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Abstract

We study the amount of knowledge about a communication network that must be given to its nodes in
order to efficiently disseminate information. Our approach is quantitative: we investigate the minimum total
number of bits of information (minimum size of advice) that has to be available to nodes, regardless of the
type of information provided. We compare the size of advice needed to perform broadcast and wakeup (the
latter is a broadcast in which nodes can transmit only after getting the source information), both using a
linear number of messages (which is optimal). We show that the minimum size of advice permitting the
wakeup with a linear number of messages in a n-node network, is Θ(n log n), while the broadcast with a
linear number of messages can be achieved with advice of size O(n). We also show that the latter size of
advice is almost optimal: no advice of size o(n) can permit to broadcast with a linear number of messages.
Thus an efficient wakeup requires strictly more information about the network than an efficient broadcast.
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1. Introduction

1.1. Background and related work

For many network problems (such as leader election, constructing a minimum spanning tree, exploration,
wakeup, broadcast, etc.), the quality of the algorithmic solutions often depends on the amount of knowledge
given to nodes of the network. For example, if every node knows the topology of the network within radius
ρ of it, it is shown in [2] that Θ(min{m,n1+Θ(1)/ρ}) is the minimum number of messages of bounded length
permitting the wakeup of a network with n nodes and m edges. (In [2] the authors talk about the broadcast
but their model does not permit transmissions before receiving the source message, hence it is called wakeup
in our terminology). Broadcasting time in radio networks is another subject where information available
to nodes significantly influences efficiency. In [17] it is shown that if nodes have complete knowledge of
the network, then there is a deterministic polynomial algorithm that produces a broadcast scheme of time
O(D+log3 n), for n-node radio networks with diameter D. (This result has been improved to O(D+log2 n)
in [25]). On the other hand, in [4] a lower bound of Ω(n log D) is proved on deterministic broadcast time
in radio networks in which nodes know only their own identity. (An almost matching upper bound of
O(n log2 D) is proved in [7]). The differences between the broadcast and wakeup problems in radio networks
were explored in [10, 11].

Another problem, in which partial information about the network significantly influences the efficiency
of solutions, is network exploration by a mobile agent. For instance, it is proved in [3] that, if an upper
bound n̂ on the number n of nodes of an anonymous digraph is known, then a mobile agent can explore
this digraph in time polynomial in n̂, using one pebble, while without this knowledge, Θ(log log n) pebbles
are necessary and sufficient. On the other hand, in [8] the authors investigate the exploration of various
types of graphs when the exploring agent is provided with an unlabeled map of the graph, and show how
the cost of exploration changes when no map is available. A more precise study of relationships between
information about the explored graph and efficiency of exploration has been recently presented in [13] (see
end of Section 1.2).

In fact, the impact of knowledge concerning the environment is significant in many areas of distributed
computing, as witnessed by [12, 27] where hundreds of impossibility results and lower bounds for distributed
computing are surveyed, many of them depending on whether or not the nodes are provided with partial
knowledge of the topology of the network. Finally, notice that the amount of knowledge has also a strong
impact on computing in anonymous networks (cf., e.g., [20], where the impact of knowing the total number
of nodes is studied in depth).

1.2. The advice

A network is modeled as an undirected connected graph whose nodes have distinct labels, and ports at
any node v of degree deg(v) are labeled 0,1,...,deg(v) − 1. One distinguished node of the network is called
the source. A priori, every node has only information concerning itself: it knows its own label (if any), and
it knows whether it is the source or not. All additional knowledge available to the nodes of the network
(in particular knowledge concerning the rest of the network), is modeled by an oracle providing advice. An
oracle is a function O whose arguments are networks, and the value O(G), for a network G = (V,E), called
the advice provided by the oracle to this network, is in turn a function f : V → {0, 1}∗ assigning a binary
string to every node v of the network. Intuitively, the oracle looks at the entire labeled network and assigns
to every node some information, coded as a string of bits. The size of the advice given by the oracle to a
given network G is the sum of the lengths of all the strings it assigns to nodes. Hence this size is a measure
of the amount of information about the network, available to its nodes.

Solving a network problem P using advice provided by oracle O consists in designing an algorithm that is
unaware of the network G at hand but solves the problem P for it, as long as every node v of the network G
is provided with the string of bits f(v), where f = O(G). Typical distributed network problems that may
be solved using advice are various communication tasks, such as broadcast, wakeup or gossip (information
exchange among nodes), as well as, e.g., the construction of a BFS tree or a minimum spanning tree. The
formulation of the problem P may include a demand on the efficiency of the solution, thus we may be
interested in communicating within a prescribed time, or constructing a minimum spanning tree using at
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most a prescribed number of messages. Given the problem P, we ask what is the minimum size of an advice
for solving it. This minimum size of advice can be considered as a measure of the difficulty of the problem
P. The novelty and significance of the concept of advice used to model knowledge about the network is that
it enables asking quantitative questions about the required knowledge, regardless of what kind of knowledge
is supplied. This should be contrasted with the traditional approach that assumes availability of particular
items of information, such as the neighborhood of a node.

