
Worst-Case Optimal Exploration of Terrains
with ObstaclesI

Jurek Czyzowicza,1, David Ilcinkasb,3, Arnaud Labourelc,2,3,∗, Andrzej Pelca,4

a Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec J8X
3X7, Canada.

b LaBRI, CNRS & Université de Bordeaux, 33405 Talence, France.
c LIF, Aix-Marseille Université, 13288 Marseille, France.

Abstract

A mobile robot represented by a point moving in the plane has to explore
an unknown flat terrain with impassable obstacles. Both the terrain and the
obstacles are modeled as arbitrary polygons. We consider two scenarios: the
unlimited vision, when the robot situated at a point p of the terrain explores
(sees) all points q of the terrain for which the segment pq belongs to the terrain,
and the limited vision, when we require additionally that the distance between
p and q is at most 1. All points of the terrain (except obstacles) have to be
explored and the performance of an exploration algorithm, called its complexity,
is measured by the length of the trajectory of the robot.

For unlimited vision we show an exploration algorithm with complexity
O(P+D

√
k), where P is the total perimeter of the terrain (including perimeters

of obstacles), D is the diameter of the convex hull of the terrain, and k is the
number of obstacles. We do not assume knowledge of these parameters. We also
prove a matching lower bound showing that the above complexity is optimal,
even if the terrain is known to the robot. For limited vision we show exploration
algorithms with complexity O(P +A+

√
Ak), where A is the area of the terrain

(excluding obstacles). Our algorithms work either for arbitrary terrains (if one
of the parameters A or k is known) or for c-fat terrains, where c is any constant
(unknown to the robot) and no additional knowledge is assumed. (A terrain

IA preliminary version of this paper appeared in Proc. 12th Scandinavian Symposium and
Workshops on Algorithm Theory (SWAT 2010), LNCS 6139.
∗Corresponding author
Email addresses: jurek@uqo.ca (Jurek Czyzowicz), david.ilcinkas@labri.fr (David

Ilcinkas), arnaud.labourel@lif.univ-mrs.fr (Arnaud Labourel), pelc@uqo.ca (Andrzej
Pelc)

1Partially supported by NSERC discovery grant.
2This work was done during this author’s stay at the Université du Québec en Outaouais

as a postdoctoral fellow.
3Partially supported by the ANR project ALADDIN, the INRIA project CEPAGE and by

a France-Israel cooperation grant (Multi-Computing project).
4Partially supported by NSERC discovery grant and by the Research Chair in Distributed

Computing at the Université du Québec en Outaouais.

Preprint submitted to Elsevier February 12, 2013

T with obstacles is c-fat if R/r ≤ c, where R is the radius of the smallest disc
containing T and r is the radius of the largest disc contained in T .) We also
prove a matching lower bound Ω(P+A+

√
Ak) on the complexity of exploration

for limited vision, even if the terrain is known to the robot.

Keywords: mobile robot, exploration, polygon, obstacle.

1. Introduction

The background and the problem. Exploring unknown terrains by
mobile robots has important applications when the environment is dangerous
or of difficult access for humans. Such is the situation when operating in nuclear
plants or cleaning toxic wastes, as well as in the case of underwater or extra-
terrestrial operations. In many cases a robot must inspect an unknown terrain
and come back to its starting point. Due to energy and cost saving requirements,
the length of the robot’s trajectory should be minimized.

We model the exploration problem as follows. The terrain is represented by
an arbitrary polygon P0 with pairwise disjoint polygonal obstacles P1, ...,Pk,
included in P0, i.e., the terrain is T = P0 \ (P1 ∪ · · · ∪ Pk). We assume that
boundaries of all polygons Pi belong to the terrain. The robot is modeled as a
point moving along a polygonal line inside the terrain. It should be noted that
the restriction to polygons is only to simplify the description, and all our results
hold in the more general case where polygons are replaced by bounded subsets
of the plane homeotopic with a disc (i.e., connected and without holes) and
regular enough to have well-defined area and boundary length. Every point of
the trajectory of the robot is called visited. We consider two scenarios: the un-
limited vision, when the robot visiting a point p of the terrain T explores (sees)
all points q for which the segment pq is entirely contained in T , and the limited
vision, when we require additionally that the distance between p and q is at
most 1. In both cases the task is to explore all points of the terrain T . The cost
of an exploration algorithm is the length of the trajectory of the robot, which
should be as small as possible. The complexity of an algorithm is the order of
magnitude of its cost. We assume that the robot does not know the terrain be-
fore starting the exploration, but it has unbounded memory and can record the
portion of the terrain seen so far and the already visited portion of its trajectory.

Our results. For unlimited vision we show an exploration algorithm with
complexity O(P+D

√
k), where P is the total perimeter of the terrain (including

perimeters of obstacles), D is the diameter of the convex hull of the terrain, and
k is the number of obstacles. We do not assume knowledge of these parameters.
We also prove a matching lower bound for exploration of some terrains (even
if the terrain is known to the robot), showing that the above complexity is
worst-case optimal.

For limited vision we show exploration algorithms with complexity O(P +

2

A+
√
Ak), where A is the area of the terrain1. Our algorithms work either for

arbitrary terrains, if one of the parameters A or k is known, or for c-fat terrains,
where c is any constant larger than 1 (unknown to the robot) and no additional
knowledge is assumed. (A terrain T is c-fat if R/r ≤ c, where R is the radius of
the smallest disc containing T and r is the radius of the largest disc contained in
T .) We also prove a matching lower bound Ω(P +A+

√
Ak) on the complexity

of exploration, even if the terrain is known to the robot.
The main open problem resulting from our research is whether exploration

with asymptotically optimal cost O(P+A+
√
Ak) can be performed in arbitrary

terrains without any a priori knowledge. Another interesting open problem is
whether such worst-case performance can be obtained by an O(k)-competitive
algorithm. (Our algorithms are a priori not competitive.)

Related work. Exploration of unknown environments by mobile robots
was extensively studied for both the unlimited and limited vision. Most of
the research in this domain concerns the competitive framework, where the
trajectory of the robot not knowing the environment is compared to that of the
optimal exploration algorithm having full knowledge.

One of the most important works for unlimited vision is [1]. The authors gave
a 2-competitive algorithm for rectilinear polygon exploration without obstacles.
The case of non-rectilinear polygons (without obstacles) was also studied in [2,
3, 4] and competitive algorithms were given.

