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Abstract We consider the problem of exploring an anonymous undidegtaph using an oblivious robot. The
studied exploration strategies are designed so that thieenkge in the robot’s walk is chosen using only local
information, and so that some local equity (fairness) doteis satisfied for the adjacent undirected edges. Such
strategies can be seen as an attempt to derandomize randks) arad are natural counterparts for undirected
graphs of the rotor-router model for symmetric directecbhsa

The first of the studied strategies, known as Oldest-FibE) (always chooses the neighboring edge for which
the most time has elapsed since its last traversal. Unlikbdrcase of symmetric directed graphs, we show that
such a strategy in some cases leads to exponential cover\tm¢hen consider another strategy called Least-
Used-First LUF) which always uses adjacent edges which have been travhisadallest number of times. We
show that any Least-Used-First exploration covers a g@&ph(V, E) of diameterD within time O(D |E|), and in
the long run traverses all edges@fvith the same frequency.

Keywords graph exploration random walk: rotor-router model local knowledge deterministic strategy

1 Introduction

A widely studied problem concerns the exploration of an gneous grap!G = (V, E), with the goal of visiting all
its vertices and regularly traversing its edges. At eactrdie moment of time, the robot is located at a node of the
graph, and is provided with only a local view of the adjaceaiges of the graph. The exploration strategies studied
in this paper fall into the line of research devoted to decaniding random walks in graphs [7, 11, 24, 25, 27].
Therandom walkis an oblivious exploration strategy in which the edge usgthle robot to exit its current
location is chosen with equal probability from among all galges adjacent to the current node; cf. e.g. [1,20] for
an extensive introduction to the topic. Explorations aebéethrough random walks are on average good, in the
sense that the following properties hatdexpectation
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(1) Within polynomial time, the walk visits all of the verés of the graph.
(2) Within polynomial time, the walk stabilizes to the stgesiate, and henceforth all edges are visited with the
same frequency.

We focus on the problem of designing local exploration sgegs which derandomize a random walk in a graph in
an attempt to achieve the above stated properties in thengatstic sense ofvorst-case performanc&he next
vertex to be visited should depend only on the values of itgprameters associated with the edges adjacent to the
current node. Such a problem naturally gives rise to the itiefirof locally equitable strategies.e. strategies, in
which at each step the robot chooses from among the adjadges the edge which is in some sense the “poorest”,
in an effort to make the traversal fair. In this context, tvadural notions of equity may be defined:

— An exploration is said to follow th®ldest-First(OF) strategy if it directs the robot to an unexplored neighbor-
ing edge, if one exists, and otherwise to the neighboring éoigwhich the most time has elapsed since its last
traversal, i.e. the edge which has waited the longest.

— An exploration s said to follow theeast-Used-Firs({LUF) strategy if it directs the robot to a neighboring edge
which has so far been visited by the robot the smallest nuwfiénes.

Note that, in general, several different explorations &f ¢ghaph can follow from a given strategK or LUF).
Indeed, there may be several choices for the next edge taersed, due to equality of the number of traversals
of several incident edges for th&JF strategy, or because several incident edges are still lorexpfor theOF
strategy.

When the considered graphdggmmetric and directednd the above definitions are applied to directed edges,
then the Oldest-First notion of equity is known to be styicronger than Least-Used-First, i.e. any exploration
which follows theOF strategy also follows theUF strategy [27]. Moreover, the Oldest-First strategy is iis th
context equivalent to a well-established efficient expgioramodel based on the rotor-router model (a.k.a. the
“Propp machine”, cf. e.g. [8] for an introduction of the m&)}dén the directed case, both of the described locally
fair exploration strategies are known to preserve proge(tl) and (2) of the random walk. More precisely, for a
symmetric directed graph of diameter any exploration which follows such a strategy achieveswer timeof
O(D|EJ) and stabilizes to a globally fair traversal of all the edddsrein we look at the Oldest-First and Least-
Used-First strategies when applied to tnadirectededges of a graph. For this case, the results, and the used
techniques, turn out to be surprisingly different.

