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Abstract

Many articles deal with the problem of maintaining a rooted shortest-path tree. However,
after some edge deletions, some nodes can be disconnected from the connected compo-
nent Vr of some distinguished node r. In this case, an additional objective is to ensure
the detection of the disconnection by the nodes that no longer belong to Vr. We present
a detailed analysis of a silent self-stabilizing algorithm. We prove that it solves this more
demanding task in anonymous weighted networks with the following additional strong
properties: it runs without any knowledge on the network and under the unfair daemon,
that is without any assumption on the asynchronous model. Moreover, it terminates in
less than 2n+D rounds for a network of n nodes and hop-diameter D.
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1. Introduction

Routing algorithms using the computation of distance/path vectors, like RIP (Routing
information protocol) or BGP (Border Gateway Protocol), are based on the construction
of shortest-path trees. For any destination r, a shortest-path tree rooted at r is implicitly
built by the routing scheme. Because of the dynamics of the network, it may happen that
the network is disconnected. Routing to node r is only guaranteed from the nodes that
belong to the same component as r, namely Vr. For the other nodes, one should remove,
in the routing tables, information to reach r in order to prevent routing messages that will
anyway never reach r, and thus to save some bandwidth. A legitimate configuration is
characterized by the fact that every node that belongs to Vr knows a route to r and every
node not in Vr detects that r is not in its own component. The difficulty of converging
toward a legitimate configuration is called, in this context, the count-to-infinity problem
[2]: for nodes that do not belong to Vr, some control messages keep on being exchanged
infinitely in order to find a path to r. At the same time, the updates of routing tables
for nodes belonging to Vr should be done as quickly as possible.
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In practice, the most standard techniques consist in exchanging distance/path vectors
periodically and in using some timers in order to guess if a node is still within Vr.
However, the convergence is usually only guaranteed under some assumptions (i) on the
asynchrony of the network and/or (ii) on some known upper bound on the diameter or
the size of the network. The convergence towards a legitimate configuration can be often
provided by self-stabilizing algorithms, for which the correctness is guaranteed for any
initial configuration.

However, solutions of the literature dedicated to the maintenance of a BFS tree or
shortest paths are mainly for connected networks. Using them, we still face the count-
to-infinity problem in the disconnected components.

In the routing context, it is not always required to store information for every
node. In compact routing schemes [3, 4], only some shortest-path trees completely
spanning the connected components are built and need to be maintained. Given a set
of roots r1, r2, . . . , rk, we aim at providing silent1 self-stabilizing algorithms that both
maintain a shortest-path tree toward each ri, for nodes of Vri

, and detect the nodes that
no longer belong to Vri

. In the following, we present an algorithm for a single root but
our solution holds for any k. The identifiers of nodes do not need to be unique. Only ri’s
identifiers should be different in order to distinguish the different roots. Thus, for k = 1,
our self-stabilizing algorithm works in anonymous networks in the semi-uniform model:
all nodes except one, the root, perform the same distributed algorithm.

In the asynchronous setting, the expressiveness of distributed algorithms is given by
the scheduling of distributed processes. A given hypothesis on the scheduling is called a
daemon. The highest level of asynchrony is called the unfair daemon since there is no
restriction at all on the sequence of actions. In distributed computing, many algorithms
works only for some assumption or restriction of daemons and it is always challenging
to propose a solution for the unfair daemon. Having a protocol that works without
any assumption on the scheduling can be very crucial when dealing with: (i) systems
with very high inherent asynchrony (process speeds are not constant and/or processes
have very heterogeneous speeds), e.g., ad-hoc networks; (ii) safety-critical systems, i.e.,
systems with low to no tolerance of (software) failures. In this latter case it is not
acceptable to use a software that may crash, even if these crashes would happen under
some unlikely scenarios. We will focus on unfair daemon for our study.

The performance of an asynchronous distributed algorithm is often measured by the
time complexity expressed as a number of rounds. Informally, a round is the smallest
fragment of time for which every distributed process can compute at least one execution
step. Thus, rounds intuitively count the number of execution steps of the slowest process.
Note that the number of steps is rarely analyzed in the literature. The first paper
containing a self-stabilizing BFS construction with a bound on the number of steps was
only published in 2009 [5] (17 years after the first paper presenting a self-stabilizing BFS
construction: the Huang and Chen algorithm [6] in 1992). Moreover, in this 2009 paper,
the algorithm is not silent, meaning that some useless actions can take place forever.

