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Abstract We consider the problem of exploring an anonymous undirected graph using an oblivious robot. The
studied exploration strategies are designed so that the next edge in the robot’s walk is chosen using only local
information, and so that some local equity (fairness) criterion is satisfied for the adjacent undirected edges. Such
strategies can be seen as an attempt to derandomize random walks, and are natural counterparts for undirected
graphs of the rotor-router model for symmetric directed graphs.

The first of the studied strategies, known as Oldest-First (OF), always chooses the neighboring edge for which
the most time has elapsed since its last traversal. Unlike inthe case of symmetric directed graphs, we show that
such a strategy in some cases leads to exponential cover time. We then consider another strategy called Least-
Used-First (LUF) which always uses adjacent edges which have been traversedthe smallest number of times. We
show that any Least-Used-First exploration covers a graphG= (V,E) of diameterD within time O(D |E|), and in
the long run traverses all edges ofG with the same frequency.

Keywords graph exploration· random walk· rotor-router model· local knowledge· deterministic strategy

1 Introduction

A widely studied problem concerns the exploration of an anonymous graphG= (V,E), with the goal of visiting all
its vertices and regularly traversing its edges. At each discrete moment of time, the robot is located at a node of the
graph, and is provided with only a local view of the adjacent edges of the graph. The exploration strategies studied
in this paper fall into the line of research devoted to derandomizing random walks in graphs [7,11,24,25,27].

The random walkis an oblivious exploration strategy in which the edge used by the robot to exit its current
location is chosen with equal probability from among all theedges adjacent to the current node; cf. e.g. [1,20] for
an extensive introduction to the topic. Explorations achieved through random walks are on average good, in the
sense that the following properties holdin expectation:
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(1) Within polynomial time, the walk visits all of the vertices of the graph.
(2) Within polynomial time, the walk stabilizes to the steady state, and henceforth all edges are visited with the

same frequency.

We focus on the problem of designing local exploration strategies which derandomize a random walk in a graph in
an attempt to achieve the above stated properties in the deterministic sense ofworst-case performance. The next
vertex to be visited should depend only on the values of certain parameters associated with the edges adjacent to the
current node. Such a problem naturally gives rise to the definition of locally equitable strategies, i.e. strategies, in
which at each step the robot chooses from among the adjacent edges the edge which is in some sense the “poorest”,
in an effort to make the traversal fair. In this context, two natural notions of equity may be defined:

– An exploration is said to follow theOldest-First(OF) strategy if it directs the robot to an unexplored neighbor-
ing edge, if one exists, and otherwise to the neighboring edge for which the most time has elapsed since its last
traversal, i.e. the edge which has waited the longest.

– An exploration is said to follow theLeast-Used-First(LUF) strategy if it directs the robot to a neighboring edge
which has so far been visited by the robot the smallest numberof times.

Note that, in general, several different explorations of the graph can follow from a given strategy (OF or LUF).
Indeed, there may be several choices for the next edge to be traversed, due to equality of the number of traversals
of several incident edges for theLUF strategy, or because several incident edges are still unexplored for theOF
strategy.

When the considered graph issymmetric and directed, and the above definitions are applied to directed edges,
then the Oldest-First notion of equity is known to be strictly stronger than Least-Used-First, i.e. any exploration
which follows theOF strategy also follows theLUF strategy [27]. Moreover, the Oldest-First strategy is in this
context equivalent to a well-established efficient exploration model based on the rotor-router model (a.k.a. the
“Propp machine”, cf. e.g. [8] for an introduction of the model). In the directed case, both of the described locally
fair exploration strategies are known to preserve properties (1) and (2) of the random walk. More precisely, for a
symmetric directed graph of diameterD, any exploration which follows such a strategy achieves acover timeof
O(D |E|) and stabilizes to a globally fair traversal of all the edges.Herein we look at the Oldest-First and Least-
Used-First strategies when applied to theundirectededges of a graph. For this case, the results, and the used
techniques, turn out to be surprisingly different.

1.1 Basic parameters

Two parameters of interest when discussing exploration strategies are thecover timeof a graph and thetraversal
frequencyof its edges. We introduce them first in the context of random walks.

Let Cs be the random variable describing the number of steps required for a random walk starting at vertexs, to
visit every vertex of the graph. Then thecover time, C (G), of the graphG is the maximum, taken over all starting
verticess, of the expected values of variablesCs, i.e. C (G) = maxs∈V E Cs. Let cs,e(t) be the random variable
describing the number of visits to edgee within time t, for a random walk starting at vertexs. We can define
random variables describing the distribution of visits to edges for sufficiently large time,fs,e = lim inf t→∞ cs,e(t)/t
(where liminf is used instead of lim to guarantee correctness of the definition). Thetraversal frequency fe(G) of
an edgee is defined as the minimum, taken over all starting verticess, of the expected values of variablesfs,e,
fe(G) = mins∈V E fs,e.