It turns out that the minimum size of advice, for which a distributed task can be accomplished efficiently,
can be used to make a quantitative distinction between the difficulty of apparently similar problems. We show
this for two fundamental communication primitives performing information dissemination: the broadcast
and the wakeup from a single source. In both of them a distinguished node, called the source, has a message
which has to be transmitted to all other nodes of the network. Nodes send messages along edges of the
network. In the wakeup, only nodes that already got the source message (i.e., are awake) can send messages
to their neighbors, thus waking them up. In the broadcast, all nodes can send control messages even before
getting the source message, thus potentially facilitating its future dissemination. In both cases we are
interested in accomplishing the communication task with optimal message complexity, i.e., using a number
of messages linear in the number of nodes. We ask what is the minimum size of advice permitting to do
that.

An approach similar to ours has been developed in the context of informative labelings. Informative
labeling schemes are ways to label the nodes of a network with short labels in such a way that queries such
as inter-node distance [18], ancestor [1], connectivity [21], etc., can be answered based solely on the labels of
the nodes involved in the query. The main objective in this context is to design schemes using short labels,
and guaranteeing that queries can be rapidly answered. The oracle terminology is sometimes also used in
the context of informative labeling (e.g., when the query can be answered in constant time [29]). Conversely,
the informative labeling terminology is sometimes also used for problems involving global properties [24].

Our point of view is to use the informative labeling terminology in the context of distributed data-
structures enabling quick answers to queries, and to use the advice and oracle terminology in the context of
distributed computing when nodes have to collaborate to achieve complex tasks (e.g., broadcasting, coloring,
wake-up, leader election, etc.). One reason motivating this view is, for instance, that giving the knowledge
of the network size n to the nodes can hardly be seen as labeling every node by n. Also, the notion of advice
easily extends to the case when the information is not given a priori, but on line, during the execution of
the protocol.

After the conference version of this paper has appeared, the concept of advice has been used in various
settings, namely in [13] to study efficient exploration of networks by mobile agents, in [14] to study distributed
graph coloring, in [15] to study the distributed minimum spanning tree construction, in [28] to study graph
searching, in [19] to study radio broadcasting, and in [16] to study broadcasting in trees.

1.3. Our results

We show that the minimum size of advice permitting the wakeup with a linear number of messages in a
network with at most n nodes, is Θ(n log n), while the broadcast with a linear number of messages can be
achieved with advice of size O(n). We also show that the latter size of advice is almost optimal: no advice
of size o(n) can permit to broadcast with a linear number of messages. Thus an efficient wakeup requires
strictly more information about the network than an efficient broadcast.

Our upper bounds are constructive: we show specific oracles providing advice of appropriate size and de-
sign wakeup and broadcast algorithms using them and accomplishing information dissemination with a linear
number of messages. Apart from their tightness, our results have the following additional strength. Both
upper bounds hold even for totally asynchronous communication, for anonymous nodes (no distinct labels),
and using only bounded-size messages. On the other hand, both lower bounds hold even for synchronous
communication, for labels of nodes 1,...,n, and for arbitrarily long messages.

We consider wakeup from a single source, where only one node, the source, is awake in the beginning.
We choose this communication primitive due to its similarity with broadcasting, since we want to compare
the amount of information needed to efficiently accomplish similar tasks. However, both the upper and the
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lower bound on the size of advice for wakeup still hold for a more traditional formulation of the wakeup
problem, where the adversary wakes up an arbitrary subset of nodes which in turn have to wake up all other
nodes.

1.4. Terminology and preliminaries

We now describe broadcast algorithms using advice provided by oracles, in a more detailed manner.
Wakeup algorithms will be a particular type of broadcast algorithms, subject to an additional constraint.
Consider a network, i.e., a connected graph G = (V,E) with a distinguished source s. Every node v of
degree deg(v) has a distinct label id(v), and ports at v are labeled 0, 1, ...,deg(v) − 1. The port at node v,
corresponding to edge e, is denoted by portv(e). Every node v has also a bit s(v) called the status bit, which is
set to 1 if the node v is the source, and to 0 otherwise. Fix an oracle O and let the advice f = O(G) given by
this oracle to network G be a function f : V → {0, 1}∗, assigning binary strings to nodes of G. A broadcast
algorithm A using advice provided by oracle O is a function A : {0, 1}∗ × {0, 1} × IN × IN → Σ, where IN
denotes the set of non-negative integers and Σ denotes the set of broadcast schemes (to be defined below). For
a given node v, algorithm A takes the quadruple (f(v), s(v), id(v),deg(v)) and returns a broadcast scheme
Sv = A(f(v), s(v), id(v), deg(v)) for the node v. It remains to define what such a scheme is. Intuitively,
this is a prescription whether and on which ports the node should send messages, and what messages, given
a particular history of communication to date. Such a history (at node v) is a sequence H = (f(v), s(v),
id(v),deg(v), (m1, p1), (m2, p2), . . . , (mk, pk)), where the prefix (f(v), s(v), id(v),deg(v)) is the knowledge of
the node before the broadcast starts, and (m1, m2, . . . ,mk) are messages already received by v, where mi

came to node v on port pi. Intuitively, the history describes the total knowledge of the node at a given
point of the broadcast process. Given a history H at node v, a broadcast scheme Sv returns a set of couples
{(m′

1, p
′
1), . . . (m

′
r, p

′
r)}, where 0 ≤ p′i < deg(v). This means that v should send message m′

i on port p′i, for
i ≤ r. At each point of the scheme execution some nodes are informed. Intuitively, these are nodes that
already got the source message. In the beginning only the source is informed. A node becomes informed
after receiving a message from an informed node (indeed, the source message can be appended to any such
message). Broadcast is completed when all nodes of the network are informed. Wakeup algorithms using
advice provided by oracles produce wakeup schemes in a similar manner as above: a wakeup scheme for
v is a broadcast scheme that does not send any messages (returns the empty set) on all histories with no
messages, unless v is the source. Intuitively, nodes other than the source can spontaneously transmit in the
broadcast but they cannot in the wakeup. The message complexity of a broadcast or a wakeup scheme is
the total number of messages that it produces.