With an extra cost in terms of memory and a convergence time of O(n) rounds
for an n-node network, the asynchronous unison allows to transform any self-stabilizing
algorithm designed under a weak daemon, the distributed fair daemon, into one dealing

1Eventually, the states of all nodes remain unchanged. This notion is also referred as “quiescent” in
some contexts.
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with the unfair daemon [7]. However, there are no guaranteed bounds on the number of
steps. Thus, it is always difficult to provide a self-stabilizing algorithm working under
the unfair daemon and providing theoretical bounds simultaneously on the number of
rounds and the number of steps.

1.1. Related works
Self-stabilizing single-destination shortest-path constructions. The single-destination shor-
test-path problem is to find shortest paths from all vertices in the graph to a single desti-
nation vertex r. Edges can have weights and the length of a path corresponds to its sum of
weights. The oldest distributed algorithms are inspired by the Bellman-Ford algorithm.
In the articles dedicated to self-stabilizing algorithms in asynchronous networks, the dif-
ficulty is to find an algorithm that runs under the worst possible scenario. A scenario
is a sequence of computational steps which is controlled by an adversary called daemon.
In [8, 9], self-stabilizing algorithms for the single-destination shortest-path problem are
presented; both protocols require a central daemon, that is only one process can be exe-
cuted at each instant. In [10], Huang proves that the algorithms in [8, 9] also work under
the unfair daemon, which is the most general daemon. However, no upper bounds on
the time (rounds or number of execution steps) are given. The same author presents an
algorithm under the read/write separate atomicity model (Dolev Model) in [11].

In [12, 13, 14], self-stabilizing algorithms for the single-destination shortest-path prob-
lem are presented; these algorithms ensure the loop-free property: after any edge weight
changes, even during the rebuilding phase, there is always a path from any node to the
destination. More generally, none of these articles provide tight bounds on the complex-
ity of the convergence time in the most general asynchronous model, the unfair daemon,
and the presented algorithms are not silent in the disconnected components.

Self-stabilizing breadth-first tree constructions. Whenever edges do not have any weight,
shortest-path trees correspond to breadth-first trees. To our knowledge, this restriction
does not help to get all the desirable guarantees. Chen et al. present the first self-
stabilizing BFS tree construction in [15] under the central daemon. Huang et al. present
the first self-stabilizing BFS tree construction in [6] under the unfair distributed daemon.
In [15, 6], the exact network size has to be known by all nodes. Dolev, Israeli and Moran
in [16] present the first self-stabilizing BFS spanning-tree construction algorithm under
read/write atomicity.

Blin et al. in [17] present a universal transformer of self-stabilizing tree construction
with any metric on semi-uniform networks to a loop-free super-stabilizing algorithm
under the fair daemon. All these cited works assume that the network is a connected
graph.

According to our knowledge, only the two following works [5, 18] take interest in
the computation of the number of computation steps required by their algorithms. The
algorithm in [5] has an upper bound on the number of steps of O(∆.n3) (∆ being the
maximum node degree in the network). The algorithm in [5] is not silent, so some
nodes change infinitely often their state. The silent algorithm in [18] has a convergence
time O(D2) rounds having at most O(n6) computation steps. All these cited works
assume that the network is a connected graph.
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Self-stabilizing routing algorithm. In [19], Bein et al. present a self-stabilizing algorithm
building local routing tables under the fair daemon (the tables ensure the routing from
any node v to its t closest nodes) in O(D) rounds in the connected component, but in O(t)
rounds within the disconnected component. Choosing the parameter t correctly helps to
tackle the count-to-infinity problem. However, it means that in order to use their solu-
tion an upper bound on the network size has to be known. Cobb and Huang [20] propose
an algorithm dedicated to the construction of shortest-path trees defined by any maxi-
mizable routing metrics. This algorithm works without any knowledge on the network
but the correction is proved only for a restrictive class of asynchronous scenarios, namely
the centralized weakly-fair daemon. Unfortunately, no upper bound on the number of
execution steps is given.

Leader election algorithms. Another way to tackle our problem is to focus on the problem
of leader election, as in [21, 22]. It has the advantage of running under the most general
daemon, the unfair one, without any knowledge about the network topology. In [21], for
each component, a BFS tree rooted at the selected leader is built within 4n + 11D + 4
rounds. Whereas in [22], leader election is performed within 3n+D rounds by building
a spanning tree rooted at the leader. In the case of routing, it is obviously preferable
to have a shortest-path tree instead of a spanning tree, therefore a realistic candidate
for our purpose would be [21]. Note that D stands for the diameter of the unweighted
network.