For polygonal environments with an arbitrary number of polygonal obsta-
cles, it was shown that no competitive strategy exists, even if all obstacles are
parallelograms [1]. Later, this result was improved in [5] by providing a lower
bound in Ω(

√
k) for the competitive ratio of any on-line algorithm exploring a

polygon with k obstacles. This bound remains true even for rectangular ob-
stacles. On the other hand, there exists an algorithm with competitive ratio
in O(k) [2, 3]. Moreover, for particular shapes of obstacles (convex and with
bounded aspect ratio) the optimal competitive ratio Θ(

√
k) has been proven

in [3].
Exploration of polygons by a robot with limited vision has been studied,

e.g., in [6, 7, 8, 9, 10, 11]. In [6] the authors described an on-line algorithm
with competitive ratio 1 + 3(ΠS/A), where Π is a quantity depending on the
perimeter of the polygon, S is the area seen by the robot, and A is the area of
the polygon. The exploration in [6, 7] fails on a certain type of polygons, such as
those with narrow corridors. In [8], the authors consider exploration in discrete
steps. The robot can only explore the environment when it is motionless, and
the cost of the exploration algorithm is measured by the number of stops during

1Since parameters D,P,A are positive reals that may be arbitrarily small, it is important
to stress that complexity O(P + A +

√
Ak) means that the trajectory of the robot is at most

c(P + A +
√
Ak), for some constant c and sufficiently large values of P and A. Similarly for

O(P + D
√
k). This permits to include, e.g., additive constants in the complexity, in spite of

arbitrarily small parameter values.

3

the exploration. In [9, 10], the complexity of exploration is measured by the
trajectory length, but only terrains composed of identical squares are considered.
In [11] Ntafos studied off-line exploration of the boundary of a terrain with
limited vision.

An experimental approach was used in [12] to show the performance of a
greedy heuristic for exploration in which the robot always moves to the frontier
between explored and unexplored area. Practical exploration of the environment
by an actual robot was studied, e.g., in [13, 14]. In [14], a technique is described
to deal with obstacles that are not in the plane of the sensor. In [13] landmarks
are used during exploration to construct the skeleton of the environment.

Navigation is a closely related task which consists in finding a path between
two given points in a terrain with unknown obstacles. Navigation in a n × n
square containing rectangular obstacles aligned with sides of the square was
considered in [15, 16, 17, 18]. It was shown in [15] that the navigation from
a corner to the center of a room can be performed with a competitive ratio
O(log n), only using tactile information (i.e., the robot modeled as a point sees
an obstacle only when it touches it). No deterministic algorithm can achieve bet-
ter competitive ratio, even with unlimited vision [15]. For navigation between
any pair of points, there is a deterministic algorithm achieving a competitive
ratio of O(

√
n) [17], and no deterministic algorithm can achieve a better compet-

itive ratio [18]. However, there is a randomized approach performing navigation

with a competitive ratio of O(n
4
9 log n) [16]. Navigation with little information

was considered in [19]. In this model, the robot cannot perform localization
nor measure any distances or angles. Nevertheless, the robot is able to learn
the critical information contained in the classical shortest-path roadmap and
perform locally optimal navigation.

2. Unlimited vision

Let S be a smallest square in which the terrain T is included. Our algorithm
constructs a quadtree decomposition of S. A quadtree is a rooted tree with each
non-terminal node having four children. Each node of the quadtree corresponds
to a square. The children of any non-terminal node v correspond to four identical
squares obtained by partitioning the square of v using its horizontal and vertical
axes of symmetry. This implies that the squares of the terminal nodes form a
partition of the root2. More precisely,

1. {S} is a quadtree decomposition of S.

2. If {S1, S2, . . . , Sj} is a quadtree decomposition of S, then
{S1, S2, . . . , Si−1, Si1 , Si2 , Si3 , Si4 , Si+1, . . . , Sj}, where Si1 , Si2 , Si3 , Si4 form
a partition of Si using its vertical and horizontal axes of symmetry, is a
quadtree decomposition of S.

2In order to have an exact partition we assume that each square of the quadtree partition
contains its East and South edges but not its West and North edges.

4

The trajectory of the robot exploring T will be composed of parts which will
follow the boundaries of Pi, for 0 ≤ i ≤ k, and of straight-line segments, called
approaching segments, joining the boundaries of Pi, 0 ≤ i ≤ k. Obviously, the
endpoints of an approaching segment must be mutually visible. The quadtree
decomposition will be dynamically constructed in a top-down manner during
the exploration of T . At each moment of the exploration we consider the set
QS of all squares of the current quadtree and the set QT of squares being the
terminal nodes of the current quadtree. We will also construct dynamically a
bijection f : {P0,P1, . . . ,Pk} −→ QS \ QT .

When a robot moves along the boundary of some polygon Pi, it may be in
one of the two possible modes: the recognition mode – when it goes around the
entire boundary of a polygon without any deviation, or in the exploration mode
– when, while moving around the boundary, it tries to detect (and approach)
new obstacles. When the decision to approach a new obstacle is made at some
point r of the boundary of Pi, the robot moves along an approaching segment
to reach the obstacle, processes it by a recursive call, and (usually much later),
returning from the recursive call, it moves again along this segment in the oppo-
site direction in order to return to point r and to continue the exploration of Pi.
However, some newly detected obstacles may not be immediately approached.
Namely, we say that, when the robot is at position r ∈ Pi, an obstacle Pj is
approachable, if there exists a point q ∈ Pj , belonging to a square St ∈ QT
of diameter D(St) such that |rq| ≤ 2D(St). It is important to state that if
exactly one obstacle becomes approachable at moment t, then it is approached
immediately and if more than one obstacle become approachable at a moment
t, then one of them (chosen arbitrarily) is approached immediately, and the oth-
ers are approached later, possibly from different points of the trajectory. Each
time a new obstacle is visited by the robot (i.e., all the points of its bound-
ary are visited in the recognition mode), the terminal square of the current
quadtree containing the first visited point of the new obstacle is partitioned.
This square is then associated to this obstacle by function f . The trajectory
of the robot is composed of three types of sections: recognition sections, explo-
ration sections and approaching sections. The boundary of each polygon will be
traversed twice: first time contiguously during a recognition section, and second
time through exploration sections, which may be interrupted several times in
order to approach and visit newly detected obstacles. We say that an obstacle
is completely explored, if each point on the boundary of this obstacle has been
traversed by an exploration section. We will prove that the sum of the lengths
of the approaching sections is O(D

√
k).

Algorithm ExpTrav (polygon R, starting point r∗ on the boundary of R)
1 Make a recognition traversal of the boundary of R.
2 Partition square St ∈ QT containing r∗ into four identical squares.
3 f(R) := St

4 repeat
5 Traverse the boundary of R until, for the current position r, there exists

a visible point q of a new obstacle Q belonging to square Sm ∈ QT ,

5

such that |rq| ≤ 2D(Sm).
6 Traverse the segment rq.
7 ExpTrav(Q, q)
8 Traverse the segment qr.
9 until R is completely explored.