1.1 Basic parameters

Two parameters of interest when discussing explorati@tegiies are theover timeof a graph and th&aversal
frequencyof its edges. We introduce them first in the context of randaatksy

Let Cs be the random variable describing the number of steps redjfor a random walk starting at vertgxo
visit every vertex of the graph. Then thever time €' (G), of the graphG is the maximum, taken over all starting
verticess, of the expected values of variabl€s, i.e. ¥(G) = maxcy E Cs. Let Cse(t) be the random variable
describing the number of visits to edgewithin time t, for a random walk starting at vertex We can define
random variables describing the distribution of visits dges for sufficiently large timése = liminfi_ Cse(t) /t
(where liminf is used instead of lim to guarantee correctrigghe definition). Theraversal frequencyfG) of
an edgee is defined as the minimum, taken over all starting vertigesf the expected values of variablig,
fe(G) = minsey E fge.

Given any exploration algorithr which is fully deterministic (or in other words, a specifiqgéoration), the
notions ofcover time for§ andtraversal frequency fo& can be defined analogously. The only difference is that
the variable<s andfse are now deterministically defined, and hence we need nokspfeheir expected values.

1.2 Related work

We confine ourselves to a short survey of works on random walkg the rotor-router model and its variants.

Many other approaches to the derandomization of randomsaske been studied, most notably, through uni-
versal traversal sequences [2] (UTS) and universal exiidoraequences [19] (UXS). UTS-s can be constructed
in polylogarithmic space using pseudorandom generatére,@. [23], whereas UXS-s have been proved to be
constructible in log-space [22].
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Exploration with random walksn expectation, random walks quickly “hit” all vertices,dathe cover times’(G)

of a connected graph satisfies the inequaligéss) > |V|log|V| and € (G) = O(|V|®) [2]. With respect to the
diameter, the cover time is upper bounded®(D |E|log|V]). In fact, for many special graph classes, such as
complete graphs, expanders, trees, or grids, tighter looma@over time can be obtained [1].

Random walks directly capture the property of equity in thesg that, for a random walk in the steady state,
the expected frequency of visits to each edge is the samee arcisely, for a random walk on a connected
undirected non-bipartite grap®, the stationary distribution of visits to edges is the umfadistribution with
parameter 1|E|, thus for anye, fe(G) = 1/|E|. Similarly, if we replace each eddei, v} with two symmetric
directed edgefu, V), (v,u) then the stationary distribution of visits is again uniforith parameter 1(2|E|), and
so for any directed edge fo(G) = 1/(2|E|).

In expectation, the random walk stabilizes to a fair trazko$ the edges very quickly. Several notions have
been introduced, informally corresponding to the expentechent at which (for a regular graph) all vertices have
been visited a similar number of times, cf. [26]. One of theshrsudied is that of blanket time. Until recently the
precise relationship between blanket time and cover tineameopen question, the best result being that blanket
time was within a factor oO(loglog|V|) of the cover time [16]. The question was recently resolvdigmit was
proved that the two quantities are within a constant fact6t.[

Equitable exploration of undirected and directed grapfst symmetric directed graphs, the Oldest-First explo-
ration strategy corresponds to exploration in the rotat#omodel, i.e. a set-up in which edges exiting each node
have successive labels, and the next edge to be traverselédsesl by a pointer. After this edge is traversed, the
pointer moves on to the edge with the next label, in a cyclig.Wéis approach was first studied in [7, 24, 25],
and the cover time of Oldest-First for directed graphs wasvshto beO(|V||E|). Slightly later [27] obtained an
improved bound on cover time @(D |E|), and also showed that after time at m@gD |E|) the exploration sta-
bilizes to a periodic traversal of some directed Euleriatiewf the graph (containing each directed edge exactly
once, i.e. of length |E|). Consequently, Oldest-First explorations on symmetiieated graphs are fair, in the
sense that all edges are visited with the same frequ&i®) = 1/(2|E|). Other studies of the rotor-router model
include specific graph classes [13], adversarial scenptjpand aspects of fault-tolerance [5].

When considering symmetric directed graphs, an explaratihieved in accordance with the Oldest-First rule
also satisfies the conditions of a Least-Used-First exptoraWhereas a Least-Used-First exploration need not in
general stabilize to a traversal of a directed Eulerianeitlalso retains the property that for any time moment,
the number of visits to any two edges outgoing from the samexean differ by at most 1 [17,18]. This property
immediately implies that for symmetric directed graphs; arecution of Least-Used-First has a cover time of
O(D |EJ), and also visits all directed edges with the same frequency.

In a slightly wider context, local exploration strategiewé been considered for robots with bounded memory,
cf. e.g. [3,12,22]. In some settings, the robot is additilyressisted by identifiers or markers placed on the nodes
and/or edges of the explored graph, cf. e.g. [6,9, 14].

