
Tree Exploration with Advice ⋆

Pierre Fraigniaud a,1, David Ilcinkas b,1,∗, Andrzej Pelc c,2

aCNRS and Univ. Denis Diderot (LIAFA), Paris, France
bCNRS and Univ. Bordeaux I (LaBRI), France

cDép. d’informatique, Univ. du Québec en Outaouais, Canada

Abstract

We study the amount of knowledge about the network that is required in order to
efficiently solve a task concerning this network. The impact of available information
on the efficiency of solving network problems, such as communication or exploration,
has been investigated before but assumptions concerned availability of particular
items of information about the network, such as the size, the diameter, or a map of
the network. In contrast, our approach is quantitative: we investigate the minimum
number of bits of information (bits of advice) that has to be given to an algorithm
in order to perform a task with given efficiency.

We illustrate this quantitative approach to available knowledge by the task of tree
exploration. A mobile entity (robot) has to traverse all edges of an unknown tree,
using as few edge traversals as possible. The quality of an exploration algorithm
A is measured by its competitive ratio, i.e., by comparing its cost (number of edge
traversals) to the length of the shortest path containing all edges of the tree. Depth-
First-Search has competitive ratio 2 and, in the absence of any information about
the tree, no algorithm can beat this value.

We determine the minimum number of bits of advice that has to be given to an
exploration algorithm in order to achieve competitive ratio strictly smaller than 2.
Our main result establishes an exact threshold number of bits of advice that turns
out to be roughly log log D, where D is the diameter of the tree. More precisely,
for any constant c, we construct an exploration algorithm with competitive ratio
smaller than 2, using at most log log D − c bits of advice, and we show that every
algorithm using log log D− g(D) bits of advice, for any function g unbounded from
above, has competitive ratio at least 2.

Preprint submitted to Elsevier 6 August 2008

1 Introduction

For many network problems (such as leader election, minimum spanning tree,
rendezvous, wakeup, broadcasting, etc.), the quality of the algorithmic solu-
tions often depends on the amount of knowledge given to nodes of the network,
or given to mobile entities moving in the network, about its topology. Local
knowledge given to every node and/or to every mobile entity is its identity and,
for a node, its degree (or the list of neighbor identities). Any other knowledge
(e.g., the total number of nodes, network diameter, the total number of mobile
entities, partial maps of the network, sense of direction in the network etc.)
is global knowledge. Many results illustrate the impact of global knowledge
on the ability and efficiency of solving network problems. For instance, it is
proved in [4] that, if an upper bound n̂ on the number n of nodes of a graph is
known, then a robot can explore this graph in time polynomial in n̂, using one
pebble, while without this knowledge, Θ(log log n) pebbles are necessary and
sufficient. The role of the type of global knowledge known as the sense of direc-
tion in a network has been studied, e.g., in [21], for various distributed tasks.
Broadcasting in radio networks is another subject where global information
significantly influences efficiency. In [25], it is shown that, if nodes have com-
plete knowledge of the network, then deterministic broadcasting can be done
in time O(D+log3 n), for n-node radio networks with diameter D. (This result
has been recently improved to O(D + log2 n) in [27]). On the other hand, in
[9], a lower bound of Ω(n log D) is proved on deterministic broadcasting time
in radio networks in which nodes know only their own identity. (An almost
matching upper bound of O(n log2 D) is proved in [10]). In fact, the impact
of global knowledge is significant in many areas of distributed computing, as

⋆ A preliminary version of this paper appeared in the Proc. 31st International Sym-
posium on Mathematical Foundations of Computer Science, (MFCS 2006), LNCS
4162, 24-37 (invited talk of A. Pelc).
∗ Corresponding author
LaBRI, bât A30, Université Bordeaux I
351 cours de la Libération
33405 Talence Cdex, France
Phone: (+33) 540 006 912. Fax: (+33) 540 006 669.

Email addresses: pierre.fraigniaud@liafa.jussieu.fr (Pierre Fraigniaud),
david.ilcinkas@labri.fr (David Ilcinkas), pelc@uqo.ca (Andrzej Pelc).
1 Pierre Fraigniaud and David Ilcinkas were both supported by the projects PairA-
Pair of the ACI Masses de Données, and FRAGILE of the ACI Sécurité Informa-
tique. Additional support from the INRIA project “Grand Large”.
2 Andrzej Pelc was supported in part by NSERC discovery grant and by the Re-
search Chair in Distributed Computing of the Université du Québec en Outaouais.
This work was done during the visit of Andrzej Pelc at LRI. Additional supports
from the Ministère des Relations Internationales du Québec, from University of
Paris-Sud, and from the project PairAPair of the ACI Masses de Données.

2

witnessed by [19,28] where hundreds of impossibility results and lower bounds
for distributed computing are surveyed, many of them depending on whether
or not the nodes are given exact or approximate values of global parameters
providing partial knowledge of the topology of the network. Finally, notice
that the amount of global knowledge has also a strong impact on computing
in anonymous networks. (See, e.g., [26], where the impact of knowing the total
number of nodes is studied in depth.)

We interpret global knowledge, given to the nodes or to the mobile entities,
as the advice obtained from an oracle. Given a problem P with the set of
instances I, an oracle is a function O : I 7→ {0, 1}∗ that maps any instance I
to a binary string O(I), called the advice of oracle O on instance I. Solving
problem P using oracle O consists in designing an algorithm that, given the
advice O(I), but unaware of I, returns a P-scheme for I, i.e., a sequence of
instructions executed by the nodes or the mobiles entities, solving P for I.
In this setting, the amount of global knowledge is measured by the number
of bits of advice on every instance I, i.e., the length of the binary string
O(I). Typical questions of interest are then: ”What is the minimum number
of bits of advice for solving problem P?” or ”What is the minimum number
of bits of advice for solving P within some amount of time?”. The novelty
and significance of our modeling of global knowledge is that it enables asking
such quantitative questions about the required knowledge, regardless of what
kind of knowledge is supplied. This should be contrasted with the traditional
approach that assumes availability of particular items of global information.

Modeling knowledge about the network by the advice obtained from an oracle
has already proved useful in the context of communication problems. In a
recent paper [23], we showed tight bounds on the number of bits of advice
required for an efficient execution of two fundamental communication tasks:
broadcast and wakeup. It turns out that the minimum number of bits of advice
required for broadcast with a linear number of messages is strictly larger than
that required for wakeup with a linear number of messages. In this paper,
we address similar quantitative questions about knowledge required for one
of the fundamental problems in mobile computing: the exploration problem.
We prove a tight bound of roughly log log D on the number of bits of advice
enabling the design of an exploration algorithm with competitive ratio strictly
less than 2, on trees of diameter D.

Added in proof. After the publication of the preliminary (conference) version
of this paper, the advice paradigm has been used to investigate various other
network problems: in [22] to study distributed graph coloring, in [24] to study
the distributed minimum spanning tree construction, and in [32] to study
graph searching.