Before the initial call of ExpTrav, the robot reaches a position r0 at the
boundary of the polygon P0. This is done as follows. At its initial position v,
the robot chooses an arbitrary half-line α which it follows as far as possible.
When it hits the boundary of a polygon P, it traverses the entire boundary of
P. Then it computes the point u which is the farthest point from v in P ∩ α.
It goes around P until reaching u again and progresses on α, if possible. If this
is impossible, the robot recognizes that it went around the boundary of P0 and
it is positioned on this boundary. It initialises the quadtree decomposition to a
smallest square S containing P0. This square is of size O(D(P0)). The length
of the above walk is less than 3P .

Fig. 1 shows an example of execution of Algorithm ExpTrav. The robot
starts at point q1. It reaches the boundary of P0 at point q2. It makes a
recognition traversal of P0, then it sees the obstacle P1. It goes to P1 (reaching
point q3), partitions the corresponding square and makes a recognition traversal
of P1. Then it sees obstacle P2, goes to it through point q4 and partitions
the corresponding square. Then the robot makes a recognition traversal of P2

followed by another traversal in exploration mode. Since it sees no approachable
obstacles, it comes back to q3. From q3, it goes to the approachable obstacle
P3 through q5 (partitioning the corresponding square). Then the robot makes
a recognition traversal of P3 followed by an exploration traversal. Finally, it
returns to q3, and then to q2 to finish the exploration traversal of P0.

q1

q2

q3

q4

q5

P0

P2

P1

P3

Figure 1: An execution of Algorithm ExpTrav.

6

Lemma 2.1. Algorithm ExpTrav visits all boundary points of all obstacles of
the terrain T .

Proof: Note that Algorithm ExpTrav always terminates. Indeed, since there
is a finite number of obstacles, there is a finite number of calls of ExpTrav and
steps 5-8 are executed a finite number of times. Moreover, since each obstacle
has a finite boundary, step 1 and the repeat loop are always completed.

Consider the quadtree decomposition Q of S arising at the completion of
the algorithm. Suppose, for contradiction, that there exists a point on the
boundary of an obstacle Pi which was never visited. Let p be a point among
all unvisited boundary points for which its terminal square Sj belonging to the
quadtree Q has the smallest possible diameter. Observe that Sj cannot be the
root of the quadtree decomposition, since the root is always partitioned (line 2
of Algorithm ExpTrav). Consider the square Sm, the parent of Sj in Q. Sm

was partitioned in step 2 of some call of ExpTrav as a result of detecting some
obstacle Pl intersecting Sm. Consider the segment qp, where q ∈ Sm belongs to
the boundary of Pl. Since both points p and q belong to the boundary of T and
q was visited while p was not, there exists a pair of points q′ and p′ (p′ = p and
q′ = q may hold), both belonging to the boundary of T and to the segment qp,
such that q′ was visited, p′ was not and p′ is visible from q′ (see Fig. 2). Such a
pair exists because at the end of the exploration the boundary of each polygon is
either entirely visited or not at all. Consider the quadtree at the moment t when
the robot visited point q′, and its terminal square Si containing point p′. Clearly,
D(Si) ≥ D(Sj), because Sj is a square with the smallest diameter containing
unvisited boundary points. Hence |q′p′| ≤ |qp| ≤ D(Sm) = 2D(Sj) ≤ 2D(Si)
and p′ was approachable from q′ at time t, a contradiction.

SmSj

Pi

Pl

p

p′
q′

q

Figure 2: The existence of a pair p′q′.

�

7

Lemma 2.2. Function f is a bijection from {P0,P1, . . . ,Pk} to QS \QT , where
QS and QT correspond to the final quadtree decomposition produced by Algo-
rithm ExpTrav.

Proof: When ExpTrav is called for the first time, the robot is on the boundary
of P0 and the quadtree has exactly one non-terminal node – its root S, and
f(P0) = S. By induction, each time a new obstacle Q is approached in step 6
of a call of ExpTrav, f(Q) is set to some terminal node St intersecting Q and
St becomes a nonterminal node of the quadtree in step 2. Hence each square
corresponding to a non-terminal node of the quadtree is an image of a different
polygon Pi, 0 ≤ i ≤ k. �

Lemma 2.3. For any quadtree T , rooted at a square of diameter D and having
x non-terminal nodes, the sum σ(T) of diameters of these nodes is at most
2D
√
x.

Proof: The diameter of a square at depth t of the quadtree is D
2t . We prove first

that among all quadtrees with x non-terminal nodes, σ(T) is maximized for the
quadtree having all terminal nodes of at most two consecutive depths. Suppose,
to the contrary, that there exists a quadtree T maximizing σ(T) having terminal
nodes of two different depths t1 and t2 with t1 < t2 − 1. Let p be a terminal
node of T of depth t1 and q be a non-terminal node at depth t2 − 1. Let T ′

be the tree obtained from T by detaching from T node p ∈ T and the subtree
of T rooted at q and exchanging their places. T ′ is again a quadtree with x
non-terminal nodes, having one less non-terminal node of depth t2 − 1 and one
extra non-terminal node of depth t1. Hence σ(T ′) ≥ σ(T)− D

2t2−1 + D
2t1 > σ(T),

which contradicts the maximality of σ(T).
Therefore it is sufficient to consider only quadtrees having terminal nodes of

at most two consecutive depths t and t+ 1. Suppose that there are y terminal
nodes of depth t+ 1, 0 ≤ y ≤ 4t+1. Then the number x of non-terminal nodes
equals 4t−1

3 + y
4 and

σ(T) =
y

4

D

2t
+

t−1∑
i=0

4i
D

2i

= D
(

2t − 1 +
y

2t+2

)
We need to prove that σ(T) ≤ 2D

√
x, i.e. that

D
(

2t − 1 +
y

2t+2

)
≤ 2D

√
4t − 1

3
+
y

4
.

Hence it is sufficient to show that(
2t − 1 +

y

2t+2

)2
≤ 4

(
4t − 1

3
+
y

4

)
.

i.e., that

0 ≤ y
(

1 +
1

2t+1
− 1

2
− y

4t+2

)
+

(
4 · 4t − 1

3
− 22t − 1 + 2t+1

)
.

8

The second term is clearly non-negative for t ≥ 0 and the first term is also
positive, since 0 ≤ y ≤ 4t+1. We conclude that σ(T) ≤ 2D

√
x. �

Theorem 2.1. Algorithm ExpTrav explores the terrain T of perimeter P and
convex hull diameter D with k obstacles in time 5P + 12D

√
k.

Proof: Take an arbitrary point p inside T and a ray outgoing from p in an
arbitrary direction. This ray reaches the boundary of T at some point q. Since,
by Lemma 2.1 point q was visited by the robot, p was visible from q during the
robot’s traversal, and hence p was explored.