Strategies with local equity criteria have also been stilidliethe token circulation literature, in the context
of strategies which are locally fair to vertices rather tlealges. Two such strategies, named LF and LR, were
proposed and analyzed in [21]. In the first of these, LF, the wertex to be visited is always chosen as the least-
often visited neighbor of the current vertex. In the secdf,the next vertex to be visited is the neighbor which
has not been visited for the longest time. The authors of$Bjv that both of these strategies eventually visit all
vertices, but in general do not satisfy any fairness cetdrideed, the time between successive visits to a vertex
may be exponential in the order of the graph for LR, and unbdedrior LF. In this sense, the results of [21] may
be contrasted with our results for th&F strategy.

1.3 Our results

Herein we summarize certain properties of explorationstvifiollow the Oldest-First or Least-Used-First strate-
gies in undirected graphs.

The Oldest-First QF) strategyin undirected graphs can be regarded as a natural analoghe @ldest-First
strategy (rotor-router model) for symmetric directed dgx@pHowever, whereas the rotor-router model leads to
explorations which traverse directed edges with equaluieqy, and have a cover time bounded®ip |E|),

this is not the case for Oldest-First explorations in urated graphs. Indeed, in Section 2 we show the following
theorems.
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— In some classes of undirected graphs, any exploration whildws the Oldest-First strategy is unfair, with an
exponentially large ratio of visits between the most ofted keast often visited edges (Theorem 1).

— There exist explorations following the Oldest-First stgt which have exponential cover time df®!) in
some graph classes (Theorem 2).

The Least-Used-First (UF) strategyin undirected graphs is fundamentally better than the ®{Hgst strategy,
which is contrary to the situation in symmetric directedpgirs. In fact, in Section 3 we show that, in undirected
graphs, explorations which follow tH&JF strategy are fair, efficient, and tolerant to perturbatioiisitial condi-
tions, as expressed by the following theorems.

— Any exploration of an undirected graph which follows the sedsed-First strategy is fair, achieving uniform
distribution of visits to all edges (Theorem 5).

— Any exploration of an undirected graph which follows the sedsed-First strategy achieves a cover time of
O(D |E|), whereD denotes the diameter (Theorem 4). This bound is tight, as thests a family of graphs for
which some Least-Used-First strategy¢D |E|) (Theorem 3).

— For any undirected graph, there exists an explorationvatig the Least-Used-First strategy which is essen-
tially the best possible, i.e., periodic with an exploratgeriod of exactly #£| (Theorem 8).

— When the exploration starts from a state with non-zero (guied) initial values of traversal counts on edges,
the cover time is bounded B9((|V|+ p)|E|), wherep is the maximal value of a counter in the initial state
(Theorem 7).

1.4 Notation

Unless otherwise stated, all considered graphs are asdorbedsimple, undirected, and connected. The explored
graph is denoted b = (V,E), with [V| = n and|E| = m. The diameter of the graph is denoted Byand its
maximum vertex degree k4. The set of neighbors of a vertexc V is denoted byN,. The set of non-negative
integers is denoted Y. A discrete intervala, b] is defined as the set of all integdrsuch thas <k < b ([a,b] =0
whena > b).

2 The Oldest-First (OF) Strategy

In this section we show that arfyF exploration is unfair (Theorem 1), and moreover tbé&t explorations may
sometimes take exponential time to cover the whole grapbdfigm 2).

Theorem 1 There exists a family of grapli&,)n>1 of order®(n), such that for each graph,3n this family, some
two of its edges e and satisfy ffs((%’;)) = (%)” with fy (Gn) # 0, for any exploration following th®F strategy.

Proof Fix an arbitrary positive integer. Let G, be the graph defined as follows. The nodes are derwéﬁ)edbr any

i € [1,7] and any € [1,n]. Moreover, we have thaf,k) = v<1k+1) foranyk € [1,n—1]. This means thab, has 6+ 1
nodes. The 8 edges are the foIIowinge(lk) = {vgk),v(zk)}, eg‘) = {v(zk),vgk)}, egk) = {v(zk),vgk)}, eik) = {vgk),vék)},
eék) = {vgk),vék)}, eék) = {vgk),vgk)}, e<7k) = {vék),vék)}, andeék) = {vgk),vgk)}, for anyk € [1,n]. The graphGy is
depicted in Figure 1.