3

1.1 The background of tree exploration

A robot has to traverse all edges of an undirected connected graph, using as
few edge traversals as possible. Graph exploration is most often performed
when the robot lacks some essential information on the explored graph. In
such case, the quality of an exploration algorithm A is measured by compar-
ing its cost (number of edge traversals) to the length of the shortest covering
walk (i.e., the shortest path containing all edges of the graph). This ratio,
maximized over all graphs and all starting nodes, is called the competitive
ratio R(A) of algorithm A. The situation here is similar to the context of
online algorithms, where competitive ratio first appeared. In both cases, the
performance of an algorithm lacking some essential knowledge about the envi-
ronment is compared to that of an algorithm that has this knowledge: in the
case of online algorithms, this knowledge concerns future events, and in the
case of exploration, it concerns the topology of the graph and its labeling. (An
algorithm provided with a fully labeled copy of the explored graph, showing
which port at a visited node leads to which neighbor, can find the shortest
covering walk off line.)

Depth-First-Search has competitive ratio 2 and it was shown in [14] that no
exploration algorithm can beat this value for arbitrary graphs, even when
provided with an unlabeled isomorphic copy of the explored graph with the
starting node marked. It turns out that merely the absence of labels of ports
and nodes in the map is sufficient to confuse any algorithm on some graphs,
making it not better than DFS. On the other hand, in the absence of any global
information whatsoever, beating competitive ratio 2 was shown impossible
even for the family of trees. Hence the following question becomes natural. Is
it possible to achieve competitive ratio smaller than 2, for tree exploration,
if the algorithm is provided with some partial information concerning the
explored environment? In [14] a positive answer to this question was given
in the case of very large additional information: the robot was provided with
an unlabeled map of the tree. However, this assumption is not very realistic.
Indeed, exploration is often used as a tool to construct a map of an unknown
network, and usually a priori information about the explored network is much
more restricted.

1.2 The problem

We consider the problem of the amount of information needed to achieve tree
exploration with competitive ratio smaller than 2. (Recall that the reason
of restricting attention to trees is the above mentioned negative result for
general graphs, showing that already relatively simple graphs force competitive

4

ratio at least 2 even with extensive additional information, namely an entire
unlabeled copy of the explored graph.)

The problem is formalized as follows. In the framework of tree exploration,
we define an oracle to be a function O from the class of all trees to the class
of binary strings. Specifically, for every tree T , an exploration algorithm is
provided with the advice string O(T) and returns an exploration scheme for
T . Such a scheme, starting at any node u, traverses all edges of T . We ask what
is the minimum number of bits of advice for which there exists an exploration
algorithm achieving competitive ratio smaller than 2, for all trees.

1.3 Our results

We use the notion of advice to measure the minimum amount of information
required for the design of an efficient exploration algorithm. Our main result
establishes an exact threshold number of bits of advice to achieve competitive
ratio smaller than 2 for tree exploration. This threshold turns out to be roughly
log log D, where D is the diameter of the tree. More precisely, for any constant
c we construct an exploration algorithm with competitive ratio smaller than
2, using at most log log D−c bits of advice, and we show that every algorithm
using log log D−g(D) bits of advice, for any function g unbounded from above,
has competitive ratio at least 2.

It is interesting to note the structure of the advice in our positive result. For
any tree T , this is a string s of bits depending only on D, and giving an
approximation of it, plus an additional bit b that allows the robot to choose
between two types of exploration. This additional bit b (depending on D and
on the size of the tree) is very important. Indeed, while the string s depends
only on D and has length smaller than log log D, we show that even the full
knowledge of D, but without b, is not sufficient to beat competitive ratio 2.
More precisely, we show that every exploration algorithm knowing only the
diameter of the tree must have competitive ratio at least 2.

1.4 Related work

Exploration of unknown environments has been extensively studied in the
literature, both in the geometric and in the graph setting. In the first scenario
the environment is modeled, e.g., as a terrain with obstacles that may be
convex [7], polygonal [11] or rectangular [3]. Another way is to represent the
unknown environment as a graph, assuming that the robot may only move
along its edges. The graph model is further specified in two different ways.
In [1,4,5,13,20], the robot explores strongly connected directed graphs and it

5

can move only in the direction from tail to head of an edge, not vice-versa.
In [1,13], the authors study competitive ratio of algorithms exploring directed
graphs. The constructed algorithms have competitive ratio exponential in the
deficiency d of the graph [13], or competitive ratio dO(log d)m, where m is the
number of edges [1]. Recently, the first exploration algorithm with competitive
ratio polynomial in the deficiency of the graph has been given in [20].

In [2,8,14,18,29,30] the explored graph is undirected and the robot can traverse
edges in both directions. In some papers, additional restrictions on the moves
of the robot are imposed. It is assumed that the robot has either a restricted
tank [2,8], forcing it to periodically return to the base for refueling, or that it
is tethered, i.e., attached to the base by a rope or cable of restricted length
[18].

Another direction of research concerns exploration of anonymous graphs (di-
rected or undirected). In this case it is impossible to explore arbitrary graphs
and stop, if no marking of nodes is allowed. Hence the scenario adopted in [4,5]
is to allow pebbles which the robot can drop on nodes to recognize already
visited ones, and then remove them and drop in other places. The authors
concentrate attention on the minimum number of pebbles allowing efficient
exploration of arbitrary directed graphs. Exploring anonymous trees without
the possibility of marking nodes is investigated in [15]. The authors concen-
trate attention not on the cost of exploration but on the minimum amount
of memory sufficient to carry out this task. Exploration of anonymous graphs
was also considered in [12,16,17].

2 Terminology and preliminaries

For any tree T we denote by |T | the number of nodes of T , and call it the size
of this tree. For a given tree T and starting node u, we denote by opt(T, u) the
length of the shortest covering walk of T starting from u, i.e., the length of
the shortest path in T starting from u and containing all edges of T . Clearly,
opt(T, u) = 2(n − 1) − ecc(u), where n is the size of T and ecc(u) is the
eccentricity of the starting node u, i.e., the distance from u to the farthest
leaf. Depth-First-Search ending in the leaf farthest from the starting node u
uses fewest edge traversals.

We assume that all ports at a node v are numbered 1,...,deg(v). Hence the
robot can recognize already visited nodes and traversed edges. However, it
cannot tell the difference between yet unexplored edges incident to its current
position. The robot executes a given exploration scheme that, at every node
v, makes one of the following decisions: take a specific already explored edge,
or take an unexplored edge. If the scheme decides to take an unexplored edge,

6

the actual choice of the edge belongs to an adversary, as we are interested in
worst-case performance.

We want an oracle to provide information on the topology of the explored
tree, independently of any labeling, hence we define it as a function O from
the class of all unlabeled trees to the class of binary strings. For any string s,
a tree T such that O(T) = s is called compatible with s. If a tree exploration
algorithm A takes the advice O(T) as input for any tree T , we say that A
uses oracle O.