2. Size of advice for the wakeup

In this section we show that the minimum size of advice permitting the wakeup with a linear number of
messages is Θ(n log n). Establishing the upper bound is easy. Fix a network G, and let T be any spanning
tree of G. The advice f of oracle O on the network G is defined as follows. For any node v, f(v) is a
binary string coding those port numbers at v that lead to its neighbors in T . Since port numbers are
integers smaller than n and by using Elias delta coding [9], there exists such a string of length at most
n(v)⌈log n⌉ + O(log log n), where n(v) is the number of neighbors of v in T . Hence the size of advice is
n log n + o(n log n). Given this advice, the wakeup scheme at v tells the node to send messages on all ports
coded by f(v). This scheme uses exactly 2(n − 1) messages. Thus we have:

Theorem 1. There exists advice of size O(n log n) permitting the wakeup with a linear number of messages
of networks with at most n nodes.

The main result of this section establishes a matching lower bound on the size of advice for this task.

Theorem 2. The minimum size of advice permitting the wakeup with a linear number of messages of
networks with at most n nodes is Ω(n log n).
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To prove this theorem, we use an auxiliary problem, called edge discovery, defined as follows. We
denote by K∗

n the n-node complete graph Kn whose nodes are labeled from 1 to n, and the port number at
node i of the edge leading to node j is labeled (i− j) mod (n − 1). The instances of the problem edge dis-

covery are triples (n,X, Y ) where n is a positive integer, and X and Y represent two disjoint subsets of
edges of K∗

n. More precisely, the edges represented in X are given distinct labels between 1 and |X|. So
formally, X = {(e1, ℓ1), . . . , (e|X|, ℓ|X|)}, where ℓi is the label of ei, and Y is a subset of edges of K∗

n. The
problem consists in designing a communication scheme that, given n, |X|, Y and the set I of possible
instances, eventually discovers X, that is eventually sends a message through every edge of X. Whenever
an edge e is traversed by a message of the communication scheme, the following information is obtained by
the algorithm: if (e, ℓ) ∈ X, then (e, ℓ) is revealed; otherwise it is revealed that (e, ℓ) 6∈ X for any label ℓ.

We prove the following lemma that will be used later as a key tool for proving our lower bounds. In
the absence of any information about the instances, this lemma could be proved using techniques similar to
those in, e.g., [22] and [23]. However, the presence of advice changes the setting radically.

Lemma 1. Let I be a subset of instances of edge discovery, all yielding the same input for the problem
(i.e., these instances differ only in the sets X, and all these sets X have the same size). The worst-case

message complexity of edge discovery restricted to I is at least log |I|
|X|! messages.

Proof. For any given instance (n,X, Y ) of edge discovery, the edges in X are called special. Let us
consider any communication scheme S solving edge discovery for all instances in I. Messages traverse
edges during the execution of S. At the beginning of the execution of the scheme, all instances in I are called
active. When an edge is traversed, the scheme learns whether this edge is special or not. This knowledge
enables to discard instances from the set of active instances. For example, if the traversed edge e is not
special, then all currently active instances in which e is special can be discarded. Conversely, if the traversed
edge e is special, then all currently active instances in which e is not special can be discarded.

We describe an adversary that aims at slowing down the discovery of the special edges by S. We consider
the synchronous execution of S. A set J ⊆ I of active instances, after t messages have been sent by S and
r special edges have been discovered by S, for some t ≥ 0 and r ≥ 0, is said to be uniform if (1) the t first
messages are sent by S through the same edges in all instances in J , and (2) the set of revealed couples
(e, ℓ), for special edges e, is the same in all instances of J . If J is uniform, then the scheme S will proceed
identically at the next step of its execution in all instances of J . That is, a message is sent through edge e
and this edge is the same for all instances in J . The adversary considers uniform sets of active instances,
and proceeds as follows. Let Jspecial (resp., Jregular) be the set of instances in a uniform set J , for which
e is special (resp., not special). If |Jspecial| ≥ |Jregular| then the adversary decides that e is special, else it
decides that e is not special. Note that |Jspecial| ≥ 1

2 |J | in the former case, and |Jregular| ≥ 1
2 |J | in the latter

case. In case e is set to be special by the adversary, the label ℓ(e) remains to be set. The adversary proceeds
as follows. Since r special edges have been already discovered, the label of e can take |X| − r values. The

adversary chooses the label l0 such that the set J
(l0)
special of active instances in Jspecial for which ℓ(e) = l0,

has the largest size. Note that then |J (l0)
special| ≥

|J|
2(|X|−r) . We say that Jregular is the regular subset of J ,

and J
(l0)
special is the special subset of J .

By construction, Jregular, as well as all J
(l)
special for 1 ≤ l ≤ |X|, are uniform. Hence, we can define

recursively the following sequence of sets: I0,0 = I and






It+1,r = the regular subset of It,r,
if the (t + 1)th edge is set as not special;

It+1,r+1 = the special subset of It,r,
if the (t + 1)th edge is set as special.