To prove the complexity of the algorithm, observe that the robot traverses
twice the boundary of each polygon of T , once during its recognition in step 1
and the second time during the iterations of step 5. Hence the sum of lengths of
the recognition and exploration sections is 2P . The only other portions of the
trajectory are produced in steps 6 and 8, when the obstacles are approached and
returned from. According to the condition from step 5, an approaching segment
is traversed in step 6 only if its length is shorter than twice the diameter of the
associated square. If k = 0 then the sum of lengths of all approaching segments
is 0, due to the fact that exploration starts at the external boundary of the
terrain. In this case the length of the trajectory is at most 5P (since the length
of at most 3P was traversed before the initial call). Hence we may assume that
k > 0. By Lemma 2.2 each obstacle and P0 are associated with a different
non-terminal node of the quadtree, and the number x of non-terminal nodes of
the quadtree equals k+1. Hence the sum of lengths of all approaching segments
is at most 2σ(T). By Lemma 2.3 we have σ(T) ≤ 2D

√
x = 2D

√
k + 1, hence

the sum of lengths of approaching segments is at most 2σ(T) ≤ 4D
√
k + 1 ≤

4D
√

2k ≤ 6D
√
k. Each segment is traversed twice, so the total length of this

part of the trajectory is at most 12D
√
k. It follows that the total length of the

trajectory is at most 5P + 12D
√
k. �

Theorem 2.2. Any algorithm for a robot with unlimited visibility, exploring
polygonal terrains with k obstacles, having total perimeter P and the convex
hull diameter D, produces trajectories in Ω(P +D

√
k) in some terrains, even if

the terrain is known to the robot.

Proof: In order to prove the lower bound, we show two families of terrains:
one for which P ∈ Θ(D) (P cannot be smaller), D and k are unbounded, and
the exploration cost is Ω(D

√
k), and the other in which P is unbounded, D is

arbitrarily small, k = 0, and still the exploration cost is Ω(P).
Consider the terrain from Fig. 3(a) where k identical tiny obstacles are

distributed evenly at the
√
k×
√
k grid positions inside a square of diameter D.

The distance between obstacles is at least D
√
2

2(
√
k+1)

− ε where ε > 0 may be as

small as necessary by choosing obstacles sufficiently small. The obstacles are
such that to explore the small area inside the convex hull of the obstacle the
robot must enter this convex hull. Since each such area must be explored, the

trajectory of the robot must be of size at least (k − 1)
(

D
√
2

2(
√
k+1)

− ε
)

, which is

clearly in Ω(D
√
k). Note that the perimeter P is in Θ(D).

9

(a) (b)

Figure 3: Lower bound for unlimited visiblity

The terrain from Fig. 3(b) is a polygon of arbitrarily small diameter (without
obstacles), whose exploration requires a trajectory of size Ω(P), where P is
unbounded (as the number of “corridors” can be unbounded). Indeed, each
”corridor” must be traversed almost completely to explore points at its end.
The two families of polygons from Fig. 3 lead to the Ω(P +D

√
k) lower bound.

�

3. Limited vision

In this section we assume that the vision of the robot has range 1. The
following algorithm is at the root of all our positive results on exploration with
limited vision. The idea of the algorithm is to partition the environment into
small parts called cells (of diameter at most 1) and to visit them using a depth-
first traversal. The local exploration of cells can be performed using Algorithm
ExpTrav, since the vision inside each cell is not limited by the range 1 of the
vision of the robot. The main novelty of our exploration algorithm is that
the robot completely explores any terrain. This should be contrasted with
previous algorithms with limited visibility, e.g. [6, 7, 9, 10] in which only a
particular class of terrains with obstacles is explored, e.g., terrains without
narrow corridors or terrains composed of complete identical squares. This can
be done at cost O(A). Our lower bound shows that exploration complexity
of arbitrary terrains depends on the perimeter and the number of obstacles as
well. The complete exploration of arbitrary terrains achieved by our algorithm
significantly complicates both the exploration process and its analysis.

Our algorithms LETA and LETk, and the tourist algorithm described in [3]
share a similar approach to exploration, i.e., using several square decomposi-
tions of the terrain with different side lengths to figure out the characteristics
of the terrain and achieve efficient exploration. However, our algorithms differ
from the tourist algorithm in two important ways : (1) the exploration within
each square is done with an optimal algorithm (Section 2) instead of a greedy
one, and (2) the limited visibility forces an upper bound on the side of the
square (significantly complicating LETk). More important, due to the numerous

10

differences between our model and the one of [3], the analyses of the complexi-
ties of the algorithms are unrelated.

Algorithm LimExpTrav (LET , for short)
INPUT: A point s inside the terrain T and a positive real F ≤

√
2/2.

OUTPUT: An exploration trajectory of T , starting and ending at s.
Tile the area with squares of side F , such that s is on the boundary of a square.
The connected regions obtained as intersections of T with each tile are called
cells. For each tile S, maintain a quadtree decomposition QS initially set to
{S}. Then, arbitrarily choose one of the cells containing s to be the starting
cell C and call ExpCell(C, s).

Procedure ExpCell(current cell C, starting point r∗ ∈ C)
1 Record C as visited
2 ExpTrav(C,r∗) using the quadtree decomposition QS ; S is the tile s.t. C ⊆ S
3 repeat
4 Traverse the boundary of C until the current position r belongs to

an unvisited cell U
5 ExpCell(U , r)

(if r is in several unvisited cells, choose arbitrarily one to be processed)
6 until the boundary of C is completely traversed

It is worth to note that, at the beginning of the exploration of the first cell
belonging to a tile S, the quadtree of this tile is set to a single node. However,
at the beginning of explorations of subsequent cells belonging to S, the quadtree
of S may be different. So the top-down construction of this quadtree may be
spread over the exploration of many cells which will be visited at different points
in time.

Consider a tile T and a cell C ⊆ T . Let AC be the area of C and BC the
length of its boundary. Let PC be the length of the part of the boundary of
C included in the boundary of the terrain T , and let RC be the length of the
remaining part of the boundary of C, i.e., RC = BC − PC .

Lemma 3.1. The inequality RC ≤ 8(AC/F + PC) holds for any cell C.

Proof: We consider three cases:
Case 1: PC < F/2 and AC < F 2/2

In this case, we will show that RC ≤ 3PC . We call a borderline a maximum
connected part of the boundary of T inside the tile T delimiting the cell C.
Let L = {L1, . . . , Ll} be the set of borderlines of C. There are two types of
borderlines: the linking borderlines that link two points of the boundary of T
and the closed borderlines that are closed polygonal lines inside S. A borderline
L separates the tile S into two connected regions, the inside region denoted by
IL, i.e., the region containing C, and the outside region, denoted by OL. If
the area of IL is smaller than that of OL, then L is a small-inside borderline,
otherwise L is a large-inside borderline. We denote by ML the region among
IL and OL which has the smaller area.