These algorithms build, in each component, a tree rooted at the node with the smallest
identifier. They could be tweaked to get semi-uniform algorithms that perform discon-
nection detection at the same time. To do so, instead of electing nodes based on their
identifier, election would be done based on shared variables (and lexicographical order).
Let us call these variables id, and change the algorithm in such a way that every node
maintains its variable id equal to its identifier preceded by 0 if its r, or a 1 otherwise.
After running this slightly modified election algorithm, every node can detect whether it
belongs to the connected component of r by simply observing the first character of the
elected node’s identifier. This modification would only add a single round to the conver-
gence time. However, it is not clear what would be the convergence time of these two
algorithms for weighted networks. Moreover it is an interesting question to investigate
whether it is possible to build a shortest-path tree in a smaller number of rounds.

Disjunction algorithm. Another potential candidate for our problem would be the algo-
rithm proposed in [23] to solve the disjunction problem. It is silent and works with the
assumption of an unfair daemon. This algorithm has a convergence time of O(n) rounds
but unfortunately no precise bound on the step complexity is given.

As a conclusion, there are no self-stabilizing algorithms in the literature that both
maintain shortest-path trees and detect disconnected components in the most general
scheduling scenario, the unfair daemon, while providing bounds on the number of rounds
and the number of execution steps. Table 1 shows a summary of the BFS and shortest-
path tree algorithms dealing with disconnected components.

1.2. Model
A distributed system S is an undirected graph G = (V,E) where the vertex set V is

the set of nodes and the edge set E is the set of communication links. A link {u, v} belongs
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[19] [20] [21] with a simple [23] this paper
modification (cf. Sec. 1.1)

Initial knowledge param. t ≥ D ∅ ∅ ∅ ∅
Handle weights yes yes no no yes
Time (rounds) O(t) O(D ∗ deg) 4n + 11D + 4 O(n) 2n + D
Distributed daemon yes no yes yes yes
Fairness weakly-fair weakly-fair unfair unfair unfair

Table 1: Related works on BFS and shortest-path tree algorithms dealing with disconnected components.

to E if and only if u and v can directly communicate (links are bidirectional); so, u and v
are neighbors. We note by Γ(v) the set of v’s neighbors: Γ(v) = {u ∈ V | {u, v} ∈ E}.
Each edge {u, v} has a positive weight denoted w(u, v); this notion is naturally extended
to paths: the weight of a path is the sum of its edge weights. In the following, D stands
for the hop-diameter of the underlying graph, that is the maximum over all pairs (u, v)
of the minimum number of edges in a shortest path from u to v. The weighted distance
between the nodes u and v is denoted d(u, v), it is the minimal weight of a path from u
to v (+∞ if no such paths exist).

Each node v maintains a set of shared variables such that v can read its own variables
and those of its neighbors, but it can modify only its variables. The state of a node is
defined by the values of its local variables. The union of states of all nodes determines
the configuration of the system. The program of each node is a set of rules. Each rule
has two parts, the guard and the action. The guard of a v’s rule is a Boolean expression
involving the state of the node v, and those of its neighbors. The action of a v’s rule
updates v’s state. So, every rule will be graphically described by two braces. The first
brace contains the predicates such that their conjunction is the rule guard; and the second
brace contains the rule action (i.e. one or several local variable updates).

In a configuration, a rule can be executed only if it is enabled, i.e., its guard evaluates
to true. A node is enabled in a given configuration if at least one of its rules is enabled. A
configuration is said to be terminal if and only if no node is enabled. In a semi-uniform
algorithm, all nodes except one, denoted r, perform the same distributed algorithm. The
set Vr denotes the connected component of the distinguished node r. In anonymous
networks, nodes do not have distinct identifiers. However, we assume that a node can
distinguish its neighbors since out-links of every node can be locally numbered.