By construction, and depending on which of the cases holds, we have |It+1,r| ≥ |It,r|/2 or |It+1,r+1| ≥
|It,r|/(2(|X| − r)). For the above defined adversary, let xt,r denote the number of active instances after t
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messages have been sent in S, and r special edges have been discovered. Thus, x0,0 = |I| and

xt+1,r ≥ xt,r

2
and xt+1,r+1 ≥ xt,r

2(|X| − r)
.

Therefore, by simple induction on r and t, we get

xt,r ≥ x0,0 (|X| − r)!

2t |X|! .

As a consequence, xt,r ≥ x0,0/(2t|X|!) for any r ≤ |X|. When the communication scheme S is completed,
only one instance remains active, i.e., xt,r ≤ 1. By the previous inequality, our adversarial scenario guaran-
tees that this cannot occur before t messages have been sent, where

x0,0

(2t|X|!) ≤ 1 .

Since x0,0 = |I|, we conclude that t ≥ log |I|
|X|! , which completes the proof of Lemma 1. �

Proof of Theorem 2. We first prove that, for any α < 1/2, there exists ǫ > 0 such that, for any
integer n greater than some constant, there exists a (2n)-node graph for which no algorithm can perform
wakeup with less than ǫ (2n) log(2n) messages, if the size of advice is not more than α (2n) log(2n).

Fix a positive integer n. Recall that K∗
n is the n-node complete graph with the following labeling. The

nodes of K∗
n are labeled from 1 to n. The port numbers of the edges are fixed as follows: for any 1 ≤ i, j ≤ n,

the port number at i of the edge {i, j} is (i − j) mod (n − 1).
For any n-tuple S = (e1, e2, . . . , en) of distinct edges in K∗

n, let Gn,S be the graph defined from K∗
n as

follows (see Figure 1). For any 1 ≤ i ≤ n, a node wi labeled n + i is inserted in the middle of the edge
ei = {ui, vi}. The port number at ui (resp. at vi), of the edge {ui, wi} (resp. {vi, wi}), is the same as the
port number at ui (resp. at vi), of the former edge {ui, vi}. Assume, without loss of generality, that the
label of ui is smaller than the label of vi. Then the port number at wi of the edge {ui, wi}, (resp. {vi, wi}),
is 0 (resp. 1). Other port numbers remain unchanged. Let node with label 1 be the source.

1

2

3

5 4

1

2

3

45

source

79

8 6

10

a) b)

Figure 1: a) the graph K∗

5
b) the graph G5,S with S =

`

{2, 4}, {3, 4}, {2, 5}, {3, 5}, {1, 2}
´

Intuitively, an oracle has to give a lot of bits of advice to help a wakeup algorithm to find the n subdivided
edges with only O(n) messages. This is mainly due to the fact that there exists a lot of different graphs

Gn,S . The graphs Gn,S are indeed distinct for different sets S. There are P = n!
((n

2)
n

)
such (labeled) graphs,

as there are
(
n
2

)
edges in K∗

n. Let us compute a lower bound on P . First note that, for any a, b such that
1 ≤ b ≤ a, we have (

a

b

)
≥
(a

b

)b

. (1)
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This implies
((n

2

)

n

)
≥
((

n
2

)

n

)n

.

Moreover, we have
(
n
2

)
= n(n−1)

2 ≥ n2/4. Hence

P ≥ n!
(n

4

)n

. (2)

Consider an arbitrary wakeup algorithm using advice provided by an oracle O. Assume that this advice
has size at most q = α(2n) log(2n) on all graphs of size 2n, for some α < 1/2. We will prove that there are
many graphs Gn,S for which the advice is identical.

Let us first compute how many different advice functions f coded on at most q bits can there be for (2n)-
node graphs. Let v1, . . . , v2n be the list of nodes of such a graph G, in increasing order of their identifiers.
Consider an advice function f for G. For any 1 ≤ i ≤ 2n, f(vi) is the (possibly empty) string given (by the
oracle) to the node vi in the graph G. Let s be the concatenation of the strings f(vi) in increasing order of
i. Let q′ be the size of s. By definition of q, we have q′ ≤ q. There are 2q′

possible different strings s for a

given q′. Moreover, using standard combinatorial arguments, one can show that there are
(
q′+2n−1

2n−1

)
different

ways to partition the q′ bits of the string s into 2n (possibly empty) substrings f(vi). To summarize, there

are at most 2q′
(
q′+2n−1

2n−1

)
different advice functions of size q′ for (2n)-node graphs. Since q′ can be chosen

between 0 and q, the number of possible advice functions is exactly

Q =

q∑

q′=0

(
2q′

(
q′ + 2n − 1

2n − 1

))
.

Let us compute an upper bound on Q. Since 2q′
(
q′+2n−1

2n−1

)
is increasing as a function of q′, it follows that

Q is at most (q + 1)
(
2q
(
q+2n−1
2n−1

))
. Note that

(
q+2n−1
2n−1

)
≤
(
q+2n
2n

)
because q ≥ 0. Thus we have

Q ≤ (q + 1)

(
2q

(
q + 2n

2n

))
(3)

Recall that q = α(2n) log(2n). Thus we have
(
q+2n
2n

)
=
(
2n(1+α log(2n))

2n

)
.