Consider an exploration algorithm A using oracle O. For any string s in the
range of O, algorithm A produces an exploration scheme that explores all
trees compatible with s. For any such tree T and starting node u, the cost
A(T, u) of this scheme, run on tree T from the starting node u, is the worst-
case number of edge traversals taken over all of the above mentioned choices
of an adversary. The competitive ratio of A is defined as

R(A) = supT,u

A(T, u)

opt(T, u)
,

where the supremum is taken over all trees T and all starting nodes u of T .

The fact that an oracle is defined on unlabeled rather than labeled trees is an
important distinction. For example, for the class of lines, we will prove that
(asymptotically) log log n bits of advice are needed to achieve competitive
ratio smaller than 2, where n is the length of the line. However, for a given
labeling, a single bit of advice (indicating the port at the starting node leading
to the closer endpoint of the line) is enough to achieve competitive ratio 1:
DFS starting toward the closer endpoint achieves it.

The following remark will be useful for proving lower bounds on the compet-
itive ratio of exploration algorithms. Suppose that the robot, at some point
of the exploration, is at node v, then moves along an already explored edge
e incident to v, and immediately returns to v. For any set of decisions of an
adversary, an algorithm causing such a pair of moves, when run on a tree T
from some starting node u, has cost strictly larger than the algorithm that
skips these two moves. Hence, we restrict attention to exploration algorithms
that never perform such returns. We call them regular.

In [14], the authors introduced the following classification of exploration al-
gorithms for the class of lines. (They considered exploration algorithms that
know the length n of the line.) Fix n and let type k be the set of algorithms that
always do at most k returns before reaching an endpoint, and that do exactly
this many returns for some combination of starting node and (adversary’s)
choice of the initial direction. They proved the following result that can be
used to restrict attention to relatively simple algorithms exploring lines, when

7

looking for minimum competitive ratio.

Lemma 1 [14] Fix n ≥ 11. For every exploration algorithm A for the line Ln

of length n, there exists an algorithm A′ for Ln, such that A′ is of type 1 and
supu∈Ln

A′(Ln,u)
opt(Ln,u)

≤ supu∈Ln

A(Ln,u)
opt(Ln,u)

.

In our setting, an algorithm does not know the length of the line but only
the bits of advice. Hence we change the notion of type in the following way.
Consider an algorithm A using oracle O. Fix a string s in the range of O and
consider the exploration scheme produced by A for this string. This scheme is
of type k if it always does at most k returns before reaching an endpoint, for
any line Ln of length n compatible with s, and any starting node u, and if it
does exactly this many returns for some line compatible with s, some starting
node and some adversary choice of the initial direction.

In the proof of Lemma 1, the algorithm A′ is obtained from A independently
of n. Hence this lemma implies that in our setting the best competitive ratio
for the class of lines is achieved by an exploration algorithm that, for any
string s, produces a scheme of type 1. This is a class of simple exploration
schemes that go x steps in one direction (unless an endpoint is met), then
return and go to an endpoint, then return and go to the other endpoint. For
any scheme of type 1, this integer x will be called the probing distance of the
scheme.

The next lemma describes the performance of schemes of type 1 as a function
of the probing distance.

Lemma 2 For any positive integer n and any α < 1, consider an exploration
scheme of type 1 for the line Ln of length n, with probing distance ⌊αn⌋,
and let tα,n(u) be the cost of this scheme, for starting node u. Let Fn(α) =

supu∈Ln

tα,n(u)
opt(Ln,u)

. Then, there exists a positive integer N0, such that for any

n ≥ N0, the function Fn is strictly decreasing in the interval (0,
√

3−1
2

], and
supn>0 Fn(α) < 2, for any α in this interval.

PROOF. Fix a starting node u in Ln. Let a be the distance from u to the
endpoint of the line toward which the robot moves first, and let b = n−a. We
may assume a, b > 0, otherwise tα,n(u) = opt(Ln, u). Let x = ⌊αn⌋. If a ≤ x

then, since α ≤
√

3−1
2

< 1/2, we have tα,n(u) = opt(Ln, u). Hence assume

a > x. If a ≤ b then tα,n(u)
opt(Ln,u)

= 2x+b+n
2n−b

, which is maximized for b = n − x − 1

and in this case is equal to 2n+x−1
n+x+1

. If a > b then tα,n(u)
opt(Ln,u)

= n+2x+b
n+b

, which is

maximized for b = 1 and in this case is equal to n+2x+1
n+1

. For α ≤
√

3−1
2

and

sufficiently large n, we have 2n+x−1
n+x+1

≥ n+2x+1
n+1

, and hence Fn(α) = 2n+x−1
n+x+1

. This
fraction is a decreasing function of x, hence Fn is a decreasing function of α

8

in the interval (0,
√

3−1
2

]. For the second part notice that, for sufficiently large
n, we have Fn(α) = 2n+x−1

n+x+1
≤ 2+α

1+α
, which is smaller than 2 for α > 0. 2

3 The upper bound

In this and the next section, we prove our main result, establishing the exact
threshold on the number of bits of advice for which an exploration algorithm
can have competitive ratio smaller than 2. This result is presented in two
theorems, one of which establishes an upper bound on the required number of
bits of advice, by constructing an appropriate exploration algorithm, and the
other, in section 4, proves a matching lower bound. In this section, we establish
the upper bound, by constructing exploration algorithm SKE(c) (for Small-

Knowledge-Exploration(c)), for an arbitrary positive integer constant c.
This algorithm has competitive ratio smaller than 2, and uses an oracle Oc of
size at most max(1, log log D − c), for any tree of diameter D.

We first describe the oracle Oc. Fix c > 0. Given a tree T of diameter D, the
oracle Oc outputs the following advice: a bit called choice and, if choice = 1,
an integer k using ⌈log⌈log D⌉⌉ − (c + 3) bits. The bit choice is used by the
algorithm to make a decision concerning two alternative ways of exploration,
and the integer k is used to obtain an approximation D0 of the diameter.

Let N0 be an integer (whose existence is guaranteed by Lemma 2) such that,

for all n ≥ N0, the function Fn is strictly decreasing in the interval (0,
√

3−1
2

],

and supn>0 Fn(α) < 2, for any α in this interval. For α ∈ (0,
√

3−1
2

], let β(α) =
supn>0 Fn(α). Let T be any tree and let n and D be, respectively, its number of
nodes and its diameter. Take ǫ such that D = (1−ǫ)n. We will use the following

abbreviations: λ =
√

3−1
2

, and γ = 22c+3+1. We now define a threshold ǫ∗ on the
value of ǫ that will serve to define the bit choice. Let ǫ1 = λ

16γ
, β1 = β(ǫ1),

ǫ2 = 2−β1

624
, and ǫ∗ = min(ǫ1, ǫ2). The oracle sets choice to 1 if

(ǫ < ǫ∗) ∧ (D ≥ 22c+3

) ∧ (n ≥ N0) ,

and sets choice to 0 otherwise. If choice = 1, the oracle computes k =
⌊ ⌈log D⌉

2c+3 ⌋.