During a computation step under the daemon S, ci →S ci+1, one or several enabled
nodes in configuration ci are selected by the daemon S. Theses nodes will simultaneously
and atomically read their neighbors states and then perform their actions so that the sys-
tem reaches the configuration ci+1 from ci. An execution e under daemon S is a sequence
of configurations e = c0, c1, · · · , where ci+1 is reached from ci by one computation step
under S: ∀i > 0, ci →S ci+1. The centralized daemon selects at each computation step
only one node while a distributed daemon selects any non-empty set of enabled nodes.
Any daemon that only produces weakly-fair executions, that is executions in which an
always enabled node is eventually activated, is called a weakly-fair daemon. There is
no requirement on the unfair daemon, it may produce non weakly-fair execution. Fi-
nally, we say that an execution e is maximal if it is infinite, or if it reaches a terminal
configuration.
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Definition 1 (Silent Self-stabilization to L). Let L be a subset of C, called set of
legitimate configurations. A distributed system is silent and self-stabilizing under the
daemon S to L if and only if the following conditions hold:

• all executions under S are finite;
• all terminal configurations belong to L.

Stabilization time. We use the round notion to measure the time complexity. The first
round of an execution e = c1, c2, · · · is the minimal prefix e1 = c1, · · · , cj , such that
every node having an enabled rule in c1 either executes a rule or is neutralized during a
computation step of e1. A node v is neutralized during a computation step ci → ci+1,
if v is enabled in ci but not anymore in configuration ci+1.

Let e′ be the suffix of e such that e = e1e
′. The second round of e is the first round

of e′, and so on.
The stabilization time is the number of rounds of an execution reaching a legitimate

configuration from any initial one.

Definition 2 (Round of a component). The end of the i + 1-st round in the (con-
nected) component H ⊆ G in a computation e is defined recursively as the configuration
of the execution e where every node v ∈ H(V ) that was enabled at the end of the i-th
round of e in H have been either activated or neutralized once.

Note that the first round of a component H ⊆ G may be shorter than the (global)
first round (when the component is not explicitly given, then the round is assumed to be
global, that is for the whole graph). Indeed, some nodes outside of H may be enabled
at the beginning of the execution and may take a long time before being activated or
neutralized. More generally, the i-th round of a component may end earlier than the
(global) i-th round.

Definition 3 (Node convergence). A node v is said to have converged to its final
state s under the daemon S at the configuration c1 if along all executions under S
from c1, the node v keeps its state s.

In this paper, we consider a particular problem called the Disconnected Components
Detection and rooted Shortest-Path tree Maintenance (DCDSPM) problem. See Fig. 1
for an illustration.

Definition 4 (The DCDSPM problem). Given a not necessarily connected network
with a distinguished node r, the DCDSPM problem consists in converging to a config-
uration where every node in the connected component of r knows an incident edge on
a shortest-path leading to r, and any other node detects that it does not belong to the
same connected component as r.

1.3. Our contribution
We present an algorithm solving the DCDSPM problem and called FDcD. It shares

some ideas with the self-stabilizing silent shortest-path tree algorithm originally presented
in [20] under the centralized weakly-fair daemon. The part of our algorithm common with
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Figure 1: A network where the DCDSPM has been solved. Square nodes are the nodes claiming to be
in a different connected component than r.

the algorithm in [20] is the use of a specific status (E/dirty), which is propagated from a
node that has detected an anomaly to all nodes in its sub-tree. This technique is a well-
known strategy to destroy illegal branches that was already used, for example, in [24]
and [25]. The technical differences with [20] are detailed at the end of Section 2.

Our main contribution is an in-depth analysis of FDcD that holds under the most
general daemon, the distributed unfair one. More precisely, we show that Algorithm
FDcD fully solves the DCDSPM problem. That is, we prove that, on anonymous semi-
uniform weighted networks, it builds a shortest-path tree rooted at r in Vr and explicitly
isolates the nodes in all other connected components. No other algorithm solving the
DCDSPM problem under the unfair daemon was known prior to this work. Note that
our algorithm can easily be adapted to a wider class of routing metrics as shown in [20].
We also prove that Algorithm FDcD converges to a legitimate configuration within less
than 2n + D rounds in any n-node weighted graph of hop-diameter D. Thus the time
complexity of algorithm FDcD improves the one of [21] by a factor at least 2 in connected
networks. Finally, we present an exponential lower bound on the worst-case number of
steps, which also applies to the algorithm presented in [20]. According to our knowledge,
this is the first time that a lower bound on the number of computation steps is provided
for an algorithm building and maintaining a rooted shortest-path tree. The technique
used to get this lower bound is novel and could be used to get lower bounds for other
algorithms.