In view of Lemma 1.6 of [26] stating that

(
a

b

)
≤
(ae

b

)b

(4)

for 0 < b ≤ a, we get (
2n(1 + α log(2n))

2n

)
≤
(
e
(
1 + α log(2n)

))2n

.

For n large enough, we have (
e
(
1 + α log(2n)

))2n

≤
(
6α log(2n)

)2n

and thus
Q ≤

(
α (2n) log(2n) + 1

)
· 2α (2n) log(2n) ·

(
6α log(2n)

)2n
.

Take β = 1/4 + α/2. We have α < β, and thus for n large enough,

Q ≤ 22βn log(n/4) . (5)

There exist at most Q different advice functions for the P different graphs Gn,S . Therefore, there exists
an advice function f which is the same for a set G of at least P/Q different graphs Gn,S . For all these
graphs, the wakeup scheme returned by the algorithm is the same.
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To any graph Gn,S ∈ G we can associate an instance (n, S, ∅) of the edge discovery problem, where
the special edges of edge discovery are the subdivided edges of the graph Gn,S , and the label of a special
edge is the rank of the subdivided edge in S. Let I be the set of instances of edge discovery obtained from
all graphs in G. Clearly, I and G have the same cardinality. Performing wakeup in a graph Gn,S requires
that, for any e ∈ S, at least one message be sent to the node hidden in the edge e. Moreover, this node
has an identifier that corresponds to the position of e in S. Therefore, performing wakeup in a graph Gn,S

requires at least the same number of messages as solving the edge discovery problem on the corresponding
instance.

Combining Equations 2 and 5, we get

P/Q ≥ n! 2(1−2β)n log(n/4) .

Since |I| ≥ P/Q, the application of Lemma 1 gives a worst-case message complexity of at least

log(
n! 2(1−2β)n log(n/4)

n!
) = (1 − 2β)n log(n/4) (6)

Since α < 1/2, we have β < 1/2 and thus the above message complexity is greater than ǫ (2n) log(2n) for n
large enough, where ǫ is a positive constant not depending on n.

We can now conclude the proof of the theorem. Assume that the theorem does not hold. Then there
exists an infinite increasing sequence of integers (ni)i≥1, an oracle providing advice of size less than 1

4ni log ni

for the graphs with at most ni nodes, i ≥ 1, and an algorithm A using this advice, such that the algorithm
performs wakeup with a linear number of messages in any graph. Fix i ≥ 1. Let mi = ni if ni is even and
mi = ni − 1 otherwise. For graphs of size at most mi, the advice has size at most 1

4ni log ni. For i large
enough, we have 1

4ni log ni ≤ 1
3mi log mi. Applying the previous result with α = 1/3, there exists a positive

constant ǫ such that A has a worst-case message complexity of at least ǫmi log mi on mi-node graphs, for
i large enough. Thus the message complexity of A is not linear. This contradiction concludes the proof of
the theorem. �

Remark 1. In the above proof, we obtained a threshold 1/2 for α. Given an arbitrary constant integer
c, a threshold c

c+1 can be obtained by subdividing cn edges instead of only n edges. Hence, one can show
that our upper bound n log n + o(n log n) on the size of advice permitting wakeup with a linear number of
messages in graphs with at most n nodes, shown at the beginning of the section, is asymptotically optimal.

3. Size of advice for the broadcast

In this section we establish almost tight bounds on the minimum size of advice permitting the broadcast
with a linear number of messages. In particular, the following upper bound, together with Theorem 2, shows
that an efficient wakeup requires strictly more information about the network than an efficient broadcast.

Theorem 3. There exists advice of size O(n) permitting the broadcast with a linear number of messages in
networks with at most n nodes.

Proof. We construct an oracle O providing advice and a broadcast algorithm A using it, which returns a
broadcast scheme B with linear message complexity. We first describe the oracle O. Let G = (V,E) be any
n-node network. Every edge e = {u, v} ∈ E is given the weight

w(e) = min{portu(e),portv(e)}.

Let #2(w) be the number of bits for encoding a non-negative integer w using standard binary representation,
that is #2(w) = 1 if w ≤ 1, and #2(w) = ⌊log w⌋ + 1 if w > 1. Call the number #2(w(e)) the contribution
of the edge e.

Claim 3.1. There exists a spanning tree T0 of G, for which
∑

e∈E(T0)
#2(w(e)) ≤ 4n.
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We establish the claim by constructing a tree T0 that yields this contribution. The construction is a
variant of Kruskal’s minimum-weight spanning tree (MST) algorithm (cf. [6]), similar to the one in [5].
It maintains a collection of trees. Initially, each node of G forms a tree on its own. The construction
merges these trees into larger trees until it remains with a single tree giving the solution T0. More precisely,
the construction proceeds in phases. Each phase k ≥ 1 of the construction consists of four steps. At the
beginning of the phase, we identify the collection of “small” trees for the phase: Tsmall(k) = {T : |T | < 2k},
where |T | denotes the size (number of nodes) of a tree T . Second, for each tree T ∈ Tsmall(k), we look at the
set S(T ) of edges that connect T to G \ T , and select an edge e(T ) of minimum weight in S(T ). (Note that
S(T ) 6= ∅ since the graph G is connected.) Third, we add these edges to the collection of trees, thus merging
the trees into subgraphs. Each subgraph may contain a cycle, thus, finally, for the last of the four steps, in
each subgraph we arbitrarily select one of the edges on the cycle and erase it, effectively transforming the
subgraph back into a tree. This process is continued until a single tree remains, which is the desired tree T0.

