1, . . . , |X|}

defined by ρ(x) = rankX(x). By extension, ρ induces an isomorphism ρ̂ between G(X)

and Gt(Td,s), defined by ρ̂(x1, x2, . . . , xs) = (ρ(x1), ρ(x2), . . . , ρ(xs)).

Fix an oracle O giving advice to all n-node labeled trees Td,r. Let q be the maximum

number of nodes informed by oracle O in any of these trees. Without loss of generality

we may assume that the number of bits given to any node is not more than needed to

code all n-node labeled trees Td,r. There are dα(r−1) port labelings of Td,r, and for each

such labeling there are n! ways to label nodes. Hence the number of bits needed to

code these trees is at most ⌈log(dα(r−1)n!)⌉. Consider a 3-coloring algorithm for n-node

labeled trees Td,r using oracle O and running in time t. We define the following graph

Gt,O(Td,r). Nodes of this graph are pairs of the form (N(v, t, Φ), f), where N(v, t, Φ) is

the tree defined above and f is a function from nodes of this tree into the set of binary

strings of length at most ⌈log(dα(r−1)n!)⌉. Intuitively, the value f(w) is the advice given to

node w of N(v, t, Φ) by the oracle, and the entire pair (N(v, t, Φ), f) represents the total

information acquired in time t by node v, including advice given to nodes of N(v, t, Φ) by

the oracle. Edges of the graph Gt,O(Td,r) are defined as follows. There is an (undirected)

edge between two nodes of Gt,O(Td,r) if these nodes are of the form (N(v, t, Φ), f) and

N(v′, t, Φ), f ′), for some labeling Φ, where v and v′ are adjacent in Td,r and for all nodes

w of N(v, t, Φ) and w′ of N(v′, t, Φ), the values f(w) and f ′(w′) are advice strings given

to nodes w and w′, respectively, by oracle O for the tree Td,r labeled by Φ. We will say

that this edge of Gt,O(Td,r) is induced by the bow-tie BT({v, v′}) based on edge {v, v′}

of the tree Td,r labeled by Φ.

The chromatic number χ(Gt,O(Td,r)) is a lower bound on the number of colors with

which the tree Td,r may be colored distributively in time t, using oracle O. Similarly as

in the case of the cycle, there may be “non-legitimate” nodes in Gt,O(Td,r) but they are

isolated and thus do not affect the chromatic number.

15

In order to establish a lower bound on the chromatic number of Gt,O(Td,r), it is

sufficient to focus on the subgraph G̃t,O(Td,r) induced by the nodes (N(v, t, Φ), f) with f

being a function giving the empty string to all nodes. By definition, the graph G̃t,O(Td,r)

is isomorphic to a subgraph of Gt(Td,r) and has the same number of nodes as Gt(Td,r).

Similarly as before we will identify G̃t,O(Td,r) with this subgraph of Gt(Td,r).

Claim 3.1 Let ν(k) be the number of sets X of size k, such that the graph G(X) is not

a subgraph of G̃t,O(Td,r). Then

ν(k) ≤ 2 · q · n! · d4dt

n ·
(

n − β(t)
)

!
·
(

n − β(t)

k − β(t)

)

.

In order to prove Claim 3.1, consider an edge of Gt,O(Td,r). Let λ be the number of

labeled trees Td,r that contain a bow-tie B inducing this edge. Let b be the node of B

closest to the root of Td,r. Consider two cases.

Case 1. b is the root of Td,r.

There are β(t) ways of choosing node b in the bow-tie B. For each such choice there

are dα(r−1)−(β(t)−1) ways of fixing port numbers in Td,r because for every internal node

other than the root the port leading to its parent has to be chosen and this has already

been done for these nodes that appear in the bow-tie B. Finally for each such choice

there are
(

n − β(t)
)

! ways of labeling all nodes outside B. Hence in Case 1, there are

β(t) · dα(r−1)−β(t)+1 ·
(

n − β(t)
)

! labeled trees Td,r that contain B.