2. Algorithm FDcD

This section is devoted to the presentation of our algorithm, FDcD (Fast Disconnection
Detection). The value of variable st indicates the status of the node: I for isolated (the
node has no parent and no children), E for erroneous, and C for correct.

A non-isolated node u (stu 6= I) has two other meaningful variables: the variable du

containing the shortest weighted distance to r, and the variable parentu containing a
pointer to the first out-link on the shortest path to r. Thus, only non-isolated nodes can
belong to a branch (i.e. have children and/or a parent).

More formally, a node v is considered to be the child of another node u if v is a
neighbor of u, neither u nor v has status I, v points to u (parentv = u), and the known
distance to the root via u (du +ω(u, v)) is not larger than dv. This leads to the following
definition of the set childrenu.

Definition 5 (Children of node u).
childrenu = {v ∈ Γ(u) | (stu 6= I)∧ (stv 6= I)∧ (parentv = u)∧ (dv ≥ du + ω(u, v))}
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Rr



{
Proot(u) ≡ (str 6= C) ∨ (parentr 6= r) ∨ (dr 6= 0) str ← C

parentr ← r
dr ← 0

Figure 2: Algorithm FDcD on node r.

For example, in Fig. 5.a, p1 has the isolated status I, so childrenp1 = ∅. Besides,
no node u satisfies (du > dp2) ∧ (parentu = p2)) so p2 has no children: childrenp2 = ∅.
Finally, childrenp3 = {p4} because p4 is the only node u that satisfies (du > dp3) ∧
(parentu = p3).

We are now ready to provide the full description of the algorithm. The single rule for
node r is given in Figure 2. The rules for the other nodes are given in Figure 3.

RC




Pcreate(u) ≡ (stu 6= C) ∧ (childrenu = ∅) ∧ (∃v ∈ Γ(u) | stv = C)
Pupdate(u) ≡ (∃v ∈ Γ(u) | (stv = C) ∧ (dv + ω(u, v) < du))
Pcorrect(u) ≡ [ (parentu /∈ Γ(u)) ∨ (du 6= dparentu

+ ω(u, parentu))
∨ (stparentu

6= C) ∨ (stu 6= C) ]
∧ [∃v ∈ Γ(u) | (stv = C) ∧ (dv + ω(u, v) = du) ]

stu ← C
parentu ← argmin(v∈Γ(u))∧(stv=C)(dv + ω(u, v))
du ← dparentu

+ ω(u, parentu)

RE


{

Perror(u) ≡ (stu = C) ∧ (∀v ∈ Γ(u) | (du < dv + ω(v, u)) ∨ (stv 6= C)){
stu ← E

RI


{

Pisolate(u) ≡ (stu = E) ∧ (childrenu = ∅) ∧ (∀v ∈ Γ(u) | stv 6= C){
stu ← I

Figure 3: Algorithm FDcD on node u.

Only nodes with status C may gain new children; and only nodes without children
and with the status C may increase the value of their variable d (rule RC). These two
properties ensure that the execution of the rule RC by a node u does not create any
anomaly (because a node u doing RC during a computation step has no children and
it cannot gain children during this step). A given node u detects an anomaly in the

8



relationship with its parent in four cases:
• the parent node is not in its neighborhood — (parentu /∈ Γ(u)) is satisfied;
• the value of du is not coherent with the value of dparentu

— (du 6=
dparentu + ω(u, parentu)) is satisfied;

• it, or its parent, has not status C — (stu 6= C) ∨ (stparentu
6= C) is

satisfied;
• it is not the best out-link for the destination r — Pupdate(u) is satisfied.

Besides, a node v is said to be an alternative parent for node u if it has status C and if:
• v is a better out-link than parentu (i.e. the cost of the path from u to r go-

ing through v is smaller than the cost of the path going through parentu)
— Pupdate(u) is satisfied;

• or v is an as good out-link as parentu — (stv = C)∧ (dv + ω(u, v) = du)
is satisfied.