Given any exploration algorithmE which is fully deterministic (or in other words, a specific exploration), the
notions ofcover time forE andtraversal frequency forE can be defined analogously. The only difference is that
the variablesCs andfs,e are now deterministically defined, and hence we need not speak of their expected values.

1.2 Related work

We confine ourselves to a short survey of works on random walks, and the rotor-router model and its variants.
Many other approaches to the derandomization of random walks have been studied, most notably, through uni-
versal traversal sequences [2] (UTS) and universal exploration sequences [19] (UXS). UTS-s can be constructed
in polylogarithmic space using pseudorandom generators, cf. e.g. [23], whereas UXS-s have been proved to be
constructible in log-space [22].
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Exploration with random walks.In expectation, random walks quickly “hit” all vertices, and the cover timeC (G)
of a connected graph satisfies the inequalitiesC (G) ≥ |V| log|V| andC (G) = O(|V|3) [2]. With respect to the
diameter, the cover time is upper bounded byO(D |E| log|V|). In fact, for many special graph classes, such as
complete graphs, expanders, trees, or grids, tighter bounds on cover time can be obtained [1].

Random walks directly capture the property of equity in the sense that, for a random walk in the steady state,
the expected frequency of visits to each edge is the same. More precisely, for a random walk on a connected
undirected non-bipartite graphG, the stationary distribution of visits to edges is the uniform distribution with
parameter 1/|E|, thus for anye, fe(G) = 1/|E|. Similarly, if we replace each edge{u,v} with two symmetric
directed edges(u,v), (v,u) then the stationary distribution of visits is again uniformwith parameter 1/(2|E|), and
so for any directed edgee, fe(G) = 1/(2|E|).

In expectation, the random walk stabilizes to a fair traversal of the edges very quickly. Several notions have
been introduced, informally corresponding to the expectedmoment at which (for a regular graph) all vertices have
been visited a similar number of times, cf. [26]. One of the most studied is that of blanket time. Until recently the
precise relationship between blanket time and cover time was an open question, the best result being that blanket
time was within a factor ofO(log log|V|) of the cover time [16]. The question was recently resolved, when it was
proved that the two quantities are within a constant factor [10].

Equitable exploration of undirected and directed graphs.For symmetric directed graphs, the Oldest-First explo-
ration strategy corresponds to exploration in the rotor-router model, i.e. a set-up in which edges exiting each node
have successive labels, and the next edge to be traversed is selected by a pointer. After this edge is traversed, the
pointer moves on to the edge with the next label, in a cyclic way. This approach was first studied in [7, 24, 25],
and the cover time of Oldest-First for directed graphs was shown to beO(|V||E|). Slightly later [27] obtained an
improved bound on cover time ofO(D |E|), and also showed that after time at mostO(D |E|) the exploration sta-
bilizes to a periodic traversal of some directed Eulerian cycle of the graph (containing each directed edge exactly
once, i.e. of length 2|E|). Consequently, Oldest-First explorations on symmetric directed graphs are fair, in the
sense that all edges are visited with the same frequencyfe(G) = 1/(2|E|). Other studies of the rotor-router model
include specific graph classes [13], adversarial scenarios[4], and aspects of fault-tolerance [5].

When considering symmetric directed graphs, an exploration achieved in accordance with the Oldest-First rule
also satisfies the conditions of a Least-Used-First exploration. Whereas a Least-Used-First exploration need not in
general stabilize to a traversal of a directed Eulerian cycle, it also retains the property that for any time moment,
the number of visits to any two edges outgoing from the same vertex can differ by at most 1 [17,18]. This property
immediately implies that for symmetric directed graphs, any execution of Least-Used-First has a cover time of
O(D |E|), and also visits all directed edges with the same frequency.

In a slightly wider context, local exploration strategies have been considered for robots with bounded memory,
cf. e.g. [3,12,22]. In some settings, the robot is additionally assisted by identifiers or markers placed on the nodes
and/or edges of the explored graph, cf. e.g. [6,9,14].

Strategies with local equity criteria have also been studied in the token circulation literature, in the context
of strategies which are locally fair to vertices rather thanedges. Two such strategies, named LF and LR, were
proposed and analyzed in [21]. In the first of these, LF, the next vertex to be visited is always chosen as the least-
often visited neighbor of the current vertex. In the second,LR, the next vertex to be visited is the neighbor which
has not been visited for the longest time. The authors of [21]show that both of these strategies eventually visit all
vertices, but in general do not satisfy any fairness criteria. Indeed, the time between successive visits to a vertex
may be exponential in the order of the graph for LR, and unbounded for LF. In this sense, the results of [21] may
be contrasted with our results for theLUF strategy.