11

Notice that the two endpoints of a linking borderline can either be on the
same side of S or on two adjacent sides. Indeed, any borderline linking two
points on opposite sides of S would have a length at least F , a contradiction
with the inequality PC < F/2. If L is a linking borderline with both endpoints
x and y on the same side of S, then the length of segment xy is smaller than |L|.
Hence, the perimeter of ML is smaller than 2 · |L|. If L is a linking borderline
with endpoints x and y on two sides that intersect at a vertex v, then the lengths
of segments vx and vy are both less than |L|. Therefore the perimeter of ML

is smaller than 3 · |L|. If L is a closed borderline, then the perimeter of ML is
exactly L. Hence, the perimeter of ML is always less than 3 · |L|. Moreover, the
area of ML is less than (3|L|)2/4π by the isoperimetric inequality [20].

Claim 1. At least one borderline in L is a small-inside borderline.
On the contrary, suppose that for all i = 1, . . . , l, the borderline Li is a

large-inside borderline. Then, since MLi
= OLi

, we have C = S \⋃l
i=1MLi

. It
follows that:

AC = Area(S)−
l∑

i=1

Area(MLi
)

≥ F 2 −
l∑

i=1

(3|Li|)2
4π

, since (3|Li|)2/4π ≥ Area(MLi) for all i = 1, . . . , l

≥ F 2 − 9P 2
C

4π
, since P 2

C =

(
l∑

i=1

|Li|
)2

≥
l∑

i=1

|Li|2

>
F 2

2
, since F/2 > PC .

We obtain AC > F 2/2, a contradiction. This ends the proof of Claim 1.

Let L ∈ L be a small-inside borderline. We have C ⊆ ML and thus
RC < 3|L| ≤ 3PC .

Case 2: PC < F/2 and AC ≥ F 2/2
We have:

RC ≤ 4F ≤ 8

F
AC , since F ≤ 2AC/F.

Case 3: PC ≥ F/2
We have:

RC ≤ 4F ≤ 8PC , since F ≤ 2PC .

In all cases, we have RC ≤ 8(AC/F + PC). �
The following is the key lemma for all upper bounds proved in this section.

Let S = {T1, T2, . . . , Tn} be the set of tiles with non-empty intersection with
T and C = {C1, C2, · · · , Cm} be the set of cells that are intersections of tiles
from S with T . For each T ∈ S, let kT be the number of obstacles of T entirely
contained in T .

12

Lemma 3.2. For any F ≤
√

2/2, Algorithm LET explores the terrain T of area
A and perimeter P , using a trajectory of length O(P +A/F + F

∑n
i=1

√
kTi).

Proof: First, we show that Algorithm LET explores the terrain T . Consider
the graph G whose vertex set is C and edges are the pairs {C,C ′} such that C
and C ′ have a common point at their boundaries. The graph G is connected,
since T is connected. Note that for any cell C and point r on the boundary of
C, ExpTrav on C and r and thus ExpCell on C and r starts and ends on r.
Therefore, Algorithm LET performs a depth first traversal of graph G, since
during the execution of ExpCell(C, . . .), procedure ExpCell(U, · · ·) is called for
each unvisited cell U adjacent to C. Hence, ExpCell(C, . . .) is called for each
cell C ∈ C, since G is connected. During the execution of ExpCell(C, r), C is
completely explored by ExpTrav(C,r) by the same argument as in the proof of
Lemma 2.1, since the convex hull diameter of C is less than one.

It remains to show that the length of the LET trajectory is O(P + A/F +
F
∑n

i=1

√
kTi

). For each j = 1, . . . ,m, the part of the LET trajectory inside
the cell Cj is produced by the execution of ExpCell(Cj , . . .). In step 2 of
ExpCell(Cj , . . .), the robot executes ExpTrav with D =

√
2F and P = PCj +

RCj
. The sum of lengths of recognition and exploration sections of the trajectory

in Cj is at most 2(PCj
+RCj

). The sum of lengths of approaching sections of the

trajectory in Ti is at most 6
√

2F
√
kTi

and each approaching section is traversed
twice (cf. proof of Theorem 2.1). In step 3 of ExpCell(Cj , . . .), the robot only
makes the tour of the cell Cj , hence the distance traveled by the robot is at
most PCj

+RCj
. It follows that:

|LET | ≤ 3

m∑
j=1

(PCj
+RCj

) + 12
√

2F

n∑
i=1

√
kTi

≤ 3

m∑
j=1

((1 + 8)PCj + cACj/F) + 12
√

2F

n∑
i=1

√
kTi by Lemma 3.1

≤ 27P + 24A/F + 12
√

2F

n∑
i=1

√
kTi .

�

In view of Lemma 3.2, exploration of a particular class of terrains can be
done at a cost which will be later proved optimal.

Theorem 3.1. Let c > 1 be any constant. Exploration of a c-fat terrain of
area A, perimeter P and with k obstacles can be performed using a trajectory of
length O(P +A+ c

√
Ak) (without any a priori knowledge).

Proof: The robot executes Algorithm LET with F =
√

2/2. By Lemma 3.2,
the total cost is O(P + A +

∑n
i=1

√
kTi

). Recall that n is the number of tiles

that have non-empty intersection with the terrain. We have
∑n

i=1

√
kTi
≤

13

∑n
i=1

√
k
n =

√
nk. By definition of a c-fat terrain, there is a disk D1 of radius

r included in the terrain and a disk D2 of radius R that contains the terrain,
such that R

r ≤ c. There are Θ(r2) tiles entirely included in D1 and hence in the
terrain. So, we have A = Ω(r2). Θ(R2) tiles are sufficient to cover D2 and hence
the terrain. So n = O(R2). Hence, we obtain n = O(c2A) in view of R ≤ cr.
We have O(P +A+

∑n
i=1

√
kTi) = O(P +A+

√
nk) == O(P +A+ c

√
Ak). �

Consider any terrain T of area A, perimeter P and with k obstacles. We now
turn attention to the exploration problem if some knowledge about the terrain
is available a priori. Notice that if A and k are known before the exploration,
Lemma 3.2 implies that Algorithm LET executed for F = min{

√
A/k,

√
2/2}

explores any terrain at cost O(A+P+
√
Ak). (Indeed, if F =

√
A/k then A/F =√

Ak and kF =
√
Ak, while F =

√
2/2 implies A/F = Θ(A) and kF = O(A).)

This cost will be later proved worst-case optimal. It turns out that a much more
subtle use of Algorithm LET can guarantee the same complexity assuming only
knowledge of A or k. We present two different algorithms depending on which
value, A or k, is known to the robot. Both algorithms rely on the same idea.
The robot executes Algorithm LET with some initial value of F until either the
terrain is completely explored, or a certain termination condition, depending on
the algorithm, is satisfied. This execution constitutes the first stage of the two
algorithms. If exploration was interrupted because of the termination condition,
then the robot proceeds to a new stage by executing Algorithm LET with a
new value of F . Values of F decrease in the first algorithm and increase in the
second one. The exploration terminates at the stage when the terrain becomes
completely explored, while the termination condition is never satisfied. In each
stage the robot is oblivious of the previous stages, except for the computation
of the new value of F that depends on the previous stage. This means that
in each stage exploration is done “from scratch”, without recording what was
explored in previous stages. In order to test the termination condition in a given
stage, the robot maintains the following three values: the sum A∗ of areas of
explored cells, updated after the execution of ExpTrav in each cell; the length
P ∗ of all the boundaries traversed by the robot, continuously updated when the
robot moves along a boundary for the first time (i.e., in the recognition mode);
and the number k∗ of obstacles approached by the robot, updated when an
obstacle is approached. The values of A∗, P ∗ and k∗ at the end of the i-th stage
are denoted by Ai, Pi and ki, respectively. Let Fi be the value of F used by
Algorithm LET in the i-th stage. Now, we are ready to describe the termination
conditions and the values Fi in both algorithms.