Note that the main difference with the algorithm presented in [20] is in the definition of
an alternative parent. In their definition, a node is not considered to be an alternative
parent in the case described by the second item.
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Figure 4: A synchronous execution

If a correct node u (i.e. with st(u) = C) detects an anomaly in the relationship with
its parent, then u is enabled because Pupdate(u), Pcorrect(u), or Perror(u) is satisfied. More
precisely, Pupdate(u) or Pcorrect(u) is satisfied when u has an alternative parent; Perror(u)
is satisfied when u does not have an alternative parent.
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When a node u detects an anomaly in the relationship with its parent and there is no
alternative parent, u takes the status E (rule RE). Then, u’s children have an anomaly
in the relationship with their parent, u. Thus the nodes in the sub-tree rooted at u will
take the status E or will change sub-tree. When a leaf has the error status it quits its
branch: either it becomes isolated (rule RI) or it joins a “correct” branch (rule RC).
Therefore every erroneous sub-tree is eventually deleted.

A synchronous execution is presented in Fig. 4 (i.e. in each computation step of
the execution, all enabled nodes perform their enabled action). The graph has two
disconnected components: one containing only r and another one containing the other
nodes. During the first step, a node performs the rule RC to decrease the value of its d
variable. During the second step, another node performs the rule RC to change branch
in the illegal tree. Meanwhile, during the first three computation steps, the E status is
propagated from the illegal root to the leaves by the execution of the rule RE . More
precisely, during the first step, the illegal root performs this rule; during the second step,
the children of the illegal root perform this rule; finally during the third step, the leaves
of the illegal tree perform this rule. Then, during the last three computation steps, the
I status is propagated backward from the leaves to the illegal root (nodes execute the
rule RI).

Any configuration during the execution of algorithm FDcD induces a BFS tree rooted
at node r that spans a subset of Vr, a forest rooted at different illegal roots and some
isolated nodes.

Definition 6 (Correct state). A node u is said to be in a correct state if: stu =
C, du = d(u, r) and, if u is not the root r, parentu ∈ Γu and d(parentu, r) = du −
ω(u, parentu).

In Fig. 5.a, nodes on the first line (i.e. p1 to p7) are neighbors of the root, which is
in its correct state. Nodes p1 and p2 satisfy Pcreate because they do not have the correct
status and they are childless. Nodes p3 and p4 can decrease their d value and thus satisfy
Pupdate. The distance value of p5, p6, and p7 is equal to the final correct value 1, so
they do not satisfy Pupdate. However, parentp5 and p7 have the erroneous status, which
implies that Pcorrect(p5) and Pcorrect(p7) are satisfied. Finally, the value of dp6 is not
coherent with the value of dparentp6

; so Pcorrect(p6) is satisfied.
After the computation step where all nodes on the first line perform the rule Rc, the
configuration shown in Fig. 5.b is reached: all nodes on the first line are in their correct
state.

Definition 7 (Legitimate state). A node u is said to be in a legitimate state if:

• it belongs to Vr and is in a correct state;
• or it does not belong to Vr and it has status I.

Definition 8 (Legitimate configuration). A legitimate configuration is a configura-
tion where every node is in a legitimate state.

Coming back to the algorithm of [20], we point out some differences. First of all,
the condition for a node to set its status to E/dirty is stronger in our algorithm than
in [20]. In [20], as soon as a node has detected an anomaly or its parent has E/dirty
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Figure 5: An illustration of several RC executions.

status, then the node can take the E/dirty status. In our algorithm, only a node that
cannot find an alternative parent has to take the E/dirty status, if it has detected an
anomaly or if its parent has the E/dirty status. Another difference is that the rules of a
node are not exclusive in [20]. It means that a node can have several enabled rules at the
same time. The algorithm of [20] is thus not deterministic (even without considering the
non-determinism coming from the asynchrony). There is also no discussions about the
behavior of the presented algorithm in disconnected graphs and the proofs only concern
the case of the fair daemon.

3. Correctness and convergence time of algorithm FDcD

We start this section by proving that the set of terminal configurations coincides
with the set of legitimate configurations. This will be done thanks to the following two
lemmas, the first one dealing with the connected components that do not contain node
r, if some exist, and the second one dealing with the connected component Vr containing
root node r.

3.1. Correctness
Lemma 1. For any connected component H not containing node r, any terminal con-
figuration in H is a legitimate configuration.
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Proof. The proof is done by contradiction. So consider that for some connected com-
ponent H not containing node r, there exists a terminal configuration in which at least
one node has not status I.

Further assume that there exists some node that has status C. Consider a node
u ∈ H with status C having the smallest distance value du. By construction, u can apply
rule RE , which is in contradiction with the configuration being terminal. Therefore any
node that does not have status I must have status E.