1.3 Our results

Herein we summarize certain properties of explorations which follow the Oldest-First or Least-Used-First strate-
gies in undirected graphs.

The Oldest-First (OF) strategyin undirected graphs can be regarded as a natural analogue ofthe Oldest-First
strategy (rotor-router model) for symmetric directed graphs. However, whereas the rotor-router model leads to
explorations which traverse directed edges with equal frequency, and have a cover time bounded byO(D |E|),
this is not the case for Oldest-First explorations in undirected graphs. Indeed, in Section 2 we show the following
theorems.
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– In some classes of undirected graphs, any exploration whichfollows the Oldest-First strategy is unfair, with an
exponentially large ratio of visits between the most often and least often visited edges (Theorem 1).

– There exist explorations following the Oldest-First strategy which have exponential cover time of 2Ω(|V|) in
some graph classes (Theorem 2).

The Least-Used-First (LUF) strategyin undirected graphs is fundamentally better than the Oldest-First strategy,
which is contrary to the situation in symmetric directed graphs. In fact, in Section 3 we show that, in undirected
graphs, explorations which follow theLUF strategy are fair, efficient, and tolerant to perturbationsof initial condi-
tions, as expressed by the following theorems.

– Any exploration of an undirected graph which follows the Least-Used-First strategy is fair, achieving uniform
distribution of visits to all edges (Theorem 5).

– Any exploration of an undirected graph which follows the Least-Used-First strategy achieves a cover time of
O(D |E|), whereD denotes the diameter (Theorem 4). This bound is tight, as there exists a family of graphs for
which some Least-Used-First strategy isΩ(D |E|) (Theorem 3).

– For any undirected graph, there exists an exploration following the Least-Used-First strategy which is essen-
tially the best possible, i.e., periodic with an exploration period of exactly 2|E| (Theorem 8).

– When the exploration starts from a state with non-zero (corrupted) initial values of traversal counts on edges,
the cover time is bounded byO((|V|+ p)|E|), wherep is the maximal value of a counter in the initial state
(Theorem 7).

1.4 Notation

Unless otherwise stated, all considered graphs are assumedto be simple, undirected, and connected. The explored
graph is denoted byG = (V,E), with |V| = n and |E| = m. The diameter of the graph is denoted byD and its
maximum vertex degree by∆ . The set of neighbors of a vertexv ∈ V is denoted byNv. The set of non-negative
integers is denoted byN. A discrete interval[a,b] is defined as the set of all integersk such thata≤ k≤ b ([a,b] = /0
whena> b).

2 The Oldest-First (OF) Strategy

In this section we show that anyOF exploration is unfair (Theorem 1), and moreover thatOF explorations may
sometimes take exponential time to cover the whole graph (Theorem 2).

Theorem 1 There exists a family of graphs(Gn)n≥1 of orderΘ(n), such that for each graph Gn in this family, some

two of its edges e and e′ satisfy fe(Gn)
fe′ (Gn)

= (3
2)

n with fe′(Gn) 6= 0, for any exploration following theOF strategy.

Proof Fix an arbitrary positive integern. LetGn be the graph defined as follows. The nodes are denotedv(k)j , for any

j ∈ [1,7] and anyk∈ [1,n]. Moreover, we have thatv(k)7 = v(k+1)
1 for anyk∈ [1,n−1]. This means thatGn has 6n+1

nodes. The 8n edges are the following:e(k)1 = {v(k)1 ,v(k)2 }, e(k)2 = {v(k)2 ,v(k)3 }, e(k)3 = {v(k)2 ,v(k)4 }, e(k)4 = {v(k)3 ,v(k)5 },

e(k)5 = {v(k)4 ,v(k)5 }, e(k)6 = {v(k)2 ,v(k)6 }, e(k)7 = {v(k)5 ,v(k)6 }, ande(k)8 = {v(k)6 ,v(k)7 }, for anyk ∈ [1,n]. The graphGn is
depicted in Figure 1.

We assume that the exploration is starting fromv(1)1 . We will now focus on a blockB of Gn, that is on the

subgraph ofGn induced by the 7 nodes{v(k)1 , · · · ,v(k)7 }, for an arbitrary and fixedk∈ [1,n]. To simplify the notation,
we will remove the superscript(k) in the following, when there are no ambiguities.
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Fig. 1 The graphGn, a chain of so-called blocks.
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Fig. 2 The two possible cycles of traversals of a blockB.

There may be several different explorations following theOF strategy fromv(1)1 . Indeed, when the exploration
reaches a node with at least two edges that are not yet explored, the exploration may proceed along any of these
unexplored edges.