Given choice and k, Algorithm SKE(c) returns an exploration scheme. If
choice = 0, then this scheme is an arbitrary DFS. To fix attention, we take
the DFS that always chooses the smallest yet unused port number at every
node. Note that choice is set to 0 when the diameter of the tree is significantly
smaller than its size, or when the diameter is bounded, or when the tree itself
is small.

9

We now describe the much more subtle scheme Xc produced by the algorithm
when choice = 1. The scheme Xc uses Procedure DPDFS(v) (for Doubling-

Partial-Depth-First-Search(v)) that is called at a node v of the explored
tree, outputs the two edges connecting v to the two largest subtrees rooted at
neighbors of v, completely explores all other subtrees, and eventually returns
to v. In the sequel, we will use the notion of a subtree pending from v as an
equivalent to the notion of a subtree rooted at a neighbor of v. Procedure
DPDFS(v) is described in Figure 1.

Procedure DPDFS(v)
i ← 1;
S ← set of edges incident to v, connecting v to subtrees

not yet completely explored;
while |S| ≥ 3 do

S′ ← S;
while S′ 6= ∅ do

let e ∈ S′ and let T (e) be the subtree connected to v
by edge e;

explore T (e) by DFS until min(|T (e)|, 2i − 1) nodes
are visited;

return to v;
S′ ← S′ \ {e};
if T (e) is completely explored then S ← S \ {e};

i ← i + 1;
if |S| = 2 then return S;
if |S| = 1 then let e′ be the edge connecting v to the largest

explored subtree and return S ∪ {e′};
if S = ∅ then let e′ and e′′ be the edges connecting v to the

two largest
explored subtrees and return {e′, e′′};

Fig. 1. Procedure DPDFS

Lemma 3 Let v be any node of degree at least 3. Let T1, . . . , Tp be the enu-
meration of the subtrees pending from v in decreasing order of their sizes.
Procedure DPDFS(v) returns two edges corresponding to two largest subtrees
(up to size equality), and completely explores all other subtrees pending from
v. Moreover, the cost of Procedure DPDFS(v) is at most 22

∑p
i≥3 |Ti|.

PROOF. The first part is straightforward. For the second part, let xi =
⌊log |Ti|⌋, for i = 1, . . . , p. Let phase j denote the jth turn of the external
while loop. Since 2xi − 1 < |Ti| ≤ 2xi+1 − 1, subtree Ti is completely explored
at the end of phase xi + 1, and not previously. Hence the last executed phase
is the phase x3 + 1.

We first bound the cost of exploring T1. During phase j, DFS visits at most 2j

10

nodes of this subtree. This DFS costs at most 2 · 2j, including the return to v.
For the complete procedure, the cost of exploring T1 is at most

∑x3+1
j=1 2 · 2j ≤

2 · 2x3+2 = 8 · 2x3 ≤ 8|T3|. The estimate holds for exploration of T2 as well.
Hence the cost of exploring both T1 and T2 is at most 16|T3|.

Let 3 ≤ i ≤ p. The cost of exploring Ti in phase xi+1 is exactly 2|Ti|. The total
cost of exploring Ti is thus at most 2|Ti| +

∑xi

j=1 2 · 2j ≤ 2|Ti| + 4 · 2xi ≤ 6|Ti|.
Therefore the total cost of exploring all subtrees Ti, for i ≥ 3, is at most
6

∑p
i=3 |Ti|.

Since |T3| ≤
∑p

i≥3 |Ti|, the total cost of Procedure DPDFS(v) is bounded by
22

∑p
i≥3 |Ti|. 2

The intuitive idea of the exploration scheme Xc (returned by Algorithm SKE(c)
when choice = 1) is the following. Let D0 = 2k·2c+3−1. We will prove that D0

approximates the diameter D as follows: D0 ≤ D < γD0. The robot uses
Procedure DPDFS(v) to identify the two edges connecting the current node v
to the largest subtrees pending from it. Then the robot moves along one of the
edges and applies the procedure again. These consecutive applications define
a path of length approximately equal to the diameter of the tree. On this
path the robot applies a scheme of type 1 for lines: go at probing distance
⌊λD0/2⌋, return and go to the endpoint of the path, return and go to the
other endpoint of the path. The approximation D0 of the diameter is tight
enough to guarantee good performance of the scheme on this path. On the
other hand, the part of the tree disjoint from this path is negligible (this is
implied by the conditions of setting choice to 1). These two facts (shown in
detail in the proof of Theorem 5) imply that the competitive ratio of scheme
Xc is smaller than 2.

The description of the exploration scheme Xc is provided in Figure 2. In the
description, moves performed during the calls to Procedure DPDFS are called
internal, and all other moves are called external. During the entire exploration,
the robot stores the results of all previous actions, and constructs a map of
the portion of the tree that has been explored so far.

Lemma 4 Algorithm SKE(c) is correct.

PROOF. If the oracle sets choice to 0, then Algorithm SKE(c) returns DFS
as the exploration scheme, which clearly visits all nodes of the tree. Assume
that the oracle sets choice to 1. We will prove that the returned scheme Xc

visits all nodes of the tree. Assume this is not the case. Since at each execution
of the while loop in Xc the robot checks (before terminating) whether the tree
is completely explored, our assumption implies that the robot does not stop.
Therefore, there exists a non-empty set S of nodes that are visited infinitely

11

Exploration scheme Xc

while the exploration is not completed do

let v be the current node;
{Internal moves:}
if deg(v) ≥ 3 then

unless Procedure DPDFS(v) has already been applied in
a previous

step, apply it to get edges e, e′ connecting v to the two
largest

subtrees pending from v;
{External move:}
if there is only one edge connecting v to a subtree not com-

pletely
explored then

leave v by this edge;
else

{e, e′ are the two edges connecting v to the two subtrees
not yet completely explored}
if during the last external move (if any), the robot did

not
come to v by e or e′ then

leave v by edge e;
else

assume w.l.o.g. that the robot came to v by edge e;
if the robot is for the first time at distance ⌊λD0/2⌋

from the
starting node then

leave v by edge e;
else leave v by edge e′;

endwhile

Fig. 2. Exploration scheme Xc

often. S is a subtree of T . Let v be a leaf of S, and let v′ be its unique neighbor
in S. Consider a stage t of the exploration, at which every node in S has been
visited at least twice, and no node in T \ S will be visited anymore.

After stage t, the robot goes (infinitely often) from v′ to v, by external moves.
The robot never performs an external move toward a subtree that is completely
explored. Therefore, the subtree U of T , pending from v′ and containing v,
is not completely explored. Once the robot reaches v, it is not for the first
time at distance ⌊λD0

2
⌋ from the starting node because v has been visited at

least twice at stage t. Moreover, node v cannot be a leaf of T because subtree
U is not completely explored. Therefore, the only reason why the robot goes
back to v′ from v is that the subtree pending from v and containing v′ is the
unique subtree pending from v that is not completely explored. This implies
that subtree U is completely explored, a contradiction. Therefore, all nodes of

12

the tree are explored by the scheme Xc, which proves the correctness of the
exploration scheme. 2

Theorem 5 Let c be an arbitrary positive integer constant. Algorithm SKE(c)
uses at most max(1, log log D − c) bits of advice, for any tree of diameter D,
and has competitive ratio smaller than 2.