Consider now a node u ∈ H that has status E having the largest distance value du.
By construction and from the previous point, this node has no child and no neighbor
have status C. Therefore node u can apply rule RI , and we obtain again a contradiction,
which concludes the proof of the lemma. �

Lemma 2. Any terminal configuration within the connected component Vr is legitimate.

Proof. The proof is done by contradiction. Let consider it exists some non-legitimate
terminal configuration of the connected component Vr.

Further, assume that there exists some node that has status E. Consider a node u
of Vr with status E having the largest distance value du. Note that no node v that has
status C can be a child of u, otherwise v could apply rule RE or rule RC . Therefore,
node u has no child and thus can apply rule RI or rule RC , a contradiction.

Nodes have thus either status C or I. Assume now that there exists some node
that has status I. Consider some node u with status I having at least one neighbor
with status C. Such a neighbor node must exist because we are considering a connected
component without any node with status E, but with at least one node that has status C,
namely node r. Obviously, node u can apply rule RC , a contradiction. So every node
in Vr must have status C.

Now consider a node u in Vr having the smallest distance value du among the nodes
in Vr that are not in a correct state. Then, either it exists some node v with status C
in Γ(u) such that du ≥ dv + ω(u, v), or not. If such a node v exists then node u can
apply rule RC . If it does not, then, by definition, it can apply rule RE . In both those
cases there is a contradiction, which concludes the proof. �

After noticing that any legitimate configuration is a terminal one, we conclude with
the following corollary.

Corollary 1. The set of terminal configurations coincide with the set of legitimate con-
figurations.

3.2. Convergence
We now prove that algorithm FDcD always terminates within 2n + D − 2 rounds

under a weakly-fair daemon, where D is the hop-diameter of the connected component
containing r. Before proceeding with the proof, let us introduce some useful concepts.

Definition 9 (Branch). A branch is a maximal sequence of nodes v1, · · · , vk, for some
integer k ≥ 1, such that none of the nodes have status I and, for every i ≤ k, we
have vi ∈ childrenvi+1 . The node vi is said to be at depth k − i. If vk = r but the state
of r is not terminal, or simply if vk 6= r, the branch is said to be illegal, otherwise, the
branch is said to be legal.
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The first lemma essentially claims that all nodes that are in illegal branches progres-
sively switch to status E within n rounds, in order of increasing depth (illegal branches
may vary during the process though).

Lemma 3. Fix any integer i ≥ 1, and any connected component H. Starting from the
beginning of round i of H, there does not exist any node of H both in state C and at
depth less than i− 1 in an illegal branch.

Proof. We prove this lemma by induction on i. The base case i = 1 is obvious so
assume that the lemma holds for some integer i ≥ 1. Consider any node u of H both
with status C and depth i − 1 in an illegal branch at the beginning of round i of H.
If u = r, then r executes Rr during round i of H. Otherwise (u 6= r), by induction
hypothesis, the parent of u is not in state C at that time. Therefore u is enabled at the
beginning of round i. During round i, it will either execute rule RE and thus switch to
state E, or it will execute rule RC (making it switch branch).

Note that, from the beginning of round i, no node can ever choose a parent which
is at depth smaller than i − 1 in an illegal branch because those nodes will never be in
state C, by induction hypothesis. This is also true for node u if it applies rule RC in
round i. Therefore, no node can become in state C at depth smaller than i in an illegal
branch. This concludes the proof of the lemma. �

Root node r does not belong to an illegal branch after the first round. Therefore,
after the first round, the number of nodes of an illegal branch cannot be more than n−1.
We thus obtain the following corollary.

Corollary 2. For any connected component H, once round n− 1 in H has terminated,
no node in an illegal branch in H has status C.

The next lemma essentially claims that, within at most n − 1 subsequent rounds,
the maximal length of an illegal branch progressively decreases until no illegal branches
remain.

Lemma 4. Fix any integer i ≥ 0, and any connected component H. Starting from the
beginning of round n+ i in H, there does not exist any node of H at depth larger or equal
to n− i− 1 in an illegal branch.