Algorithm LETA, for A known before exploration
The value of F used in Algorithm LET for the first stage is F1 =

√
2/2. The

value of F for subsequent stages is given by Fi+1 = A
kiFi

. The termination
condition is {k∗Fi ≥ 2A/Fi and k∗Fi ≥ P ∗ + 1}.

14

Algorithm LETk, for k known before exploration
The value of F used in Algorithm LET for the first stage is F1 = 1

k+
√
2
.

The value of F for subsequent stages is given by Fi+1 = min
{

Ai

kFi
,
√
2
2

}
. The

termination condition is {A∗/Fi ≥ 2kFi and A∗/Fi ≥ P ∗+1 and Fi <
√

2/2}.

Let Ct be the set of cells recorded as visited by Algorithm LET at time moment
t, and let Ot be the set of obstacles approached by the robot until time t. For
each C ∈ Ct, let EC be the length of the intersection of the exterior boundary
of cell C with the boundary of the terrain. For each O ∈ Ot, let |O| be the
perimeter of obstacle O and let kt = |Ot|. For any set of obstacles O, let ‖O‖
be the sum of perimeters of obstacles in O, i.e., ‖O‖ =

∑
D∈O |D|. The following

proposition is proved similarly as Lemma 3.2.

Proposition 3.1. There is a positive constant d such that the trajectory of
the robot until any time t, during the execution of Algorithm LET , is at most
d(
∑

C∈Ct(EC +AC/F) + (kt + 1) · F + ‖Ot‖).

Proof: Let t be any moment in time during the execution of Algorithm LET .
Let U be the current cell at moment t, which means that the instance of pro-
cedure ExpCell executed at moment t was called with U as its first parame-
ter. Let O′t be the set of obstacles in Ot that are not included in U and let
C′t = Ct \ {U}. All the obstacles included in C ∈ C′t were approached and vis-
ited by the robot. Hence, we have

∑
C∈C′t

PC =
∑

C∈C′t
EC + ‖O′t‖. By the

same arguments as in the proof of Lemma 3.2, it follows that there is a con-
stant d′ such that the total length of the trajectory of the robot in the cells
in C′t, for any time moment t, is at most d′(

∑
C∈C′t

(PC + AC/F) + F |O′t|) =

d′(
∑

C∈C′t
(EC + AC/F) + ‖O′t‖ + F |O′t|). The length of the trajectory of the

robot in U is at most 3GU + 2‖Ot \ O′t‖ + |Ot \ O′t| · F , where GU is the
length of the exterior boundary of cell U . Hence, there is a constant d such
that the length of the trajectory of the robot until any time t is at most
d(
∑

C∈Ct(EC +AC/F) + (kt + 1) · F + ‖Ot‖), since GU ≤ 4F + EU . �

The following lemma establishes the complexity of exploration if either the
area of the terrain or the number of obstacles is known a priori.

Lemma 3.3. Algorithm LETA (resp. LETk) explores a terrain T of area A,
perimeter P and with k obstacles, using a trajectory of length O(P +A+

√
Ak),

if A (resp. k) is known before exploration.

Proof:
Part 1: complexity of Algorithm LETA

First, we show that the algorithm eventually terminates and completely
explores T . If there is no obstacles in T (k = 0), then the termination condition
is never satisfied. In this case, the total cost of the solution is O(P + A) by
Lemma 3.2, since all the terrain is explored during the first stage of the algorithm
(with F =

√
2/2). Hence it remains to show the complexity of the algorithm

15

for k > 0. Observe that for each i > 1, Fi = A
ki−1Fi−1

≤ Fi−1

2 , since ki−1Fi−1 ≥
2 A
Fi−1

. Since F1 =
√

2/2, for each i ≥ 1, we have Fi ≤
√
2

2i . The algorithm

eventually terminates, since there exists m ∈ N such that kFm < 2A/F1 <
2A/Fm and the termination condition is never satisfied in this case. In the
last stage, Algorithm LET performs complete exploration of the terrain by
Lemma 3.2, since the value of F used for exploration is at most

√
2/2.

Let Di be the distance traveled by the robot during the i-th stage and let n
be the number of stages. By Proposition 3.1, if stage i ends at moment ti then
Di ≤ d(

∑
C∈Cti

(EC + AC/Fi) + (|Oti | + 1) · Fi + ‖Oti‖) for each i ≥ 1. Since

the algorithm can only interrupt stage i < n when approaching an obstacle, we
have Pi =

∑
C∈Cti

EC + ‖Oti‖. We obtain that Di ≤ d(Pi +A/Fi + (ki + 1)Fi)

for each i ≥ 1.
If n = 1, then the termination condition is never satisfied and kF1 <

max{2A/F1, P + 1}. The total cost is at most d(P + A/F1 + (k + 1)F1) =
O(P + A), since F1 =

√
2/2. On the other hand, if n > 1, then for each i such

that 1 ≤ i < n, we have Di ≤ d(Pi + A/Fi + (ki + 1)Fi) ≤ 3dkiFi. Indeed, we
have kiFi ≥ A/Fi and kiFi ≥ Pi+Fi, since the termination condition is satisfied
at the end of the i-th stage. Moreover, we have 1

2kiFi ≥ A/Fi = ki−1Fi−1, for

all 1 < i < n. It follows that
∑n−1

i=1 Di ≤ 6dkn−1Fn−1. In order to show that

the total cost is O(P +A+
√
Ak), it is sufficient to show that P +A/Fn +kFn =

O(P +A+
√
Ak), since kn−1Fn−1 = A/Fn and Dn ≤ d(Pn +A/Fn +(k+1)Fn).

Take the moment tn−1 when the (n − 1)-th stage was interrupted, i.e.,
when both inequalities of the termination condition started to be satisfied.
Consider the inequality which was not satisfied just before moment tn−1. If
this is the first of the two inequalities, then at time tn−1 the Algorithm LETA
must have increased the value of k∗, hence just before moment tn−1 we had
(kn−1 − 1)Fn−1 < 2AFn−1. Similarly, if the second inequality was not satisfied
just before moment tn−1 then we had (kn−1 − 1)Fn−1 < Pn−1 + 1.