PROOF. The result is true for n = 1 or n = 2, as any algorithm is optimal
in this case. In the following, we assume that n ≥ 3.

Recall that k = ⌊ ⌈log D⌉
2c+3 ⌋. The oracle Oc gives at most ⌈log k⌉ + 1 bits, hence

at most max(1, log log D − c) bits. The definition of k implies the inequality

k ≤ ⌈log D⌉
2c+3 < k + 1, hence k · 2c+3 ≤ ⌈log D⌉ < k · 2c+3 + 2c+3, and finally

2k·2c+3−1 ≤ D < 2k·2c+3

· 22c+3

. From the definition of D0 and γ we get D0 ≤
D < γD0.

First assume that the oracle sets choice to 0. Since the exploration scheme
in this case is a DFS, the cost of the scheme is at most 2(n− 1)− 1 = 2n− 3.
The cost opt(T, u), where u is the starting node, is 2(n− 1)− ecc(u). We have
ecc(u) ≤ D = (1 − ǫ)n. We obtain

opt(T, u) ≥ 2(n − 1) − (1 − ǫ)n = (1 + ǫ)n − 2 .

Since D ≤ n − 1, we have ǫ ≥ 1/n, or equivalently ǫn ≥ 1. Hence the ratio in
this case is at most

2n − 3

(1 + ǫ)n − 2
=

2n − 3

(1 + ǫ/2)n − 2 + ǫn/2
≤

2n − 3

(1 + ǫ/2)n − 1.5
≤

2

1 + ǫ/2
.

If ǫ ≥ ǫ∗, then 2
1+ǫ/2

≤ 2
1+ǫ∗/2

< 2. Assume that ǫ < ǫ∗. Let D∗ = 22c+3

.
Therefore, choice is set to 0 because either D < D∗ or n < N0. If D < D∗,
then n < D∗

1−ǫ
. Let N1 = D∗

1−ǫ∗
. Then we have n < D∗

1−ǫ
≤ D∗

1−ǫ∗
= N1. Hence,

both when D < D∗ and when n < N0, we have n < N∗ = max(N0, N1). Let
ǫ3 = 1/N∗. We have ǫ ≥ 1/n ≥ 1/N∗ = ǫ3. We obtain 2

1+ǫ/2
≤ 2

1+ǫ3/2
< 2.

Hence the ratio of the cost of DFS (returned by Algorithm SKE(c) when choice

is set to 0) to opt(T, u), is at most max(2
1+ǫ∗/2

, 2
1+ǫ3/2

) < 2.

From now on, we assume that the oracle sets choice to 1, hence Algorithm
SKE(c) returns exploration scheme Xc.

In the analysis of the cost of exploration scheme Xc, we use the following
terminology. Assume that the robot enters some node of degree at least 3 by
edge e and applies Procedure DPDFS(v). If the procedure outputs two edges
different from e, then we say that the current node v is a fork. Now consider
edges traversed during external moves. These edges form a subtree T ′ of T .

13

For any node v, there exist at most two incident edges such that any external
move of the robot leaving v takes one of them. Hence, all nodes are of maximal
degree 3 in this subtree. Nodes of degree exactly 3 in T ′ are forks. Let v1, . . . , vq

be the forks of T ′, if any, in order of their first visit by the robot. Let ei be the
edge connecting vi to the subtree pending from it and containing the starting
node u. In view of the definition of a fork, the robot never makes an external
move on edge ei from node vi. Let u′ be the last fork vq, if any, or u′ = u, if
T ′ does not contain any fork. Finally, let P be a path of length D in the tree
and let P ′ be the set of nodes in T ′ visited by an external move after u′. P ′

is a path because it does not contain any fork other than possibly u′. Finally,
let C be the length of a shortest covering walk in path P ′ starting at node u′.

In our analysis, the cost of the scheme Xc is split into the cost of internal
moves, and the cost of external moves.

Claim 1. The total number of internal moves is at most 154ǫn.

To prove Claim 1, let v be any node of degree at least 3 in T . Let T1, . . . , Tp

be the enumeration of the subtrees pending from v, in decreasing order of
their sizes. Since D = (1 − ǫ)n, there are at most ǫn nodes in T \ P . This
implies

∑p
i≥3 |Ti| ≤ ǫn. Hence DPDFS(v) never goes at distance more than 2ǫn

from node v. A node of T is either explored during a call to DPDFS, or it is
in T ′. Hence any node of T is at distance at most 2ǫn from a node in T ′. In
particular, there are two nodes w,w′ of T ′, such that w is at distance at most
2ǫn from one extremity of P , and w′ is at distance at most 2ǫn from the other
extremity of P . The distance between w and w′ is at least D−4ǫn = (1−5ǫ)n.
This implies that |T ′| ≥ (1 − 5ǫ)n.

By Lemma 3, the cost of DPDFS(v) depends on the sum of the sizes of the
subtrees pending from v, except the two largest. We call those subtrees the
small subtrees pending from v. DPDFS is executed exactly at these nodes in
T ′ that have degree at least 3 in T . For any non-fork node v ∈ T ′, the small
subtrees of v are all disjoint from T ′. For a fork vi, there is only one small
subtree that contains a node of T ′: the subtree pending from vi and containing
u. Therefore all small subtrees pending from nodes in T ′, except the q subtrees
pending from the forks and containing u, are disjoint from T ′ and also disjoint
from each other. The total size of these subtrees is at most |T \ T ′| ≤ 5ǫn.

Assume that T ′ \ P ′ 6= ∅. Let ni, for i = 1, . . . , q, be the size of the subtree Ti

pending from vi and containing u. Fix i < q. Since vi is a fork, there exist two
subtrees pending from vi and not containing u, that have at least ni nodes
each. One of them, called T ′

i , does not contain the next fork vi+1. Ti and T ′
i

are both included in the subtree Ti+1. This implies ni+1 ≥ 2ni. Hence the sum
of the sizes of the q subtrees pending from the forks and containing u satisfies

14

∑q
i=1 ni ≤ 2nq. Since the edge eq connecting P ′ and T ′ \ P ′ is not selected by

DPDFS at the corresponding fork u′ = vq, we have |T ′ \ P ′| ≤ ǫn. Therefore,
since nq = |T ′ \ P ′|, we have

∑q
i=1 ni ≤ 2ǫn.

Hence, by Lemma 3, the total number of internal moves is at most 22(5ǫn +
2ǫn) = 154ǫn. This concludes the proof of Claim 1.

Claim 2. The total number of external moves is at most β1C + 2ǫn.