Up to the symmetry betweenv3 andv4, there are only two types of exploration possible in blockB. They are
described in Figure 2. In all the cases, in the time period during which the edgee8 is traversed 4 times, the edgee1 is
traversed 6 times. We now notice that the exploration becomes eventually periodic. Indeed, only the local ordering
of the last traversal times of the incident edges at each nodeinfluences the exploration. Therefore the number of
different possible configurations of the graph and its ongoing exploration is bounded by some (large) function ofn.
Therefore, the exploration is eventually periodic and, forany edgee of the graph, the sequencece(t)/t converges
to the actual frequency of traversalsfe(Gn) of the edgee. In particular, we have∑e∈E(Gn) fe(Gn) = 1. Since we just

proved that for anyk∈ [1,n] we havef
e
(k)
1
(Gn) =

3
2 f

e
(k)
8
(Gn), we havef

e
(1)
1
(Gn) = (3

2)
n f

e
(n)
8
(Gn), with f

e
(n)
8
(Gn) 6= 0.

This concludes the proof of the theorem. ⊓⊔

Theorem 2 There exists a family of graphs(Gn)n≥1 of orderΘ(n), such that for each graph Gn in this family,
some exploration following theOF strategy has a cover time of2Ω(n).
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Proof We consider the family of graphs described in Theorem 1. Given an arbitrary executionE of theOF strategy,
there exist two edgese ande′ satisfying fe(G)

fe′ (G) = (3
2)

n (with fe′(G) 6= 0). Therefore, there exist two timest1 andt2,

with t2− t1 ≥ (3
2)

n−1, such that the edgee′ is not traversed between timet1 andt2. Let v be the current position of
the traversalE at timet1. Then, consider the explorationE ′ which starts atv and has the same execution from the
beginning, asE from timet1. It is clear thatE ′ follows theOF strategy, and moreover it will not traversee′ before
time t2− t1. Thus,E ′ has a cover time of at least(3

2)
n−1. ⊓⊔

3 The Least-Used-First (LUF) Strategy

In Subsection 3.2 we will show thatLUF strategies are fair and cover any graph inO(mD) time. Before doing this,
in Subsection 3.1 we construct a family of examples showing that such a bound on cover time is essentially tight.

3.1 A Worst Case Lower Bound on Cover Time

Theorem 3 For sufficiently large n, m∈ [n− 1,n(n− 1)/2] and D≤ n, the worst-case cover time of theLUF
strategy in the family of graphs of at most n nodes, at most m edges, and diameter at most D, isΩ(mD).

Proof Fix n ≥ 16, m∈ [n− 1,n(n− 1)/2] and D ∈ [8,n]. We construct a graphG, having at mostn nodes, at
mostm edges, and diameter at mostD, as follows. LetnC = ⌊D/8⌋. The graphG first consists of 3nC+1 nodes
u0,v1,v′1,u1,v2,v′2,u2, . . . ,vnC,v

′
nC
,unC organised in a chain of 4-node cycles: these nodes are attached by the 4nC

edges,e2i−1 = {ui−1,vi}, e2i = {vi ,ui}, e′2i = {v′i ,ui}, e′2i−1 = {ui−1,v′i}, for any i ∈ [1,nC]. Let nK be the largest
even integer smaller thann/2 such thatnK(nK +1)/2< m/2. The graphG also consists ofnK additional nodes
forming withu0 a complete graph onnK +1 vertices. To summarize,G hasnK +3nC+1≤ n nodes, 4nC+nK(nK +
1)/2≤ m edges and diameter 2nC+1≤ D. The graphG is depicted in Figure 3.
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Fig. 3 The graphG with nC = 6 andnK = 4.

We start the exploration ofG following theLUF strategy from nodeu0. When the exploration may proceed
along several different edges having the same traversal count, priority is first given to the edges of the complete
graph onnK +1 vertices, then to edgee1, then to the edgeei with the smallest possiblei if all incident edges are
explored, and to the edgee′i with the smallest possiblei, otherwise. More precisely, the robot performs a complete
Eulerian traversal of the complete graph before proceedingthrough edgee1. (Such an Eulerian traversal does
exist becausenK is even.) These tie-breaking rules lead to an exploration ofthe complete graph between the first
exploration of each cycle in the chain of cycles. Indeed, onecan see the exploration as proceeding in phases, starting
and ending at nodeu0. The first phase starts by a complete traversal of the clique and then by a traversal of the
first cycle through the edgese1,e2,e′2,e

′
1. More generally, the phasei, for i ∈ [1,nC] consists in a complete traversal

of the clique and then of an exploration of the firsti cycles, through edgese1,e2, . . . ,e2i and thene′2i ,e
′
2i−1, . . . ,e

′
1.