We assume that the exploration is starting fm&Jﬁ. We will now focus on a blockB of Gy, that is on the
subgraph o5, induced by the 7 node{ygk), - ,v(7k)}, for an arbitrary and fixeld € [1, n]. To simplify the notation,
we will remove the superscrifif in the following, when there are no ambiguities.

- - - - - - - - —

Fig. 1 The graphGp, a chain of so-called blocks.



Derandomizing Random Walks in Undirected Graphs Using lipé&air Exploration Strategies 5

Fig. 2 The two possible cycles of traversals of a bldk

There may be several different explorations following @festrategy from/(ll). Indeed, when the exploration
reaches a node with at least two edges that are not yet egpthieexploration may proceed along any of these
unexplored edges.

Up to the symmetry betweeny andv,, there are only two types of exploration possible in bl&K hey are
described in Figure 2. In all the cases, in the time periothdwhich the edgeg is traversed 4 times, the edggis
traversed 6 times. We now notice that the exploration bes@wentually periodic. Indeed, only the local ordering
of the last traversal times of the incident edges at each imdldences the exploration. Therefore the number of
different possible configurations of the graph and its ongeixploration is bounded by some (large) function.of
Therefore, the exploration is eventually periodic and &oy edgee of the graph, the sequencglt)/t converges
to the actual frequency of traversdlgGn) of the edgee. In particular, we hav§ eg(g,) fe(Gn) = 1. Since we just
proved that for ank € [1,n] we havef (Gn) = %fegp (Gn), we haveféf) (Gn) = (g)nfeén) (Gp), with fegm (Gn) #£0.

1
This concludes the proof of the theorem. O

Theorem 2 There exists a family of graphi&n)n>1 of order ©@(n), such that for each graph (3n this family,
some exploration following th@F strategy has a cover time af (",
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Proof We consider the family of graphs described in Theorem 1. Garearbitrary executio# of the OF strategy,

there exist two edgesandé€’ satisfying ffj/((%)) = (%)” (with fg(G) # 0). Therefore, there exist two timésandty,

witht, —t; > (%)” —1, such that the edg¢ is not traversed between tirhgandt,. Letv be the current position of
the traversaf’ at timet;. Then, consider the explorati@fi which starts av and has the same execution from the
beginning, ag’ from timet;. It is clear thats” follows the OF strategy, and moreover it will not travergebefore
timet, —t;. Thus,&” has a cover time of at Iea@)n —1. O

3 The Least-Used-First LUF) Strategy

In Subsection 3.2 we will show thatF strategies are fair and cover any grapi®ifm D) time. Before daing this,
in Subsection 3.1 we construct a family of examples showiagiguch a bound on cover time is essentially tight.

3.1 A Worst Case Lower Bound on Cover Time

Theorem 3 For sufficiently large n, ne [n—1,n(n— 1)/2] and D < n, the worst-case cover time of th&F
strategy in the family of graphs of at most n nodes, at mostge€dnd diameter at most D,&(mD).

Proof Fix n> 16, me [n—1,n(n—1)/2] andD € [8,n]. We construct a grapt, having at mosh nodes, at
mostm edges, and diameter at mdtas follows. Letnc = |D /8]. The graphG first consists of 8c + 1 nodes
Uo, V1, Vq, U1, V2, Vo, U, . ... vVnchﬂchnc organised in a chain of 4-node cycles: these nodes are attdnhthe 4¢
edgeseyi_1 = {Ui_1,Vi}, e = {vi,u}, & = {Vi,u}, &_; = {ui_1,V}, for anyi € [1,nc]. Letnk be the largest
even integer smaller tham/2 such thank (nk +1)/2 < m/2. The graphG also consists ofix additional nodes
forming withug a complete graph omk + 1 vertices. To summariz& hasnk + 3nc+ 1 < nnodes, #c + nk (Nk +

1)/2 < medges and diameten2+ 1 < D. The graphG is depicted in Figure 3.

Fig. 3 The graphG with nc = 6 andnk = 4.