To prove Claim 2, we study separately the external moves in P ′ and in T ′ \P ′.
Let us first consider external moves in P ′. At least one of w,w′ (defined in the
proof of Claim 1) is on P ′ because (1− 5ǫ)n > ǫn, as ǫ < ǫ1 < 1/8. Therefore,
since |T ′ \ P ′| ≤ ǫn, the path P ′ is of length at least (1 − 6ǫ)n.

Since D ≥ 22c+3

, we have D0 ≥ 16. Together with ǫ < 1/2, this implies

2ǫn < 2ǫ1n =
λ

8γ
n =

λ

8γ

D

1 − ǫ
≤

λ

8

D0

1 − ǫ
≤ λD0/4 ≤ λD0/2 − 1 ≤ ⌊λD0/2⌋ .

Hence when the robot is for the first time at distance ⌊λD0/2⌋ from the starting
node, it must be at a node of P ′. Moreover, this node is at distance at least
ǫ1|P

′| from u′ because ǫ1|P
′| ≤ ǫ1D < ǫ1n ≤ 2ǫ1n − ǫn. It is also at distance

at most ⌊λ|P ′|⌋ from u′ because |P ′| ≥ (1 − 6ǫ)n and ǫ < 1/16 imply |P ′| ≥
n/2 > D0/2. Therefore, in the path P ′, the robot goes at probing distance x
(from u′) such that ⌊ǫ1|P

′|⌋ ≤ x ≤ ⌊λ|P ′|⌋, then returns to an endpoint of
P ′, and finally returns to the other endpoint of P ′. There exists α satisfying
0 < ǫ1 ≤ α ≤ λ, such that x = ⌊α|P ′|⌋. Recall that C is the optimal cost of
exploring the line P ′ starting at node u′ on this line. In view of Lemma 2, the
number of external moves of the robot in P ′ is at most Fn(α) ·C. By the same
lemma and in view of the fact that n ≥ N0, we have Fn(α) ≤ Fn(ǫ1) ≤ β1 < 2.
Consequently, the number of external moves of the robot in P ′ is at most
β1 · C.

Let us now consider external moves in T ′ \P ′. We proved that when the robot
is for the first time at distance ⌊λD0/2⌋ from the starting node, then it is on
P ′. We also proved that the robot never visits again T ′ \ P ′ by an external
move after it reaches P ′ by an external move. In view of the formulation of
scheme Xc (cf. Figure 2), the robot makes an external move on each edge of
T ′ \ P ′ at most twice. Since |T ′ \ P ′| ≤ ǫn, the number of external moves of
the robot in T ′ \ P ′ is at most 2ǫn. This completes the proof of Claim 2.

Claim 1 and Claim 2 imply that the total cost of the scheme Xc is at most
β1 · C + (154 + 2)ǫn = β1 · C + 156ǫn.

It remains to bound the ratio ρ of this cost to opt(T, u). The shortest covering

15

walk starting at u visits u′ before any other node of P ′. It has then to visit
the path P ′ starting from u′. Therefore, the length of the shortest covering
walk starting at u cannot be less than C (the optimal number of moves on P ′

starting from u′). This gives ρ ≤ β1·C+156ǫn
C

. We have ǫ ≤ ǫ2 = 2−β1

624
. Together

with C ≥ |P ′| ≥ n/2 (for the latter inequality, see the proof of Claim 2), this
implies

β1 +
156ǫn

C
≤ β1 +

156ǫn

n/2
≤ β1 + 2 · 156

2 − β1

624
= β1 +

2 − β1

2
= 1 +

β1

2
< 2 .

It follows from the above obtained estimates that the competitive ratio of
Algorithm SKE(c) is at most

max(
2

1 + ǫ∗/2
,

2

1 + ǫ3/2
, 1 +

β1

2
) < 2 ,

which completes the proof of the theorem. 2

4 The lower bound

This section is devoted to establishing a lower bound on the number of bits
of advice for which there exists an algorithm with competitive ratio smaller
than 2. This lower bound exactly matches the upper bound shown previously,
and it holds even for the class of lines. Indeed, we show that if, for all lines
Lk of diameter (i.e., length) k ≤ n, the number of bits of advice is smaller
than log log n, and differs from it by an unbounded number of bits, then every
algorithm has competitive ratio at least 2.

Theorem 6 Let O be an oracle and let f(n) denote the maximum of sizes
of O(Lk), for k ≤ n. Let g : IN 7→ IR be defined by the formula f(n) =
log log n−g(n). If g is a function unbounded from above, then every exploration
algorithm using oracle O has competitive ratio at least 2.

PROOF. We will use the following claim.

Claim 3. For every positive integers M and γ, there exist integers n1 > n2 ≥
M , such that O(Ln1

) = O(Ln2
) and n1/n2 ≥ γ.

Suppose that the claim does not hold. Take M and γ that refute it. Let ψ :
{n : n > M} 7→ IR be the sequence defined by the formula ψ(n) = log γ log n

log n−log M
.

The sequence ψ converges to log γ, hence it is bounded. Let A be such that

16

ψ(n) < A for all n. Since g is an unbounded function, there exists n0 > M for
which g(n0) > log A. Let x be the size of the set {O(Lk) : k ≤ n0}. We have

x ≤ 2f(n0) = 2log log n0−g(n0) < 2log log n0−log A < 2
log log n0−log

log γ log n0
log n0−log M

and therefore x < log n0−log M
log γ

. All integers k with O(Lk) = O(LMγi) must

be smaller than Mγi+1, for i ≥ 0. Hence all oracle values for lines LMγi are
distinct, and there are x such values. We have n0 < Mγx because O(Ln0

) =
O(LMγi), for some i < x, and hence n0 < Mγi+1 ≤ Mγx. Consequently,
log n0 ≤ log M + x log γ < log M + log n0 − log M . This contradiction proves
Claim 3.

We will now show that any algorithm using oracle O must have competitive
ratio at least 2. In view of Lemma 1 it is enough to restrict attention to
algorithms producing exploration schemes of type 1 for the class of lines.
The probing distance of such a scheme for line Ln depends only on O(Ln).
Consider an algorithm A producing a scheme of type 1 with probing distance
φ(O(Ln)). Fix any constant 3/2 < β < 2. Choose γ such that 2γ

γ+2
> β and

M such that 2M−1
M+1

> β. Hence γ > 6. Let n1 > n2 ≥ M be integers for which
O(Ln1

) = O(Ln2
) and n1 ≥ γn2. Their existence is guaranteed by Claim 3.

Let y = φ(O(Ln1
)). Hence the scheme makes the first change of direction after

y steps, both in Ln1
and in Ln2

, unless an endpoint is encountered earlier.
Consider two cases.

If y ≤ n2 then consider the behavior of A on Ln1
, with the starting node u at

distance y + 1 from the endpoint toward which the robot starts. Since γ > 6,
this is the endpoint closer to u. Then

A(Ln1
, u)

opt(Ln1
, u)

=
y + 2n1 − 1

y + n1 + 1
≥

n2 + 2n1 − 1

n2 + n1 + 1

≥
(2γ + 1)n2 − 1

(γ + 1)n2 + 1
≥

(2γ + 1) − 1

(γ + 1) + 1
=

2γ

γ + 2
> β .