To prove the claim, let us denote the collection of trees at the beginning of the kth phase, k ≥ 1, by

T
(k)
1 , . . . , T

(k)
qk

, where qk is the number of trees maintained in phase k. We have q1 = n, and |T (1)
i | = 1 for

any 1 ≤ i ≤ n. Moreover,
∑qk

i=1 |T
(k)
i | = n for every k ≥ 1. By induction, we easily get that |T (k)

i | ≥ 2k−1

for every k ≥ 1 and 1 ≤ i ≤ qk. Thus qk ≤ n/2k−1 for every k ≥ 1. In particular, the number of phases of
the construction is at most ⌈log n⌉.

Assume that, when considering a small tree T
(k)
i in the kth phase, the edge e(T

(k)
i ) incident to some

node x of T
(k)
i was selected. The only edges incident to node x excluded from consideration are the at most

|T (k)
i | − 1 edges leading from x to the other nodes in T

(k)
i . Hence even if all of these edges are “lighter”

than the edges leading outside the tree, the port number used for e(T
(k)
i ) is at most |T (k)

i | − 1, hence

w(e(T
(k)
i )) ≤ |T (k)

i | − 1. Therefore

{
#2(w(e(T

(k)
i ))) = 1 if k = 1

#2(w(e(T
(k)
i ))) ≤ ⌊log(|T (k)

i | − 1)⌋ + 1 if k > 1

For T
(k)
i ∈ Tsmall(k), we have log |T (k)

i | < k. Since outgoing edges are selected only for small trees, we have

#2

(
w
(
e
(
T

(k)
i

)))
≤ k .

Hence the total contribution Ck of the edges added to the structure throughout the kth phase satisfies

Ck ≤ k |Tsmall(k)| ≤ k qk ≤ k n/2k−1 .

Therefore, the total contribution
∑

k≥1 Ck of all edges of the resulting tree T0 satisfies

∑

k≥1

Ck ≤
∑

k≥1

kn/2k−1 ≤ 4n .

This completes the proof of Claim 3.1.

We now describe the advice function provided by oracle O. For every edge e = {u, v} ∈ E(T0), it assigns
the binary representation of w(e) to the extremity x ∈ {u, v} such that w(e) = portx(e), where ties are broken
arbitrarily. The same node may receive binary representations of several weights w(e1), . . . , w(et), in which
case they can be encoded using Elias gamma coding [9] by one binary string of length 2

∑t
i=1 #2(w(ei)). In

view of Claim 3.1, the size of the advice is at most 8n.
Based on the strings assigned to the nodes of G, Algorithm A constructs the broadcast scheme B defined

in Figure 2. The general idea behind this broadcast scheme is that each node transmits a “hello” message
through its incident edges that are designated by the advice. As a consequence, each node eventually knows
which of its incident edges belong to the spanning tree T0. The source message can thus be efficiently
disseminated through this spanning tree.
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/* Broadcast Scheme B executed by node x.
M is the source message. */

begin

Kx ← list of port numbers given to x in the advice;
/* Kx = incident edges known by x */

Hx ← Kx; /* Hx = incident edges through which “hello”
messages may be sent */

Sx ← ∅; /* Sx = incident edges through which the
message M has been transmitted */

repeat

if x receives the message M via port p then

Kx ← Kx ∪ {p};
Sx ← Sx ∪ {p};

if x receives the message M then

send message M on all ports of Kx \ Sx;
Sx ← Kx;
Hx ← Hx \ Sx;

if Hx 6= ∅ then

send “hello” messages on all ports of Hx;
Hx ← ∅;

if x receives a “hello” message via port p /∈ Kx then

Kx ← Kx ∪ {p};
endrepeat

end

Figure 2: Broadcast Scheme B

Claim 3.2. The scheme B has linear message complexity, and achieves broadcast in G.

We establish the first part of the claim by combining the following properties. Clearly, the source message
M as well as the “hello” messages are sent only through the n − 1 edges of T0. The message M does not
traverse an edge more than once because M is sent by x only through edges of Kx \ Sx, where Sx is the
set of edges through which either M has been sent by x before, or M has been received by x. A “hello”
message traverses an edge e of T0 in one direction only because only one extremity x of e is given the port
number portx(e) in the advice.

The second part of the claim is established by induction on the distance d of a node from the source, in
the tree T0. Let P (d) be the property “all nodes at distance ≤ d from the source in T0 eventually receive
the message M”. P (0) clearly holds. Assume P (d) holds for d ≥ 0, and consider a node x at distance d + 1
from the source in T0. Node x is a neighbor in T0 of a node y at distance d from the source in T0. The edge
e = {x, y} is eventually discovered by y because, by definition of the advice, either y is given porty(e), or
x is given portx(e), and, in the latter case, x will eventually send a message “hello” to y, enabling e to be
known by y. By the induction hypothesis, y will eventually receive the message M . Therefore the message
will eventually be sent through e by y. Therefore P (d + 1) holds too, and hence B achieves broadcast. �

Theorem 4. Any broadcast algorithm using advice of size o(n) in networks with at most n nodes, cannot
return a broadcast scheme of linear message complexity.