Case 2. b is not the root of Td,r.

In this case b must be a leaf of B. The number of leaves of B is 2(d − 1)t. For any

choice of b there are dα(r−1)−β(t) ways of fixing the port number leading to the parent, for

all internal nodes in Td,r other than the root and outside B. For any such choice there

are d ·
∑r−(2t+3)

i=0 (d − 1)i ways of choosing the port numbers on the (unique) path from

the root to b (index i corresponds to the distance between the root and node b). Finally,

we have to consider again the
(

n− β(t)
)

! ways of labeling all nodes outside B. Hence in

16

Case 2, there are 2(d − 1)t · d ·
∑r−(2t+3)

i=0 (d − 1)i · dα(r−1)−β(t) ·
(

n − β(t)
)

! labeled trees

Td,r that contain B.

Consequently we have

λ =



β(t) · dα(r−1)−β(t)+1 + 2(d − 1)t · d ·
r−(2t+3)

∑

i=0

(d − 1)i · dα(r−1)−β(t)



 ·
(

n − β(t)
)

!

=



β(t) + 2(d − 1)t ·
r−(2t+3)

∑

i=0

(d − 1)i



 dα(r−1)−β(t)+1 ·
(

n − β(t)
)

!

≥ 2(d − 1)t · (d − 1)r−(2t+3) · dα(r−1)−β(t) ·
(

n − β(t)
)

! .

Fix an n-node labeled tree Td,r. When the oracle O informs a node of this tree,

exactly α(t + 1) bow-ties (those containing the node) induce α(t + 1) edges in Gt,O(Td,r)

that are different than in Gt,O′(Td,r), where oracle O′ differs from O by not informing

this node. Moreover, these α(t + 1) edges in Gt,O(Td,r) are outside G̃t,O(Td,r). For a

given tree, at most q · (α(t + 1) of the edges induced by all possible bow-ties are outside

G̃t,O(Td,r). There are dα(r−1) · n! n-node labeled trees. For a given edge e of Gt(Td,r) not

to appear in G̃t,O(Td,r), each of the λ trees that induces e in Gt(Td,r) must not induce

e in G̃t,O(Td,r). That is, the oracle must give advice to each of these many trees in the

bow-tie corresponding to edge e. Let µ be the number of edges in Gt(Td,r) that do not

appear in G̃t,O(Td,r). Then, recalling the bounds on λ and α(t),

µ ≤ q · α(t + 1) · dα(r−1) · n!

2(d − 1)t · (d − 1)r−(2t+3) · dα(r−1)−β(t) ·
(

n − β(t)
)

!

≤ q · n! · dβ(t)

(d − 1)r−(2t+3) ·
(

n − β(t)
)

!

≤ 2 · q · n! · d4dt

n ·
(

n − β(t)
)

!
.

The last inequality follows from n ≤ (d − 1)r and dβ(t)+(2t+3) ≤ d4dt

. Consider all graphs

G(X), for X of size k = α(⌊3
2
t + 1⌋). Every edge of Gt(Td,r) belongs to at most

(

n−β(t)
k−β(t)

)

17

such graphs G(X). Thus there exist

ν(k) ≤ 2 · q · n! · d4dt

n ·
(

n − β(t)
)

!
·
(

n − β(t)

k − β(t)

)

sets X of size k, such that the graph G(X) is not a subgraph of G̃t,O(Td,r). This proves

Claim 3.1.

Suppose that ν(k) <
(

n
k

)

. Then there exists a set X of size k for which G(X) is

a subgraph of G̃t,O(Td,r). Since k = α(s) for s > 3t/2, it follows from [18] that the

chromatic number of the graph G(X) (and thus also of the graph Gt,O(Td,r)) is at least

1
2

√
d, which is larger than 3 for d ≥ 37. This contradicts the fact that we consider a 3-

coloring algorithm running in time t. Hence we may assume ν(k) ≥
(

n
k

)

. From Claim 3.1,

this implies

2 · q · n! · d4dt

n ·
(

n − β(t)
)

!
·
(

n − β(t)

k − β(t)

)

≥
(

n

k

)

and hence the number q of informed nodes satisfies

q ≥ n ·
(

k − β(t)
)

!