Therefore, the worst-case cover time ofG is at leastnK(nK +1)/2·nC. SincenK(nK +1)/2∈Ω(m) andnC ∈Ω(D),
the theorem holds. ⊓⊔

3.2 An Upper Bound on Cover Time

We now proceed to prove theO(mD) bound on cover time of anyLUF exploration, through a sequence of technical
lemmas.
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Throughout the proofs we will use the following notation. When describing moments of time, the symbolt ′ is
treated as a more compact notation fort +1, likewiset ′′ meanst +2. The vertex occupied by the robot at timet is
denoted byr(t); the starting vertex of exploration is denoted bys, that iss= r(0). With each edgee we associate
a counterce called itstraversal count, whose value at timet is denoted byce(t); initially we assumece(0) = 0 for
all e∈ E. When traversing edgee in the time interval(t, t ′) we only increment the value of the counter associated
with this edge,ce(t ′) = ce(t)+1. For each nodeu we denote byCu(t) the set of traversal counts of the adjacent
edges at timet: Cu(t) = {c{u,v}(t) : v ∈ Nu}. The set of traversal counts of all edges of the graph is denoted by
C(t) = {ce(t) : e∈ E}.

At any given timet, let parameterk∈ N∪{−1} be defined in such a way that maxC(t) ∈ [2k+1,2k+2], and
let parameterl ∈N be such that minCr(t)∈ [2l ,2l +1]. Parametersk, l , andr used without an indication of time are
assumed to refer to the moment of time denoted byt, while symbolsk′, l ′, r ′, andr ′′ should be treated as equivalent
to k(t ′), l(t ′), r(t ′), andr(t ′′), respectively.

We first note that, for each vertexv different from bothr ands, the total number of traversals of edges incident
to v, performed when enteringv, is the same as the total number of traversals of these edges performed when
leavingv. As a simple extension of this observation, we have the following lemma.

Lemma 1 For a node u∈V, let Su(t) = ∑v∈Nu c{u,v}(t). The sum Su(t) is odd if and only if r6= s and either u= r,
or u= s.

Lemma 2 If for some time moment t we have k′ = k+1, then r= s and Cs(t) = {2k+2}.

Proof If k′ = k+ 1, then clearlyc{r,r ′}(t) = 2k+2 = maxC(t). This implies that during the time interval(t, t ′)
the robot chooses an edge having the maximal traversal count. Clearly, this means that there is no edge with a
smaller traversal count available atr, soCr(t) = {2k+2}. Hence, in Lemma 1 the value ofSr(t) is even, and we
immediately obtain the claim,r = s. ⊓⊔

Lemma 3 For any time moment t,maxCs(t)≥ 2k+1.

Proof We can obviously assume thatk≥ 0. Letτ < t be such a time moment thatk(τ) = k−1 andk(τ ′) = k. Then
by Lemma 2,r(τ) = s andCs(τ) = {2(k−1)+2}= {2k}. So, after traversing any edge adjacent tos, we obtain
maxCs(τ ′) = 2k+1. Sincet ≥ τ ′ and maxCs(t)≥ maxCs(τ ′), the claim follows directly. ⊓⊔

Lemma 4 If for some time moment t we have Cr(t) = {2p+2}, where p is some integer, then r= s and p= k.

Proof WhenCr(t) = {2p+2}, in Lemma 1 the value ofSr(t) is even, and sor = s. Moreover, by Lemma 3 we
cannot havep< k since then maxCs(t)≤ 2k. Thusp= k. ⊓⊔

In the next crucial lemma, we show that for each vertex of the graph, the frequency of edges to all adjacent
edges differs by at most a constant. Intuitively, the vertices of the graph may be partitioned into layers, such that
for a vertex within theb-th layer, the number of visits to adjacent edges is between 2b and 2b+2. However, for
each layera, wherea∈ [l ,k−1], there exists one distinguished vertexva which complies only to a slightly weaker
constraint, namely, the number of visits to edges adjacent to va is between 2a and 2a+3. These verticesva can be
seen as points of transition which an agent following theLUF strategy uses to move from one layer to another.

Lemma 5 For any time moment t, the following statements hold:

– there exists a subset VA(t) = {vl , ...,vk−1} of vertices indexed by integers a∈ [l ,k− 1], such that Cva(t) ⊆
[2a,2a+3].

– for any other vertex v6∈VA we have Cv(t)⊆ [2b,2b+2] for some integer value b.

Proof Initially, for t = 0 we haveC(0) = {0}, k=−1, l = 0, and so the induction claim holds withVA(0) = /0, and
b= 0 for every vertex.

Assuming that the induction assumption holds for timet and a corresponding setVA is given, we will now prove
that it also holds for timet ′ with an appropriately modified setV ′

A. (Sometimes no modification will be necessary;
for example, whenG is a cycle, we haveVA(τ) = /0 for all τ ≥ 0.) We start by showing a small auxiliary claim.