If y > n2 then consider the behavior of A on Ln2
with the starting node u at

distance n2 − 1 from the endpoint toward which the robot starts. Then

A(Ln2
, u)

opt(Ln2
, u)

=
2n2 − 1

n2 + 1
≥

2M − 1

M + 1
> β .

This proves that the competitive ratio of algorithm A is at least 2. 2

17

5 Exploration knowing the diameter

We have shown in Section 3 that very little information (less than log log D
bits of advice) is needed to beat competitive ratio 2, and in fact, most of this
information (all bits except one) concerns the value of the diameter D itself,
and is used to establish a lower bound on it. This extra bit, however, cannot be
deduced from D alone, and turns out to be crucial. In this section we prove a
surprising result that even an algorithm that knows D exactly (i.e., is provided
with all ⌈log D⌉ bits of it), but does not have any additional knowledge, cannot
beat competitive ratio 2. Notice that a similar argument proves that the exact
knowledge of the number n of nodes, with no extra information, is not enough
for this purpose either.

Theorem 7 Let A be any tree exploration algorithm that, for every tree T , is
given the diameter of T as input. Then A has competitive ratio at least 2.

PROOF. Consider any exploration algorithm A that knows only the diame-
ter D of the explored tree. Fix D and let S be the exploration scheme returned
by A for input D. Recall that we can restrict attention to regular schemes only.
We construct a tree T of diameter D that will be used to prove a lower bound
on the competitive ratio of the algorithm. Suppose that the robot follows
scheme S.

The construction proceeds in phases. Inductively, after phase i − 1 is termi-
nated, for i ≥ 2, there is a node of degree 3, called vi, having a neighbor
wi with the subtree rooted at wi already constructed. The two other edges
incident to vi are pending and the construction in phase i continues starting
from them. In phase i, a line attached at node vi is appended to the subtree
constructed previously. Phase 1 starts with the previously constructed part
consisting only of the starting node v = v1 with two edges pending. The line
appended in phase i has two sides, corresponding to the two edges pending at
vi. Call side 1 the side of vi in the direction of the first move of the robot in
phase i, and call side 2 the other side of vi. By the inductive hypothesis, the
subtree rooted at wi is completely explored at the end of phase i−1, hence by
the regularity of the scheme, the robot does not enter this subtree in phase i.

Phase i is described as follows. (See also Figure 3.) The robot starts at vi in
some direction (on side 1) and, while seeing only nodes of degree 2 on its way,
either goes indefinitely without return, or returns after xi steps. In the first
case we say that xi = ∞. In this case, call it Case 1, we finish the construction
of the tree: a line of length m + 1 is appended, with the node vi at distance 1
from the endpoint on side 2. The integer m is adjusted so that the diameter
of the tree is exactly D. If the robot returns after xi steps, we distinguish two

18

vi+1

wi+1

xi

yi

vi
Case 4:
xi < 3

yi ≥ 3
vi

xi

yi

mCase 5:
xi < 3

yi < 3

zi = ∞

Case 6:
xi < 3

yi < 3

zi < ∞ vi

wi+1

xi

yi

zi

vi+1

Case 3:
xi < 3

yi = ∞

xivi

m

Case 1:
xi = ∞

Case 2:
xi ≥ 3

wi+1

xi

vi+1

vi

vi

m

Fig. 3. The different cases and corresponding constructions used to prove Theorem 7

further cases: xi ≥ 3 and xi < 3. If xi ≥ 3, call it Case 2, the construction is
continued as follows. We append a line of length xi+2, with node vi at distance
1 from the endpoint on side 2, and the other endpoint replaced by a node vi+1

of degree 3, at which the construction will be continued in phase i+1. This is
done unless appending such a line would exceed the diameter D of the tree,
in which case we proceed as in Case 1. If xi < 3 then the robot returns and
goes on side 2 of node vi. While seeing only nodes of degree 2 on its way, it
either goes indefinitely without return, or returns after making yi steps on side
2 of vi. In the first situation, call it Case 3, we finish the construction of the
tree by appending a line of length m + xi + 1, with node vi at distance xi + 1
from the endpoint on side 1. The integer m is adjusted so that the diameter
of the tree is exactly D. If the robot returns after yi steps on side 2 of vi, we
distinguish two further cases: yi ≥ 3 and yi < 3. If yi ≥ 3, call it Case 4, the
construction is continued as follows. We append a line of length xi + yi + 2
with node vi at distance xi +1 from the endpoint on side 1, and with the other
endpoint replaced by a node vi+1 of degree 3, at which the construction will
be continued in phase i + 1. This is done unless appending such a line would
exceed the diameter D of the tree, in which case we proceed as in Case 3. If
yi < 3, consider two further cases: Case 5 in which the robot goes indefinitely
after the second return, assuming that it sees only nodes of degree 2 on its
way, and Case 6 if it returns after some number xi + zi of steps on side 1 of
vi, under this assumption. In Case 5 we finish the construction of the tree by
appending a line of length m + xi + yi + 1 with node vi at distance yi + 1
from the endpoint on side 2. The integer m is adjusted so that the diameter
of the tree is exactly D. In Case 6 the construction is continued as follows.

19

We construct a line of length xi + yi + zi + 2, with node vi at distance yi + 1
from the endpoint on side 2, and with the other endpoint replaced by a node
vi+1 of degree 3, at which the construction will be continued in phase i + 1.
This is done unless appending such a line would exceed the diameter D of the
tree, in which case we proceed as in Case 5. This concludes the description of
phase i of the construction. Hence, in every phase except the last, one of the
Cases 2, 4, 6, occurs, and in the last phase one of the Cases 1, 3, 5, occurs.

Denote by Pi the part of the tree constructed in phase i. Hence all parts Pi

are pairwise edge-disjoint. Since P1 ∪ · · · ∪Pi−1 is entirely explored by the end
of phase i− 1, the robot does not enter this subtree, in view of the regularity
of the scheme. Hence in phase i the robot moves only in part Pi. Let Si be
the number of moves performed by the robot in phase i, and let opti be the
length of the shortest covering walk of part Pi.

In Case 1 we have Si ≥ 2m+1 and opti ≤ m+2. In Case 2 we have Si ≥ 3xi+3
and opti ≤ xi +3. In Case 3 we have Si ≥ 3xi +2m+1 and opti ≤ 2xi +m+2.
In Case 4 we have Si ≥ 4xi + 3yi + 3 and opti ≤ 2xi + yi + 3. In Case 5 we
have Si ≥ 4xi + 3yi + 2m + 1 and opti ≤ xi + 2yi + m + 2. In Case 6 we have
Si ≥ 5xi + 4yi + +3zi + 3 and opti ≤ xi + 2yi + zi + 3.