2 · d4dt · k!
≥ n

2 · d4dt · kβ(t)
.

Since k = α(⌊3
2
t + 1⌋) ≤ d

7

2
t and β(t) ≤ 3(d − 1)t, we have

q ≥ n

2 · d4dt · d 7

2
t·3(d−1)t

≥ n

dd2t

which completes the proof.

Remark. By considering trees of a sufficiently large constant degree (instead of just

degree d ≥ 37) we can generalize the above result to the case of c-coloring, for any

constant c.

Theorem 3.1 has several interesting consequences. The following corollary proves

that lack of cycles does not help in coloring a network since transforming the 3-coloring

problem in trees into a locally solvable problem essentially requires, as for cycles, to give

18

the solution to the nodes.

Corollary 3.2 Any distributed algorithm that produces a 3-coloring of all n-node trees

in constant time requires advice for Ω(n) nodes.

The next corollary proves that reaching the O(log∗ n) bound in unoriented trees re-

quires lot of advice. This should be contrasted with the fact that O(log∗ n) is the com-

plexity of 3-coloring of oriented trees, without advice.

Corollary 3.3 Any distributed algorithm that produces a 3-coloring of all n-node unori-

ented trees in time O(log∗ n) requires advice for Ω(n/ log(k) n) nodes, for any constant k.

4 Conclusion

We presented lower bounds on the amount of advice that has to be given to nodes of

cycles and of trees in order to produce distributively a fast 3-coloring of these networks.

Although our lower bounds are very close to the obvious upper bound O(n), some in-

teresting detailed questions concerning the trade-offs between the size of advice and the

time of coloring remain open, even for cycles and trees. In particular, what is the mini-

mum number of bits of advice to produce a 3-coloring of every n-node cycle or tree in a

given time t = o(log∗ n)? More generally, what is the information sensitivity of coloring

arbitrary graphs? For arbitrary graphs, it is natural to consider the maximum degree

∆ as a parameter, and seek distributed (∆ + 1)-coloring. It was proved in [17] that a

(∆+1)-coloring can be produced in time O∆ log ∆+log∗ n). What is the minimum num-

ber of bits of advice to produce a (∆ + 1)-coloring in time O(log∗ n)? And in constant

time? We conjecture that for the former task O(n) bits of advice are sufficient, and for

the latter Ω(n log ∆) bits of advice are needed. Finally, an intriguing question is whether

the notion of oracle can be generalized to randomized algorithms. In particular, it would

be interesting to generalized the lower bound in [22] to a context in which advices are

given to nodes.

19

References

[1] N. Alon, L. Babai, and A. Itai. A Fast and Simple Randomized Parallel Algorithm

for the Maximal Independent Set Problem. J. Algorithms 7(4): 567-583 (1986).

[2] B. Awerbuch, A. Goldberg, M. Luby, and S. Plotkin. Network Decomposition and

Locality in Distributed Computation. In 30th Symp. on Foundations of Computer

Science(FOCS), pp. 364-369, 1989.

[3] M. Bellare, O. Goldreich, and M. Sudan. Free Bits, PCPs, and Nonapproximability

– Towards Tight Results. SIAM Journal on Computing 27(3): 804-915 (1998).

[4] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, D. Peleg. Label-Guided Graph Ex-

ploration by a Finite Automaton. In 32nd Int. Colloquium on Automata, Languages

and Programming (ICALP), LNCS 3580, pp. 335-346, 2005.

[5] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, D. Peleg. Labeling Schemes for

Tree Representation. In 7th Int. Workshop on Distributed Computing (IWDC),

LNCS 3741, pp. 13-24, 2005.