Case 1: (kn−1 − 1)Fn−1 < 2A/Fn−1

We have:

kn−1Fn−1 ≤ 2
A

Fn−1
+ Fn−1

A

Fn
≤ 2

A

Fn−1
+ 1, since Fn−1 =

A

kn−1Fn
and Fn−1 ≤ 1

A

Fn
≤
√

2
√
Akn−1 + 1, since kn−1Fn−1 ≥ 2

A

Fn−1

and thus

(
A

Fn−1

)2

≤ 1

2
kn−1Fn−1

A

Fn−1

A

Fn
≤ 2

√
Ak + 1, since kn−1 ≤ k

Since the termination condition in the last stage is not satisfied, we have

16

kFn ≤ max{2A/Fn, P + 1}. We obtain P +A/Fn + kFn = O(P +A/Fn).
Hence, we have P +A/Fn + kFn = O(P +

√
Ak).

Case 2: (kn−1 − 1)Fn−1 < Pn−1 + 1

We have:

kn−1Fn−1 ≤ Pn−1 + Fn−1 + 1

A

Fn
≤ Pn−1 + Fn−1 + 1, since kn−1Fn−1 =

A

Fn

A

Fn
≤ P + 2, since Fn−1 ≤ 1 and Pn−1 ≤ P

Since the termination condition in the last stage is not satisfied, we have
kFn ≤ max{2A/Fn, P + 1}, as before. We obtain P + A/Fn + kFn =
O(P +A/Fn) = O(P).

Part 2: complexity of Algorithm LETk
The proof is similar to that concerning Algorithm LETA. The main difference

follows from the additional clause Fi <
√

2/2 in the termination condition.
This clause was not necessary in Algorithm LETA because, as opposed to the
current case, sides of tiles were decreasing. First, we show that the algorithm
eventually terminates and completely explores T . Observe that for each i > 1,
we have Fi = min{Ai−1/kFi−1,

√
2/2} ≥ min{2Fi−1,

√
2/2}, since Ai−1/Fi−1 ≥

2kFi−1. Hence, the algorithm eventually terminates. Indeed, even if the first
two inequalities remain true, the third must become false at some point. Notice
that F1 ≤

√
2/2, since k ≥ 0, and for all i > 1 we have Fi ≤

√
2/2. In

the last stage, Algorithm LET performs complete exploration of the terrain by
Lemma 3.2, since the value of F used for the exploration is at most

√
2/2.

Let Di be the distance traveled by the robot during the i-th stage and let
n be the number of stages. By Proposition 3.1, if stage i ends at moment ti
then Di ≤ d(

∑
C∈Cti

(EC + AC/Fi) + (|Oti | + 1) · Fi + ‖Oti‖) for each i ≥ 1.

Since the algorithm can only stop when completing the exploration of a cell,
we have Pi =

∑
C∈Cti

EC + ‖Oti‖ and Ai =
∑

C∈Cti
AC . We obtain that

Di ≤ d(Pi +Ai/Fi + (k + 1)Fi) for each i ≥ 1.
If n = 1, then the termination condition is never satisfied and either A/F1 ≤

max{2kF1, P + 1} or F1 =
√

2/2. In the first case, the total cost is at most
d(P + A/F1 + (k + 1)F1) = O(P), since kF1 ≤ 1. In the second case, we have
k = 0 and the total cost is at most d(P + A/F1 + (k + 1)F1) = O(P + A).
On the other hand, if n > 1 then for each i such that 1 ≤ i < n, we have
Di ≤ d(Pi + Ai/Fi + (k + 1)Fi) ≤ 3dAi/Fi. Indeed, we have Ai

Fi
≥ kFi and

Ai

Fi
≥ Pi + Fi, since the termination condition is satisfied at the end of the i-th

stage. Moreover, we have Ai

2Fi
≥ kFi = Ai−1

Fi−1
for all 1 < i < n. It follows that∑n−1

i=1 Di ≤ 6dAn−1

Fn−1
.

17

Notice that the third inequality of the termination condition is always satis-
fied during the (n− 1)-stage. Take the moment tn−1 when the (n− 1)-th stage
was interrupted, i.e., when the two first inequalities of the termination condi-
tion started to be satisfied. Consider the inequality which was not satisfied just
before moment tn−1. If this is the first of the two inequalities, then at time
tn−1 the Algorithm LETk must have increased the value of A∗ by at most F 2

n−1,
since each cell is included in a square of size Fn−1. Hence just before moment

tn−1, we had
An−1−F 2

n−1

Fn−1
< 2kFn−1. Similarly, if the second inequality was not

satisfied just before moment tn−1 then we had
An−1−F 2

n−1

Fn−1
< Pn−1 + 1.

Case 1:
An−1−F 2

n−1

Fn−1
< 2kFn−1

Notice that k ≥ 1, since otherwise F1 =
√

2/2 and the termination condi-
tion would never be satisfied in the first stage. We have:

An−1

Fn−1
≤ 2kFn−1 + Fn−1

kFn ≤ 2kFn−1 + 1, since Fn ≤
An−1

kFn−1
and Fn−1 ≤ 1

kFn ≤
√

2
√
An−1k + 1, since

An−1

Fn−1
≥ 2kFn−1

and thus (kFn−1)
2 ≤ 1

2

An−1

Fn−1
kFn−1

kFn ≤ 2
√
Ak + 1, since An−1 ≤ A

Since the termination condition in the last stage is not satisfied, we have
either A/Fn ≤ max{2kFn, P + 1} and thus A/Fn = O(P + kFn), or
Fn =

√
2/2 and thus A/Fn = O(A). We obtain that Dn ≤ d(P +A/Fn +

(k+1)Fn) = O(P +
√
Ak+A). From the previous serie of inequalities, we

also have
∑n−1

i=1 Di ≤ 6d(An−1/Fn−1) = O(
√
Ak). Hence, the total cost

is O(P +
√
Ak +A).

Case 2:
An−1−F 2

n−1

Fn−1
< Pn−1 + 1

We have:

An−1

Fn−1
≤ Pn−1 + Fn−1 + 1

kFn ≤ Pn−1 + Fn−1 + 1, since kFn ≤
An−1

Fn−1
kFn ≤ P + 2, since Fn−1 ≤ 1 and Pn−1 ≤ P

As before, we have A/Fn = O(P + kFn) or A/Fn = O(A). We obtain

that Dn ≤ d(P + A/Fn + (k + 1)Fn) = O(P + A). We have
∑n−1

i=1 Di ≤
6d(An−1/Fn−1) = O(P). Hence, the total cost is O(P +A). �

18

The following theorem shows that the lengths of trajectories in Lemma 3.3
and in Theorem 3.1 are asymptotically worst-case optimal.

Theorem 3.2. There are some terrains in which any algorithm for a robot with
limited visibility, exploring polygonal terrains of area A, perimeter P and with
k obstacles, produces trajectories of length Ω(P +A+

√
Ak), even if the terrain

is known to the robot.