Fix any α < 2. We now prove that, for a sufficiently large D, the ratio
A(T, v)/opt(T, v) exceeds α. Suppose that the last phase has number i and let
Z = S1 + · · · + Si−1. In phases j < i only Cases 2, 4, 6, can occur. Since in
Case 2 we have xj ≥ 3, it follows that Sj/optj ≥ 2. Since in Case 4 we have
yj ≥ 3, it follows that Sj/optj ≥ 2. Since in Case 6 we have xj ≥ 1, it follows
that Sj ≥ 2xj + 4yj + 3zj + 6, and hence Sj/optj ≥ 2. Thus we can conclude
that Z ≥ 2(opt1 + · · · + opti−1).

Since in Case 3 we have xi < 3 and in Case 5 we have xi, yi < 3, it follows
that in each of the Cases 1, 3, 5, we have Si ≥ 2m + a and opti ≤ m + b,
for some constants a, b. Hence A(T, v) = S1 + · · · + Si ≥ Z + 2m + a and
opt(T, v) = opt1 + · · · + opti ≤ Z/2 + m + b. It follows that

A(T, v)

opt(T, v)
≥

Z + 2m + a

Z/2 + m + b
.

On the other hand, Z is at least the size of P1 ∪ · · · ∪ Pi−1 and m + 6 is at
least the size of Pi, hence Z + m + 6 ≥ D. Consequently, A(T,v)

opt(T,v)
exceeds α,

for sufficiently large D. 2

20

References

[1] S. Albers and M. R. Henzinger, Exploring unknown environments, SIAM
Journal on Computing 29 (2000), 1164-1188.

[2] B. Awerbuch, M. Betke, R. Rivest and M. Singh, Piecemeal graph learning by
a mobile robot, Proc. 8th Conf. on Comput. Learning Theory (1995), 321-328.

[3] E. Bar-Eli, P. Berman, A. Fiat and R. Yan, On-line navigation in a room,
Journal of Algorithms 17 (1994), 319-341.

[4] M.A. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan, The power of a
pebble: Exploring and mapping directed graphs, Information and Computation
176 (2002), 1-21.

[5] M.A. Bender and D. Slonim, The power of team exploration: Two robots can
learn unlabeled directed graphs, Proc. 35th Ann. Symp. on Foundations of
Computer Science (FOCS 1994), 75-85.

[6] P. Berman, A. Blum, A. Fiat, H. Karloff, A. Rosen and M. Saks, Randomized
robot navigation algorithms, Proc. 7th ACM-SIAM Symp. on Discrete
Algorithms (SODA 1996), 74-84.

[7] A. Blum, P. Raghavan and B. Schieber, Navigating in unfamiliar geometric
terrain, SIAM Journal on Computing 26 (1997), 110-137.

[8] M. Betke, R. Rivest and M. Singh, Piecemeal learning of an unknown
environment, Machine Learning 18 (1995), 231-254.

[9] A.E.F. Clementi, A. Monti and R. Silvestri, Selective families, superimposed
codes, and broadcasting on unknown radio networks, Proc. 12th Ann. ACM-
SIAM Symposium on Discrete Algorithms (SODA 2001), 709-718.

[10] A. Czumaj and W. Rytter, Broadcasting algorithms in radio networks with
unknown topology, Proc. 44th Ann. Symposium on Foundations of Computer
Science (FOCS 2003), 492-501.

[11] X. Deng, T. Kameda and C. H. Papadimitriou, How to learn an unknown
environment I: the rectilinear case, Journal of the ACM 45 (1998), 215-245.

[12] X. Deng and A. Mirzaian, Competitive robot mapping with homogeneous
markers, IEEE Transactions on Robotics and Automation 12 (1996), 532-542.

[13] X. Deng and C. H. Papadimitriou, Exploring an unknown graph, Journal of
Graph Theory 32 (1999), 265-297.

[14] A. Dessmark and A. Pelc, Optimal graph exploration without good maps,
Theoretical Computer Science 326 (2004), 343-362.

[15] K. Diks, P. Fraigniaud, E. Kranakis and A. Pelc, Tree exploration with little
memory, Journal of Algorithms 51 (2004), 38-63.

21

[16] G. Dudek, M. Jenkin, E. Milios and D. Wilkes, Robotic exploration as graph
construction, IEEE Transactions on Robotics and Automation 7 (1991), 859-
865.

[17] V. Dujmović and S. Whitesides, On validating planar worlds, Proc. 12th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), 791-792.

[18] C.A. Duncan, S.G. Kobourov and V.S.A. Kumar, Optimal constrained graph
exploration, Proc. 12th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA
2001), 807-814.

[19] F. Fich and E. Ruppert. Hundreds of impossibility results for distributed
computing, Distributed Computing, 16 (2003), 121–163.

[20] R. Fleischer and G. Trippen, Exploring an unknown graph efficiently, Proc. 13th
Ann. European Symposium on Algorithms (ESA 2005), LNCS 3669, 11-22.

[21] P. Flocchini, B. Mans and N. Santoro. Sense of direction in distributed
computing, Theoretical Computer Science 291 (2003), 29-53.

[22] P. Fraigniaud, C. Gavoille, D. Ilcinkas and A. Pelc, Distributed computing
with advice: information sensitivity of graph coloring, Proc. 34th International
Colloquium on Automata, Languages and Programming (ICALP 2007), LNCS
4596, 231-242.

[23] P. Fraigniaud, D. Ilcinkas and A. Pelc. Oracle size: a new measure of difficulty
for communication tasks, Proc. 25th Ann. ACM Symposium on Principles of
Distributed Computing (PODC 2006), 179-187.

[24] P. Fraigniaud, A. Korman and E. Lebhar, Local MST computation with short
advice, Proc. 19th Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA 2007), 154-160.

[25] L. Gasieniec, D. Peleg and Q. Xin, Faster communication in known topology
radio networks, Proc. 24th Annual ACM Symposium on Principles of
Distributed Computing (PODC 2005), 129-137.

[26] T. Kameda and M. Yamashita. Computing on anonymous networks: Part I –
characterizing the solvable cases. IEEE Transactions on Parallel and Distributed
Systems, 7 (1996), 69-89.

[27] D. Kowalski and A. Pelc, Optimal deterministic broadcasting in known topology
radio networks, Distributed Computing 19 (2007), 185-195.

[28] N. Lynch. A hundred impossibility proofs for distributed computing. Proc.
8th Ann. ACM Symposium on Principles of Distributed Computing (PODC
1989),1-28.

[29] P. Panaite and A. Pelc, Exploring unknown undirected graphs, Journal of
Algorithms 33 (1999), 281-295.

[30] P. Panaite and A. Pelc, Impact of topographic information on graph exploration
efficiency, Networks, 36 (2000), 96-103.

22

[31] C. H. Papadimitriou and M. Yannakakis, Shortest paths without a map,
Theoretical Computer Science 84 (1991), 127-150.

[32] D. Soguet and N. Nisse, Graph searching with advice, Proc. 14th International
Colloquium on Structural Information and Communication Complexity
(SIROCCO 2007), LNCS 4474, 51-65.

23