Proof. The proof uses a similar construction as for proving Theorem 2, but requires novel ideas, since
the nodes can now transmit spontaneously. Recall that K∗

n denotes the n-node complete graph Kn whose
vertices are labeled from 1 to n, and the port number at node i of the edge leading to node j is labeled
(i − j) mod (n − 1). For any k and n such that 4k divides n, and for any (n/k)-tuple S = (e1, . . . , en/k) of
distinct edges of K∗

n, let us consider the graphs obtained from K∗
n by replacing edge ei by a clique Hi of

size k, for i = 1, . . . , n/k. More precisely, one edge {ai, bi} of the clique Hi replacing ei is removed from
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Hi, and ai is connected to one extremity of ei in K∗
n, while bi is connected to the other extremity of ei in

K∗
n. Nodes of Hi are labeled from n + (i − 1)k + 1 to n + ik, for i = 1, . . . , n/k. The port number at node

n + (i − 1)k + a of the edge leading to node n + (i − 1)k + b is labeled (a − b) mod (k − 1). By abuse of
notation, the edge {n+(i− 1)k +a, n+(i− 1)k + b} is called the edge {a, b} of Hi. The set S does not fully
specify the graph resulting from the above transformation because edges {ai, bi} are not yet specified. Let

C =
{(

(a1, b1), . . . , (an/k, bn/k)
)
| (ai, bi) ∈ {1, . . . , k}2, ai < bi, i = 1, . . . , n/k

}
.

Any C ∈ C (together with the set S) fully characterizes the graph as follows. For any edge ei in S,
i = 1, . . . , n/k, let ei = {ui, vi}, where id(ui) < id(vi). The edge ei of K∗

n and the edge fi = {ai, bi} of Hi

are replaced by the edges {ai, ui} and {bi, vi}. The port number at ui (resp., vi) of the edge {ai, ui} (resp.,
{bi, vi}) is the same as the port number at ui (resp., vi) of the edge ei. Similarly, the port number at ai

(resp., bi) of the edge {ai, ui} (resp., {bi, vi}) is the same as the port number at ai (resp., bi) of the edge fi.
The resulting graph is denoted by Gn,S,C . The construction is illustrated in Figure 3. (For clarity purposes,
4k does not divide n in this example.) Let the node with label 1 be the source. For any pair of positive
integers (n, k) such that 4k divides n, the family of graphs defined as above is denoted by Gn,k. In other
words, we have

Gn,k = {Gn,S,C | S is a (n/k)-tuple of edges of K∗
n, C ∈ C } .

Note that, by construction, every graph in Gn,k has 2n nodes, and in each such graph, all nodes with labels
larger than n (i.e., those in the added cliques) have degree k − 1.

a) b)

e’

e

source1

Figure 3: a) the graph K∗

5
b) the graph G5,S,C with S = (e, e′)

Claim 3.3. For n and k large enough, such that k ≤ √
log n and 4k divides n, any broadcast algorithm using

advice of size at most n
2k , for all graphs in Gn,k, cannot return a broadcast scheme with message complexity

less than n(k − 1)/8.

To establish the claim, let us assume, for the purpose of contradiction, that there exists a broadcast
algorithm A using advice of size at most n

2k , for all graphs in Gn,k, which produces a broadcast scheme of
message complexity less than n(k − 1)/8. Let σi be the sum of numbers of bits given in this advice to the

nodes of Hi. Since Σ
n/k
i=1σi ≤ n

2k , we conclude that at least half of the cliques do not receive any bit of
information. On the other hand, if

A(∅, 0, n + (i − 1)k + a, k − 1)

is not defined for some pair (i, a), where 1 ≤ i ≤ n/k and 1 ≤ a ≤ k, then at least one node of Hi

requires some advice to specify its broadcast scheme, and thus the clique Hi must receive at least one bit
of information. Such an index i is called heavy. Let i ∈ {1, . . . , n/k} be a non heavy index (i.e., i is such
that A(∅, 0, n + (i − 1)k + a, k − 1) is defined for all a = 1, . . . , k), and let us observe the behavior of the
communication scheme produced by A in the clique Hi, when the advice function gives no information to

11



the nodes of Hi. If in the synchronous execution of the scheme, all edges of Hi are eventually traversed by
at least one message, then i is called internal. Otherwise, i.e., if the communication scheme leaves at least
one edge of Hi not traversed by any message in the synchronous execution of the scheme, then i is called
external. External indices result from the fact that the scheme exchanges messages but lets always one edge
free of message, or result from the fact that the execution of the scheme reaches a point at which the action
of a node is not defined (the history of the execution cannot be produced by the broadcast scheme returned
by A).

For every internal index i, let us consider the synchronous execution of the scheme, and let fi = {ai, bi}
be an edge of Hi that is traversed last. For every external index i, let us again consider the synchronous
execution of the scheme, and let fi be any edge of Hi that is not traversed by any message. Finally, for
every heavy index i, let fi be any edge of Hi. This setting of the fi’s defines one (n/k)-tuple from C,
denoted by C∗. We will now restrict attention to those graphs in Gn,k, for which S takes all possible values
of (n/k)-tuples of edges of K∗

n, but C = C∗.
Fix S and consider Gn,S,C∗ . As observed before, at least half of the cliques in Gn,S,C∗ receive no bits

of advice. Let I be the corresponding set of indices. We have |I| ≥ n/(2k). Indices in I are either internal
or external because cliques with heavy indices must receive at least one bit of advice. Hence I can be
decomposed into two sets Iint and Iext that are subsets of internal and external indices, respectively, and
such that I = Iint ∪ Iext. For all cliques Hi with i ∈ Iext, the setting of the fi’s implies that the broadcast
scheme generated by A has the property that, in its synchronous execution, no message goes out of Hi