[6] R. Cole and U. Vishkin. Deterministic coin tossing and accelerating cascades: micro

and macro techniques for designing parallel algorithms. In 18th ACM Symp. on

Theory of Computing (STOC), pp. 206-219, 1986.

[7] U. Feige and J. Kilian. Zero Knowledge and the Chromatic Number. J. Comput.

Syst. Sci. 57(2):187-199 (1998).

[8] F. Fich and E. Ruppert, Hundreds of impossibility results for distributed computing,

Distributed Computing, 16: 121-163 (2003).

[9] P. Fraigniaud, D. Ilcinkas, and A. Pelc. Oracle size: a new measure of difficulty for

communication tasks. In 25th ACM Symp. on Principles of Distributed Computing

(PODC), pp. 179-187, 2006.

20

[10] P. Fraigniaud, D. Ilcinkas, and A. Pelc. Tree Exploration with an Oracle. 31st Int.

Symp. on Mathematical Foundations of Computer Science (MFCS), LNCS 4162,

Springer, pp. 24-37, 2006

[11] P. Fraigniaud, A. Korman, and E. Lebhar. Local MST Computation with Short

Advice. In 19th Annual ACM Symposium on Parallelism in Algorithms and Archi-

tectures (SPAA), 2007

[12] A. Goldberg and S. Plotkin. Efficient parallel algorithms for (∆ + 1)-coloring and

maximal independent set problems. In 19th ACM Symp. on Theory of Computing

(STOC), pp. 315-324, 1987.

[13] A. Goldberg, S. Plotkin and G. Shannon. Parallel symmetry-breaking in sparse

graphs. In 19th ACM Symp. on Theory of Computing (STOC), pp. 315-324, 1987.

[14] R. Karp. Reducibility Among Combinatorial Problems. In Complexity of Computer

Computations, pp. 85-103. 1972.

[15] K. Kothapalli, M. Onus, C. Scheideler, and C. Schindelhauer. Distributed color-

ing in O(
√

log n) bit rounds. In 20th IEEE International Parallel and Distributed

Processing Symposium (IPDPS), 2006.

[16] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed Locally!

In 23th ACM Symp. on Principles of Distributed Computing, (PODC), pp. 300-309,

2004.

[17] F. Kuhn and R. Wattenhofer. On the complexity of distributed graph coloring. In

25th ACM Symp. on Principles of Distributed Computing (PODC), pp. 7-15, 2006.

[18] N. Linial. Locality in distributed graph algorithms. SIAM J. on Computing 21(1):

193-201 (1992).

[19] M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem.

SIAM J. Comput. 15(4): 1036-1053 (1986).

21

[20] N. Lynch. A hundred impossibility proofs for distributed computing. In 8th ACM

Symp. on Principles of Distributed Computing (PODC), pp. 1-28, 1989.

[21] T. Moscibroda and R. Wattenhofer. Coloring unstructured radio networks. In 17th

ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pp. 39-48,

2005.

[22] M. Naor. A Lower Bound on Probabilistic Algorithms for Distributive Ring Coloring

SIAM J. Discrete Math. 4(3):409-412 (1991)

[23] M. Naor and L. Stockmeyer. What can be computed locally? In 25th ACM Sym-

posium on Theory of Computing (STOC), pp. 184–193, 1993.

[24] N. Nisse and D. Soguet. Graph searching with advice. In 14th International Col-

loquium on Structural Information and Communication Complexity (SIROCCO),

June 2007.

[25] A. Panconesi and R. Rizzi. Some simple distributed algorithms for sparse networks.

Distributed Computing 14: 97-100 (2001).

[26] A. Panconesi and A. Srinivasan. Improved distributed algorithms for coloring and

network decomposition problems. In 24th ACM Symp. on Theory of Computing

(STOC), pp. 581-592, 1992.

[27] A. Panconesi and A. Srinivasan. On the complexity of distributed network decom-

position. Journal of Algorithms 20(2): 356-374 (1996).

[28] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-

graphs on Discrete Mathematics, 2000.

22