Claim. l′ ∈ [l −1, l +1].
Proof: The traversal count, at timet ′, of the edge used in time interval(t ′, t ′′) can be greater by at most one than
the traversal count, at timet, of the edge used in time interval(t, t ′), soc{r ′,r ′′}(t

′)≤ c{r,r ′}(t)+1≤ 2l +2, and thus
l ′ ≤ l+1. Suppose thatl ′ < l ; then we have minCr ′(t)≤minCr ′(t

′)<2l , and by the inductive assumptionr ′ 6∈VA(t).
Thus maxCr ′(t)−minCr ′(t)≤ 2, and we obtain minCr ′(t

′)≥ minCr ′(t)≥ maxCr ′(t)−2≥ c{r,r ′}(t)−2≥ 2l −2,
which means that alwaysl ′ ≥ l −1, completing the proof of the claim.

Now, consider the following definition of setV ′
A = {v′a : a∈ [l ′,k′−1]} for time t ′:
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1. For alla∈ [l +1,k−1], putv′a := va;
2. If l ′ ≤ l andl ′ < k′, putv′l := vl ;
3. If l ′ = l −1 andl ′ < k′, putv′l−1 := r ′.

The above procedure clearly defines all elementsv′a for a∈ [l ′,k−1]. We now observe that it does in fact define
all elementsv′a for the whole of the required range,a ∈ [l ′,k′ − 1]. Indeed, ifk′ = k+ 1, by Lemma 2 we have
c{r,r ′}(t) = 2k+2, sol = k+1= k′. Consequently, ifl ′ ≥ k+1 in the proposed construction, then setV ′

A is empty
as required, and ifl ′ = l −1= k, then the only elementv′l−1 of V ′

A is well defined.
We now verify the induction claim for the proposed definitionof setV ′

A by checking the imposed bounds on sets
Cv(t ′), for all verticesv∈V. Taking into account that for all verticesv other thanr andr ′ we haveCv(t) =Cv(t ′),
by the construction of elementsv′a based on elementsva, it is evident that it now suffices to check the bounds on
Cv(t ′) for v∈ {r, r ′,vl}; for all other vertices, the bounds follow directly from theinduction assumption for timet.
We therefore now successively consider verticesr, r ′, andvl .

For vertexr we need to consider two possibilities: eitherr ∈VA, or r 6∈VA.

1. If r ∈VA, thenVA 6= /0 and sol ≤ k−1. Since minCr(t)∈ [2l ,2l +1] by the definition ofl , taking into account the
inductive assumption concerning the bounds onCr(t) we must haver = vl (note that verticesva are only defined
for indicesa ≥ l ) andCr(t) ⊆ [2l ,2l + 3]. After traversing edge{r, r ′}, we havec{r,r ′}(t

′) = c{r,r ′}(t)+ 1 =
minCr(t) + 1 ∈ [2l + 1,2l + 2], so we retain the propertyCr(t ′) ⊆ [2l ,2l + 3]. If r = v′l , the bounds on set
Cr(t ′) are thus satisfied. We will now show that the other case,r 6= v′l , is impossible. Indeed, whenr 6= v′l
we would havel ′ = l + 1 (otherwise,l ′ ≤ l would mean thatl ′ ≤ l < k ≤ k′, so v′l = vl = r). Therefore,
minCr ′(t

′)≥ 2l +2, soc{r,r ′}(t
′) = 2l +2 andc{r,r ′}(t) = 2l +1. Taking into account thatr ′ 6= r = vl , we have

r ′ 6∈VA (as minCr ′(t)≤ 2l +1) andCr ′(t)⊆ [2l ,2l +2]. As we have already observed that minCr ′(t
′)≥ 2l +2

andc{r,r ′}(t
′) = 2l +2, we obtainCr ′(t

′) = {2l +2}. Applying Lemma 4 for timet ′ givesr ′ = s andk = l , a
contradiction with the assumptionl < k.

2. If r 6∈VA, then sincec{r,r ′}(t)∈ [2l ,2l +1], we must haveCr(t)⊆ [2l ,2l +2] (note that we must have minCr(t)≥
2l ). At time t ′, only the traversal count of edge{r, r ′} changes,c{r,r ′}(t

′) = c{r,r ′}(t) + 1 = minCr(t) + 1 ∈
[2l + 1,2l + 2], and we still haveCr(t ′) ⊆ [2l ,2l + 2]. By the definition of setV ′

A we haver 6∈ V ′
A, soCr(t ′)

fulfills the required bound with parameterb= l .

For vertexr ′ we likewise consider two possibilities: eitherr ′ ∈VA, or r ′ 6∈VA.