before a message goes into Hi from the rest of the graph. Among all cliques Hi with i ∈ Iint, some may
have the property that, in the synchronous execution of the broadcast scheme, a message goes out of Hi

before any message goes into Hi from the rest of the graph. Let I+
int be the indices from Iint, for which this

phenomenon occurs. By the setting of the fi’s, for every i ∈ I+
int, the message complexity of the broadcast

scheme restricted to Hi is at least k(k − 1)/2 since fi is one of the edges traversed last. Therefore, since
the broadcast scheme generated by A has message complexity less than n(k − 1)/8, we get that |I+

int| < n
4k .

Thus, |I \ I+
int| ≥ n

4k . This inequality implies that the number of cliques Hi such that, in the synchronous
execution of the broadcast scheme, no message goes out of Hi before a message goes into Hi from the rest
of the graph, is at least n

4k .
In other words, at least n

4k cliques have to be discovered from the outside, and at most 3n
4k can reveal

themselves spontaneously to the rest of the graph. Therefore, the broadcast problem in Gn,S,C∗ is at least as
hard as the auxiliary problem edge discovery with instances (n,X, Y ) satisfying |X| = n

4k and |Y | = 3n
4k .

For n, |X|, and Y fixed, there are

|X|!
((n

2

)
− |Y |
|X|

)

different instances of edge discovery. Hence, for |X| = n
4k and |Y | = 3n

4k , the number of different instances
P = |X|! P ′ satisfies

P ′ =

((n
2

)
− 3n

4k
n
4k

)
≥
((

n
2

)
− 3n

4k
n
4k

) n

4k

≥
(

n2

4 − 3n
4k

n
4k

) n

4k

≥ (nk − 3)
n

4k ≥
(

nk

2

) n

4k

(7)

where the first inequality follows from Equation 1. On the other hand, let Q be the number of possible
advice functions of size at most q for the graphs of Gn,k. By the same calculations as for deriving Equation 3,
we get

Q ≤ (q + 1)2q

(
2n + q

q

)
.

It follows from Equation 4 that
(

2n + n
2k

n
2k

)
=

( n
2k (1 + 4k)

n
2k

)
≤
(
e(1 + 4k)

) n

2k ≤ (24k)
n

2k

for n and k large enough. Since n
2k + 1 < n

k , we get

Q ≤ n

k
2

n

2k (24k)
n

2k , if q ≤ n
2k .
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Therefore, for n and k large enough,
Q ≤ (50k)

n

2k . (8)

There exists a set of graphs of size at least P/Q for which the advice is the same. Combining Equations 7
and 8, we conclude that there exists a set of graphs of size at least

|X|!
( n

5000 k

) n

4k

for which the advice is the same. Applying Lemma 1 to this set of graphs, we get that the number of
exchanged messages is at least n

4k log( n
5000 k ). For k ≤ √

log n, and for n and k large enough, this number
is at least n(k − 1)/8, a contradiction with the hypothesis that A produces a broadcast scheme of message
complexity less than n(k − 1)/8. This completes the proof of Claim 3.3.

To complete the proof of the theorem, let us consider a broadcast algorithm A using advice of size
f(n) in networks of at most n nodes, where f(n) is in o(n). Let f̂ be the function defined by f̂(n) =

max{f(n), n√
log n

}. Hence A uses advice of size at most f̂(n) in networks of at most n nodes. For any n ≥ 1,

let k(n) = n/f̂(n), and let k′(n) = ⌊k(n)
4 ⌋. Let n′ be the largest integer smaller or equal to n and divisible

by 4k′(n). Note that, since n/k′(n) grows to infinity, we have n′ ≥ n/2, for n large enough. The advice has

size at most f̂(n) in networks with at most n′ nodes. We have

f̂(n) =
n

k(n)
≤ 2n′

k(n)
≤ n′

2 k′(n)
.

Therefore, the size of advice is at most n′

2 k′(n) in networks with at most n′ nodes. By the construction of f̂ ,

we get k′(n) ≤ √
log n′. Hence Claim 3.3 applies, and we conclude that the broadcast scheme returned by

A on graphs with at most n′ nodes has message complexity at least n′(k′(n) − 1)/8, which is not in O(n′).
Therefore, any broadcast algorithm A using advice of size f(n) in networks with at most n nodes, where
f(n) is in o(n), returns a broadcast scheme that does not have a linear message complexity. �

4. Conclusion

We investigated the concept of advice: a new way of modeling knowledge that nodes have about the
network. We showed that the minimum size of advice for which a task can be accomplished efficiently, can
serve as a measure of difficulty of this task, and can be used to quantitatively differentiate the difficulty of
related tasks. In this paper we concentrated on two similar communication tasks, broadcast and wakeup
with a linear number of messages, and used the size of advice to strictly separate their difficulty. However,
we conjecture that the minimum size of advice can be also used to assess difficulty of a broader range
of distributed network problems, not only concerning information dissemination but also, e.g., spanner
construction or graph coloring. Moreover, the size of advice could be potentially used to establish precise
tradeoffs between the amount of knowledge available to nodes of a network and the efficiency (in terms of
time or message complexity) of accomplishing a given task.
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