We start the exploration o& following the LUF strategy from nodep. When the exploration may proceed
along several different edges having the same traversailtcpriority is first given to the edges of the complete
graph onng + 1 vertices, then to edgs, then to the edgeg with the smallest possibleif all incident edges are
explored, and to the edgewith the smallest possible otherwise. More precisely, the robot performs a complete
Eulerian traversal of the complete graph before proceettinqugh edgee;. (Such an Eulerian traversal does
exist becausag is even.) These tie-breaking rules lead to an exploratidch@tomplete graph between the first
exploration of each cycle in the chain of cycles. Indeed,gamesee the exploration as proceeding in phases, starting
and ending at nodey. The first phase starts by a complete traversal of the cliqadettzen by a traversal of the
first cycle through the edges, e;, €, €,. More generally, the phasgfor i € [1,nc] consists in a complete traversal
of the clique and then of an exploration of the firsycles, through edges, e, ..., ey and therg,, €, _,,...,€].
Therefore, the worst-case cover time®is at leashk (nk +1)/2-nc. Sinceng (nk +1)/2 € Q(m) andnc € Q(D),
the theorem holds. O

3.2 An Upper Bound on Cover Time

We now proceed to prove ti&(m D) bound on cover time of aryUF exploration, through a sequence of technical
lemmas.
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Throughout the proofs we will use the following notation. ¥fihdescribing moments of time, the symbdé
treated as a more compact notationtferl, likewiset” meang + 2. The vertex occupied by the robot at titnis
denoted by (1); the starting vertex of exploration is denoteddyhat iss = r(0). With each edge we associate
a counterce called itstraversal countwhose value at timeis denoted byc(t); initially we assumese(0) = O for
all e € E. When traversing edgein the time intervalt,t’) we only increment the value of the counter associated
with this edgece(t’) = ce(t) + 1. For each noda we denote byC,(t) the set of traversal counts of the adjacent
edges at time: Cy(t) = {cyy(t) : V€ Ny}. The set of traversal counts of all edges of the graph is eenioy
C(t) ={ce(t) : e E}.

At any given timet, let parametek € NU{—1} be defined in such a way that mag) < [2k+ 1,2k + 2], and
let parameter € N be such that mi@; (t) € [2], 2] 4 1]. Parameterk, |, andr used without an indication of time are
assumed to refer to the moment of time denotet] lashile symbol«’, I, r’, andr” should be treated as equivalent
tok(t’), I(t'), r(t"), andr(t”), respectively.

We first note that, for each vertexdifferent from bothr ands, the total number of traversals of edges incident
to v, performed when entering is the same as the total number of traversals of these edgismped when
leavingv. As a simple extension of this observation, we have theviailig lemma.

Lemma 1 Foranode ue V, let §(t) = 3 yen, Cquy (). The sum t) is odd if and only if r s and either u=r,
oru=s.

Lemma 2 If for some time momentt we havekk-+ 1, then r=s and G(t) = {2k+ 2}.

Proof If k' = k+1, then clearlycy, 1 (t) = 2k+2 = maxC(t). This implies that during the time intervé,t’)

the robot chooses an edge having the maximal traversal .cGledrly, this means that there is no edge with a
smaller traversal count availableratsoC; (t) = {2k+ 2}. Hence, in Lemma 1 the value 8f(t) is even, and we
immediately obtain the clainm,=s. O

Lemma 3 For any time moment maxCs(t) > 2k+ 1.

Proof We can obviously assume thHat 0. LetT < t be such a time moment thigfr) = k— 1 andk(t’) = k. Then
by Lemma 2 (1) = sandCs(7) = {2(k— 1) + 2} = {2k}. So, after traversing any edge adjacens,tere obtain
maxCs(1’) = 2k+ 1. Sincet > 1/ and maxCs(t) > maxCs(1’), the claim follows directly. 0

Lemma 4 If for some time momentt we havg( = {2p+ 2}, where p is some integer, ther=s and p=Kk.

Proof WhenG; (t) = {2p+ 2}, in Lemma 1 the value & (t) is even, and so = s. Moreover, by Lemma 3 we
cannot have < k since then ma&s(t) < 2k. Thusp =k. m|

In the next crucial lemma, we show that for each vertex of ttaply, the frequency of edges to all adjacent
edges differs by at most a constant. Intuitively, the vegtiof the graph may be partitioned into layers, such that
for a vertex within theb-th layer, the number of visits to adjacent edges is betwdesn® D+ 2. However, for
each layer, wherea € [I,k— 1], there exists one distinguished vertgxvhich complies only to a slightly weaker
constraint, namely, the number of visits to edges adjacentis between a and 2a+ 3. These verticeg, can be
seen as points of transition which an agent followingltb# strategy uses to move from one layer to another.