Proof: In order to prove our lower bound we present three families of terrains.
A terrain in the first family (cf. Fig. 3(a)) is a square with identical obstacles
of diameter ε located on a

√
k ×
√
k grid. The side of the square is

√
A+ x,

where x is the negligible total area of all k obstacles and the total perimeter of
all obstacles is 1. By the same arguments as in the proof of Theorem 2.2, any

exploration trajectory must be of length at least (k − 1)
(√

A+x√
k+1
− ε
)

, which is

in Ω(
√
Ak). At the same time we have P = Θ(

√
A) (P cannot be smaller). A

terrain in the second family (cf. Fig. 3(b)) is a polygon of arbitrarily small
area (without obstacles), whose exploration requires a trajectory of size Ω(P).
A terrain in the third family is the empty square of side

√
A. Now we have

P = Θ(
√
A) and k = 0. Finally, when the robot traverses a distance d, it ex-

plores a new area of at most 2d. So, the robot has to travel a distance Ω(A) to
explore such a terrain. These three families of terrains justify our lower bound.
�

The examples from the above proof can be adjusted so that all terrains are
c-fat, for any constant c > 1. Lemma 3.3 and Theorem 3.2 imply

Theorem 3.3. Consider terrains of area A, perimeter P and with k obstacles.
If either A or k is known before the exploration, then the exploration of any such
terrain can be performed using a trajectory of length O(P +A+

√
Ak), which is

asymptotically worst-case optimal.

Notice that in order to explore a terrain at cost O(P + A +
√
Ak), it is

enough to know the parameter A or k up to a multiplicative constant, rather
than the exact value. This can be proved by a carefull modification of the proof
of Lemma 3.3. For the sake of clarity, we stated and proved the weaker version
of Lemma 3.3, with knowledge of the exact value.

Suppose now that no a priori knowledge of any parameters of the terrain is
available. We iterate Algorithm LETA or LETk for A (resp. k) equal 1, 2, 4, 8, . . .
interrupting the iteration and doubling the parameter as soon as the explored
area (resp. the number of obstacles seen) exceeds the current parameter value.
The algorithm stops when the entire terrain is explored (which happens at the
first probe exceeding the actual unknown value of A, resp. k). We get an
exploration algorithm using a trajectory of length O((P + A +

√
Ak) logA),

resp. O((P + A +
√
Ak) log k). By interleaving the two procedures we get the

minimum of the two costs. Thus we have the following corollary.

19

Corollary 3.1. Consider terrains of area A, perimeter P and with k obstacles.
Exploration of any such terrain can be performed without any a priori knowledge
at cost differing from the worst-case optimal cost with full knowledge only by a
factor O(min{logA, log k}).

[1] X. Deng, T. Kameda, C. Papadimitriou, How to learn an unknown envi-
ronment. i: the rectilinear case, Journal of the ACM (JACM) 45 (2) (1998)
215–245.

[2] X. Deng, T. Kameda, C. Papadimitriou, How to learn an unknown envi-
ronment, in: Proceedings of the 32nd annual symposium on Foundations
of computer science, IEEE Computer Society, 1991, pp. 298–303.

[3] B. Kalyanasundaram, K. Pruhs, A competitive analysis of algorithms for
searching unknown scenes, Computational Geometry 3 (3) (1993) 139–155.

[4] F. Hoffmann, C. Icking, R. Klein, K. Kriegel, The polygon exploration
problem, SIAM Journal on Computing 31 (2) (2001) 577–600.

[5] S. Albers, K. Kursawe, S. Schuierer, Exploring unknown environments with
obstacles, Algorithmica 32 (2002) 123–143.

[6] Y. Gabriely, E. Rimon, Spanning-tree based coverage of continuous areas
by a mobile robot, Annals of Mathematics and Artificial Intelligence 31 (1)
(2001) 77–98.

[7] Y. Gabriely, E. Rimon, Competitive on-line coverage of grid environments
by a mobile robot, Computational Geometry 24 (3) (2003) 197–224.

[8] S. K. Ghosh, J. W. Burdick, A. Bhattacharya, S. Sarkar, Online algo-
rithms with discrete visibility-exploring unknown polygonal environments,
Robotics & Automation Magazine, IEEE 15 (2) (2008) 67–76.

[9] C. Icking, T. Kamphans, R. Klein, E. Langetepe, Exploring an unknown
cellular environment, in: In Abstracts of the 16th European Workshop on
Computational Geometry, 2000, pp. 140–143.

[10] A. Kolenderska, A. Kosowski, M. Ma lafiejski, P. Żyliński, An improved
strategy for exploring a grid polygon, in: Proceedings of the 16th interna-
tional conference on Structural Information and Communication Complex-
ity, Springer-Verlag, 2009, pp. 222–236.

[11] S. Ntafos, Watchman routes under limited visibility, Computational Ge-
ometry: Theory and Applications 1 (3) (1992) 149–170.

[12] T. Bandyopadhyay, Z. Liu, M. H. Ang, W. K. G. Seah, Visibility-based
exploration in unknown environment containing structured obstacles, in:
Advanced Robotics, 2005. ICAR’05. Proceedings., 12th International Con-
ference on, IEEE, 2005, pp. 484–491.

20

[13] N. Cuperlier, M. Quoy, P. Gaussier, Navigation and planning in an un-
known environment using vision and a cognitive map, in: European
Robotics Symposium 2006, Springer, 2006, pp. 129–142.

[14] R. Sim, J. J. Little, Autonomous vision-based exploration and mapping
using hybrid maps and rao-blackwellised particle filters, in: International
Conference on Intelligent Robots and Systems, IEEE, 2006, pp. 2082–2089.

[15] E. Bareli, P. Berman, A. Fiat, P. Yan, Online navigation in a room, Journal
of Algorithms 17 (3) (1994) 319–341.

[16] P. Berman, A. Blum, A. Fiat, H. Karloff, A. Rosén, M. Saks, Random-
ized robot navigation algorithms, in: Proceedings of the seventh annual
ACM-SIAM symposium on Discrete algorithms, Society for Industrial and
Applied Mathematics, 1996, pp. 75–84.

[17] A. Blum, P. Raghavan, B. Schieber, Navigating in unfamiliar geometric
terrain, SIAM Journal on Computing 26 (1) (1997) 110–137.

[18] C. H. Papadimitriou, M. Yannakakis, Shortest paths without a map, The-
oretical Computer Science 84 (1) (1991) 127–150.

[19] B. Tovar, R. Murrieta-Cid, S. M. LaValle, Distance-optimal navigation in
an unknown environment without sensing distances, IEEE Transactions on
Robotics 23 (3) (2007) 506–518.

[20] R. Osserman, The isoperimetric inequality, Bulletin (New Series) of the
American Mathematical Society 84 (6) (1978) 1182–1238.

21