1. If r ′ ∈ VA, then by the same arguments as in the discussion for vertexr we successively obtain:l < k, r ′ = vl ,
Cr ′(t)⊆ [2l ,2l +3], c{r,r ′}(t

′)∈ [2l +1,2l +2], andCr ′(t
′)⊆ [2l ,2l +3]. If r ′ = v′l , then the bounds on setCr ′(t

′)
are satisfied. Ifr ′ 6= v′l , then once again, as in the previous discussion, we obtain:l ′ = l +1, minCr ′(t

′)≥ 2l +2,
and clearlyCr ′(t

′)⊆ [2l +2,2l +3]. By the definition of setV ′
A we haver ′ 6∈V ′

A, soCr ′(t
′) fulfills the required

bound for parameterb= l +1.
2. If r ′ 6∈ VA, then sincec{r,r ′}(t) ∈ [2l ,2l +1], we must have eitherCr ′(t) ⊆ [2l ,2l + 2], or Cr ′(t) ⊆ [2l − 2,2l ]

(with minCr ′(t)< 2l ). In the former case, we see thatCr ′(t
′)⊆ [2l ,2l +2], and sol ′ ≥ l ; by the definition ofV ′

A,
this means thatr ′ 6∈V ′

A, and thusCr ′(t
′) fulfills the required bound with parameterb= l . In the latter case, we

must havec{r,r ′}(t) = 2l , c{r,r ′}(t
′) = 2l +1, which implies thatCr ′(t

′)⊆ [2l −2,2l +1] (with minCr ′(t
′)< 2l ).

So,l ′ = l −1, and by the definition ofV ′
A, in this caser ′ = v′l−1 and the required bound onCr ′(t

′) is satisfied.

Finally, we consider vertexvl (under the assumption thatl < k, otherwise this case should be left out). Since
the bounds for verticesr and r ′ have already been proven, we can restrict ourselves to the case of vl 6= r and
vl 6= r ′. This means that the set of traversal counts adjacent tovl does not change during the time interval(t, t ′),
i.e. Cvl (t) = Cvl (t

′). Clearly, the only situation which needs some comment is when vl 6∈ V ′
A; we will show that

such a case is not possible. Indeed, this would mean thatl ′ = l + 1 or l ′ ≥ k′. If l ′ = l + 1, then we would have
c{r,r ′}(t

′) = 2l +2, soc{r,r ′}(t) = 2l +1, and sincer ′ 6= vl , we see from the inductive assumption thatr ′ 6∈ VA and
Cr ′(t)⊆ [2l ,2l +2]. Hence, noting thatl ′ = l +1, we haveCr ′(t

′) = {2l +2}, and by applying Lemma 4 for timet ′

we obtainr ′ = sandk= l , a contradiction with the assumptionl < k. Finally, we need to consider the casel ′ ≥ k′.
Then, sincek′ ≥ k andl ′ ≤ l +1, we obtainl ′ = k′ = k = l +1, which turns out to be a subcase of the previously
considered casel ′ = l +1. ⊓⊔

Theorem 4 For any graph, the cover time achieved by anyLUF exploration is at most2m(D+1).

Proof Consider any time momentt such thatl ≥ k. Then by Lemma 5 setVA is empty, and for any vertexv ∈
V we have maxCv(t)−minCv(t) ≤ 2. Let edge{va,vb} be such thatc{va,vb} ≥ 2k+ 1, and consider any other
edge{ua,ub} of the graph. Let us arbitrarily choose a shortest path(w1,w2, . . . ,wd), with w1 = ua andwd = va;
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obviously,d ≤ D+1. The following relations hold:c{ua,ub}(t)≥ minCw1(t)≥ maxCw1(t)−2≥ c{w1,w2}(t)−2≥
minCw2(t)−2≥ maxCw2(t)−4≥ . . .≥ maxCwd(t)−2d ≥ c{va,vb}−2d ≥ 2k+1−2(D+1) = 2(k−D)−1. So,
at any time momentt such thatl ≥ k > D, each edge of the graph has been explored at least once. Notice that
this is always true for the unique time momentt such that maxC(t) = 2D+2 and maxC(t ′) = 2D+3, and we will
use this time momentt as an upper bound on cover time. Indeed, at this timet, by Lemma 2, we haver = s and
Cs(t) = {2k+2}, which impliesl = k+1. Since at timeτ = (2D+2)m+1 we must have maxC(τ) > 2D+2 by
the pigeon-hole principle, we immediately obtain thatt < τ, and the claim follows. ⊓⊔

Taking into account that by Lemma 5, for any time momentt and for any vertexv∈V, we have maxCv(t)−
minCv(t) ≤ 3, and using similar arguments as in the above proof, we obtain that at any moment of timet the
following inequalities hold: maxC(t)−minC(t) ≤ 3(D+1). We easily conclude that in the limit, all edges are
explored with the same frequency.

Theorem 5 For any graph, any exploration following theLUF strategy achieves uniform frequency on all edges,
fe(G) = 1/m.