Lemma 5 For any time moment t, the following statements hold:

— there exists a subseta¥t) = {v,...,v_1} of vertices indexed by integersa|l,k — 1], such that G, (t) C
[2a,2a+ 3.
— for any other vertex ¥ Va we have G(t) C [2b,2b+ 2] for some integer value b.

Proof Initially, for t = 0 we haveC(0) = {0}, k= —1,1 =0, and so the induction claim holds wia (0) = 0, and
b = 0 for every vertex.

Assuming that the induction assumption holds for tiraed a corresponding sét is given, we will now prove
that it also holds for timé& with an appropriately modified s&. (Sometimes no modification will be necessary;
for example, wheit is a cycle, we havea(T) = 0 for all T > 0.) We start by showing a small auxiliary claim.

Claim.l' e [| = 1,1+ 1].

Proof: The traversal count, at timé& of the edge used in time intervél,t”) can be greater by at most one than
the traversal count, at tinteof the edge used in time intervalt’), SOC{,—/’,—//}(I/) < (H)+1<2+2, and thus

I’ <1+ 1. Suppose that < |; then we have mi@, (t) < minC(t’) < 2|, and by the inductive assumptionZ Va(t).
Thus maxc, (t) —minCy(t) < 2, and we obtain mi@/(t') > minCy(t) > maxCy (t) —2 > cq e (t) —2> 21 - 2,
which means that alway$> | — 1, completing the proof of the claim.

Now, consider the following definition of s&f = {v;:a e [’k — 1]} for timet’:
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1. Forallae [l +1,k— 1], putvy := Va;
2. IfI' <landl’ <K, putv :=v;
3. IfI'=1-1and’ <K, puty_, :=r".

The above procedure clearly defines all elemeftor a € [I’,k— 1]. We now observe that it does in fact define
all elements/, for the whole of the required ranga,c [I’,k' — 1]. Indeed, ifk = k+ 1, by Lemma 2 we have
Crn(t) =2k+2,s0l =k+1= K'. Consequently, i’ > k+ 1 in the proposed construction, then 8gtis empty
as required, and if =1 — 1=k, then the only elemen{_, of Vj is well defined.

We now verify the induction claim for the proposed definitafsetV, by checking the imposed bounds on sets
C,(t"), for all verticesv € V. Taking into account that for all verticesother tharr andr’ we haveC,(t) = Cy(t'),
by the construction of element§ based on elements, it is evident that it now suffices to check the bounds on
Cy(t') for v e {r,r’, v }; for all other vertices, the bounds follow directly from timeluction assumption for timie
We therefore now successively consider vertige$ andy;.

For vertexr we need to consider two possibilities: eitmet Va, orr & Va.

1. Ifr €V, thenVa # 0 and sd <k-—1. Since mir; (t) € [2I, 2| + 1] by the definition of, taking into account the
inductive assumption concerning the bound€gf) we must have = vi (note that verticeg, are only defined
for indicesa > 1) andC(t) C [2I,2] + 3. After traversing edgdr,r'}, we havecy, . (t') = ¢ (t) +1 =
minC(t) +1 € [2| + 1,2l + 2], so we retain the proper@; (t') C [2I,2] +3]. If r =V, the bounds on set
C: (') are thus satisfied. We will now show that the other casg,v|, is impossible. Indeed, when# v|
we would havel’ =1+ 1 (otherwise|’ < | would mean that’ <1 < k <K, sov] = v, =r). Therefore,
minCy/(t') > 21 +2, socy,,y (t') = 21 + 2 andcy, 1y (t) = 21 4 1. Taking into account that # r = vj, we have
' ¢ Va (as mirC.(t) < 21 +1) andCy(t) C [2I,2] + 2]. As we have already observed that @Gjr(t’) > 2| +2
andcyn (t') = 21 42, we obtainCy (t') = {2l +2}. Applying Lemma 4 for time’ givesr’ =sandk =1, a
contradiction with the assumptidnr< k.

2. Ifr ¢ Va, thensince, 1, (t) € [2,2l + 1], we must hav€&; (t) C [21, 2] + 2] (note that we must have nia(t) >
2l). At time t’, only the traversal count of edde,r'} changesgy, /(') = ¢y (t) +1=minC(t) +1 €
[21 +1,21 + 2], and we still haveC, (t') C [2I,2] 4 2]. By the definition of se¥/, we haver ¢ V,, soC(t')
fulfills the required bound with parameter|.