3.3 Cover Time ofLUF with Modified Initial Conditions

It turns out thatLUF explorations are resistant to minor perturbations, such aschanges to the starting values of
counters on edges. To show this, we will first provide another(slightly weaker) analysis of the cover time for the
LUF strategy, which does not rely on parity-based arguments.

Theorem 6 For any graph, the cover time achieved by any exploration following theLUF strategy is at most mn.

Proof Let t > 0 be an arbitrarily chosen moment of time. Consider an orderingv1,v2, . . . ,vn = r of the vertices of
G in increasing order of their last visit time. For any vertexvi which has already been explored by the robot and
which is not the current location of the robot (thusi < n), let τ ∈ [0, t −1] be the latest time moment at which the
robot was located atvi , and letv j = r(τ ′). By definition ofτ and of the ordering of the vertices, we conclude that
j > i.

We now look at the possible traversal countsCvi (t) andCvj (t) of edges adjacent tovi and v j . Since edge
{vi ,v j} was chosen for traversal from vertexvi at timeτ, we have minCvi (τ) = c{vi ,vj}(τ). Taking into account
that minCvi (t) ≥ minCvi (τ) and c{vi ,vj}(t) = c{vi ,vj}(τ) + 1, we obtain the following expression: minCvi (t) ≥
c{vi ,vj}(t)−1. Since obviouslyc{vi ,vj}(t)≥ minCvj (t), this finally yields the inequality minCvi (t)≥ minCvj (t)−1.

If j 6= n, we can iterate the construction, showing that for some vertex vk, k > j, we have minCvj (t) ≥
minCvk(t)−1, and so on.

Eventually, after at mostn−1 iterations; the process must stop at vertexvn = r, finally leading to the inequality:

minCvi (t)≥ minCr(t)− (n−1). (1)

Let us now assume thatt is the last time moment at which no edge of the graph has yet been traversedn+ 1
times, i.e. maxC(t) = n and maxC(t ′) = n+1; by the pigeon-hole principle,t ≤ mn. Since in the time interval
(t, t ′) the robot traverses an edge having traversal countn, clearly minCr(t) = n, and so by inequality (1), we have
minCv(t) ≥ 1 for any vertex which has already been visited by a robot. Note however that minCv(t) ≥ 1 means
that all the neighbours ofv have also been visited by the robot, and by recursively applying the same argument we
see that all the vertices of the considered connected graph must have been visited by the robot. Taking into account
thatt ≤ mn, this provides us with the sought bound on cover time. ⊓⊔

Now, assume that the initial value of traversal count is not necessarily 0 for all edgese, but arbitrarily drawn
from some range of values,ce(0) ∈ [0, p], for some constantp ∈ N. Even in such a self-stabilizing setting, by
retracing the proof of the previous theorem with some minor adjustments, we obtain that the cover time for the
strategy remains bounded byO(m(n+ p)).

Theorem 7 For any graph, the cover time achieved by any exploration following theLUF strategy is O(m(n+ p)),
where p is the maximum value of edge traversal counters at time0.

Using the same arguments, we can also show that in the limit all edges are explored with the same frequency.
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Corollary 1 For any graph, any exploration following theLUF strategy achieves uniform frequency on all edges,
fe(G) = 1/m, even when the initial values of edge traversal counts in the graph are non-zero.

By Theorem 1, it is clear that anyOF exploration does not guarantee a fair traversal of all the edges, whereas
by Theorem 5, fair traversal is always achieved by any exploration followingLUF. To conclude this section, we
point out that for all graphs there exist explorations following LUF which are in some sense best possible, i.e. fair
and periodic, with linear cover time and exploration period. The reason for this is that a depth first search (DFS)
exploration of the edges of the graph, in which all the edges are visited exactly twice, is in fact a valid execution
of theLUF strategy.

Theorem 8 For any graph there exists a (non-oblivious) exploration following theLUF strategy which performs a
periodic traversal of length2m, traversing each edge exactly twice in each period. ⊓⊔

4 Final remarks

We have shown that locally fair strategies in undirected graphs can closely imitate random walks, allowing us
to obtain an exploration which is fair with respect to all edges, and efficient in terms of cover time. However,
the fairness criterion has to be chosen much more carefully than for symmetric directed graphs: Least-Used-First
works, but Oldest-First does not.

In future work it would be interesting to study modified notions of equity, which are inspired by random walks
which select the next edge to be traversed with non-uniform probability. For example, it is possible to decrease the
general-case bound on the cover time of a random walk toO(|V|2 log|V|), by applying a probability distribution
which reflects the degrees of the nearest neighbors of the current node [15]. It is an open question whether a similar
bound can be obtained in the deterministic sense using a derandomized strategy.
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