For vertexr’ we likewise consider two possibilities: eitheérc Va, orr’ & Va.

1. If r’ € Va, then by the same arguments as in the discussion for verexsuccessively obtaih:< k, I’ = v,
Cor(t) C 2,2 +3], ¢y () € [214- 1,21 + 2], andCy (1) € [21,21 + 3]. If ' = v}, then the bounds on s&f (t')
are satisfied. If’ £ v{, then once again, as in the previous discussion, we olbtairl:+ 1, minC, (t') > 2| + 2,
and clearlyCy (t') C [2I + 2,2l + 3. By the definition of seV/, we haver’ ¢ V,, soCy(t') fulfills the required
bound for parametdr=1+ 1.

2. If 1" € Vp, then sincecyn (t) € [21,2] + 1], we must have eitheC, (t) C [21,2] +2], or Gy (t) C [21 —2,2I]
(with minC,/(t) < 21). In the former case, we see ti@t(t") C [2],2] + 2], and sd’ > |; by the definition o/},
this means that' ¢ V,, and thu<C,. (t') fulfills the required bound with parameter= I. In the latter case, we
must haveeg, i (t) = 2, ¢ (t') = 2 + 1, which implies thaC/ (t') € [2| — 2,21 4 1] (with minCy/ (t') < 21).
So,l"=1—1, and by the definition 0¥y, in this case’ = v|_, and the required bound @@y (t') is satisfied.

Finally, we consider vertey (under the assumption thiak k, otherwise this case should be left out). Since
the bounds for vertices andr’ have already been proven, we can restrict ourselves to e afay # r and
vi # I’. This means that the set of traversal counts adjacentdoes not change during the time interyglt’),
i.e.Cy (t) = Cy (t). Clearly, the only situation which needs some comment isnwiheZ V,; we will show that
such a case is not possible. Indeed, this would mean'‘that +1 orl’ > K. If I’ =1+ 1, then we would have
c{”/}(t’) =2l +2,s0Cy(t) =2 +1, and since’ # vi, we see from the inductive assumption thaf Va and
C.(t) C[2,2] +2]. Hence, noting thdt = | + 1, we haveC, (') = {2l + 2}, and by applying Lemma 4 for tinté
we obtainr’ = sandk = |, a contradiction with the assumptibr: k. Finally, we need to consider the cdse K.
Then, sinc&k’ > k andl’ <1+ 1, we obtainl’ = kK = k=14 1, which turns out to be a subcase of the previously
considered cadé=1+1. O

Theorem 4 For any graph, the cover time achieved by dryF exploration is at mos2m(D +1).

Proof Consider any time momentsuch that > k. Then by Lemma 5 sét, is empty, and for any vertex €
V we have magy,(t) —minC,(t) < 2. Let edge{va, W} be such thaty,,,; > 2k+ 1, and consider any other
edge{ua,up} of the graph. Let us arbitrarily choose a shortest gathwo, ..., Wy), with wy = uz andwy = va;
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obviously,d < D +1. The following relations holdcyy, y,; (t) > minCy, (t) > maxCy, (t) — 2 > Cpyy wy} () —2 >
MiNCy, (t) — 2> maxCy,(t) =4 > ... > maxCy, (t) —2d > ¢y, y,} —2d > 2k+1-2(D+1) = 2(k— D) — 1. So,
at any time momentt such that > k > D, each edge of the graph has been explored at least oncee ot
this is always true for the unique time momeéstuch that mag(t) = 2D +2 and max(t’) = 2D +3, and we will
use this time momeritas an upper bound on cover time. Indeed, at this tiny Lemma 2, we have= sand
Cs(t) = {2k+ 2}, which impliesl = k+ 1. Since at tima = (2D +2)m+ 1 we must have maX(t) > 2D+2 by
the pigeon-hole principle, we immediately obtain that r, and the claim follows. O

Taking into account that by Lemma 5, for any time monteand for any vertex € V, we have mag, (t) —
minCy(t) < 3, and using similar arguments as in the above proof, we et at any moment of timethe
following inequalities hold: mag(t) — minC(t) < 3(D+1). We easily conclude that in the limit, all edges are
explored with the same frequency.

Theorem 5 For any graph, any exploration following tHaJF strategy achieves uniform frequency on all edges,
fe(G) =1/m.

3.3 Cover Time ot UF with Modified Initial Conditions

It turns out that_.UF explorations are resistant to minor perturbations, sucthasges to the starting values of
counters on edges. To show this, we will first provide anofskghtly weaker) analysis of the cover time for the
LUF strategy, which does not rely on parity-based arguments.

Theorem 6 For any graph, the cover time achieved by any exploratiole¥ahg theLUF strategy is at most mn.

Proof Lett > 0 be an arbitrarily chosen moment of time. Consider an onde#i, v», ..., v, = r of the vertices of
G in increasing order of their last visit time. For any vertgxvhich has already been explored by the robot and
which is not the current location of the robot (thus n), let T € [0,t — 1] be the latest time moment at which the
robot was located a4, and letv; = r(1’). By definition of r and of the ordering of the vertices, we conclude that
j >

We now look at the possible traversal cou@tg(t) andCy,(t) of edges adjacent tg andv;. Since edge
{vi,vj} was chosen for traversal from vertexat time 1, we have mirCy (1) = ¢y, ;}(7). Taking into account
that minCy,(t) > minCy, (1) and cyy, v;1(t) = Cfy;}(T) + 1, we obtain the following expression: n@ig (t) >
Ciu.v;} (t) — 1. Since obviouslgy, ,} (t) > minCy, (t), this finally yields the inequality mi@, (t) > minCy, (t) - 1.

If j #n, we can iterate the construction, showing that for someexert, k > j, we have miC, (t) >
minCy, (t) — 1, and so on.

Eventually, after at most— 1 iterations; the process must stop at vexex r, finally leading to the inequality:

minCy, (t) > minC; (t) — (n—1). 1)

Let us now assume thatis the last time moment at which no edge of the graph has yet tsaeersech + 1
times, i.e. mag(t) = n and max(t’) = n+1; by the pigeon-hole principlé,< mn Since in the time interval
(t,t') the robot traverses an edge having traversal couelearly mirC; (t) = n, and so by inequality (1), we have
minC,(t) > 1 for any vertex which has already been visited by a roboteNatwever that mi@,(t) > 1 means
that all the neighbours afhave also been visited by the robot, and by recursively apgplhe same argument we
see that all the vertices of the considered connected graghimve been visited by the robot. Taking into account
thatt < mn this provides us with the sought bound on cover time. O

Now, assume that the initial value of traversal count is remtassarily O for all edgess but arbitrarily drawn
from some range of valuesg(0) € [0, p], for some constanp € N. Even in such a self-stabilizing setting, by
retracing the proof of the previous theorem with some mimjustments, we obtain that the cover time for the
strategy remains bounded BYm(n+ p)).

Theorem 7 For any graph, the cover time achieved by any exploratiolefahg theLUF strategy is @m(n+ p)),
where p is the maximum value of edge traversal counters atGim

Using the same arguments, we can also show that in the lingitlges are explored with the same frequency.
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Corollary 1 For any graph, any exploration following tHaJF strategy achieves uniform frequency on all edges,
fe(G) = 1/m, even when the initial values of edge traversal countsergtaph are non-zero.

By Theorem 1, it is clear that arQF exploration does not guarantee a fair traversal of all trgesgdwhereas
by Theorem 5, fair traversal is always achieved by any esgion following LUF. To conclude this section, we
point out that for all graphs there exist explorations feilog LUF which are in some sense best possible, i.e. fair
and periodic, with linear cover time and exploration peribde reason for this is that a depth first search (DFS)
exploration of the edges of the graph, in which all the edgewited exactly twice, is in fact a valid execution
of the LUF strategy.

Theorem 8 For any graph there exists a (non-oblivious) exploratioliof@ing theLUF strategy which performs a
periodic traversal of lengtlm, traversing each edge exactly twice in each period. O

4 Final remarks

We have shown that locally fair strategies in undirectecdhsacan closely imitate random walks, allowing us
to obtain an exploration which is fair with respect to all edgand efficient in terms of cover time. However,
the fairness criterion has to be chosen much more carefdly for symmetric directed graphs: Least-Used-First
works, but Oldest-First does not.

In future work it would be interesting to study modified netsoof equity, which are inspired by random walks
which select the next edge to be traversed with non-unifaobability. For example, it is possible to decrease the
general-case bound on the cover time of a random wa@®({¥|?log|V ), by applying a probability distribution
which reflects the degrees of the nearest neighbors of therdurode [15]. It is an open question whether a similar
bound can be obtained in the deterministic sense using adiemsized strategy.
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