Proof. We prove the lemma by induction on i. The base case i = 0 is obvious so
assume that the lemma holds for some integer i ≥ 0. By induction hypothesis, at the
beginning of round n+ i, no node is at depth larger or equal to n− i− 1. Therefore, the
nodes at depth n − i − 2 in an illegal branch have no children and are thus enabled at
the beginning of round n + i. These nodes will thus all be executed within round n + i
(they cannot be neutralized as no children can connect to them). We conclude the proof
by noticing that, from Corollary 2, once round n − 1 has terminated, every node in an
illegal tree is in state E, and thus any node in an illegal branch that gets executed from
this time will not be anymore in any illegal branch. �

Corollary 3. For any connected component H, once round 2n−2 in H has terminated,
there are no illegal branches in H.
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Note that in a connected component that does not contain the root r, there are no legal
branches. Since the only way for a node to be in no branch is to have status I, we obtain
the following result.

Corollary 4. For any connected component H not containing r, after 2n − 2 rounds
in H, every node v of H has status I.

After 2n − 2 rounds, the connected components not containing r are in a legitimate
state. In the connected component Vr containing r, Algorithm FDcD may need additional
rounds so that the correct distances to r are correctly propagated.

In the following lemma, we use the notion of hop-distance to r defined below.

Definition 10 (Hop-distance to the root node r). A node v is said to be at k hops
from r if k is the minimum number of edges of a shortest path from v to r.

Lemma 5. Consider any integer i ≥ 0. For any execution of Algorithm FDcD, starting
from the beginning of round 2n−2+ i, every node in component Vr at most i hops from r
is in a correct state.

Proof. Let us prove the lemma by induction on i. Firstly, we need to remark that
after one single round, node r has necessary converged to the correct state. So the base
case i = 0 holds, as we can assume n to be at least 2. Secondly, at round 2n − 2,
from Corollary 3, every node either belongs to a legal branch or have status I, thus any
node v ∈ Vr always stores a distance d such that d ≥ d(v, r), its actual weighted distance
to r. By induction hypothesis, every node at at most i hops from r has converged to a
correct state before round 2n + i − 1. Therefore, at the beginning of round 2n + i − 1,
every node v at i + 1 hops from r which is not in a correct state has rule RC enabled.
Thus, at the end of round 2n + i − 1, every node at at most i + 1 hops from r is in a
correct state (such nodes cannot be neutralized during this round). Also, these nodes
will never change their state since there are no nodes other than their parent that can
make them get closer to r than their current parent. �

Putting together all the results of this section, we obtain, for algorithm FDcD, the
following theorem.

Theorem 1. Under a weakly-fair daemon, Algorithm FDcD always converges to a le-
gitimate state within 2n + D − 2 rounds, where D is the hop-diameter of the connected
component Vr containing node r.

4. Convergence under an unfair daemon

In this section, we will prove that algorithm FDcD always converges to a legitimate
state, even under an unfair daemon. The proof, by contradiction, will go as follows. After
noticing that a node activated infinitely often must execute rule RC infinitely many times,
we will prove that nodes activated infinitely often must have globally increasing distance
values. This means that these nodes will eventually behave as if the nodes activated a
finite number of times do not exist. This will lead to a contradiction, as we proved before
that a connected component has to become silent after a finite number of rounds.
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Lemma 6. If at some time a node has been executed k times, then it must have executed
rule RC at least

⌊
k−2

3
⌋
many times.

Proof. When a node with status E is enabled, it can either execute rule RC or rule RI .
Moreover, a node with status I can only execute rule RC . Thus between two consecutive
executions of rule RC by a node, only two other rule executions can happen. �

Let us now introduce a useful notation for the next lemmas.

Definition 11. A node u is said to execute a rule with (distance) value δ if the distance
value du is equal to δ immediately after this rule execution.

Lemma 7. Rule RC cannot be executed infinitely often with the same distance value.

Proof. For the purpose of contradiction, consider any (infinite) execution e of algo-
rithm FDcD in which rule RC is applied infinitely often with the same distance value.
Let dmin be the minimum such infinitely often used value. Let v be some node applying
infinitely often rule RC with distance value dmin. Now consider some suffix e′ of e in
which no node with a distance value smaller than dmin will ever apply any rule. Note
that such a suffix e′ must exist, by definition of dmin.

Let consider the maximal suffix e′′ of e′ starting when node v has a parent u such
that du = dmin − ω(u, v). By definition of e′, node u will remain in state C and be
the better possible parent within e′′, therefore node v will not apply any rule in e′′,
contradicting the assumption that node v applies infinitely often rule RC . �

We are now ready to conclude about the convergence under an unfair daemon.

Lemma 8. Every execution is finite.

Proof. For the purpose of contradiction, let us assume that there exists an infinite
execution e. Let F , resp. F , be the set of nodes executed finitely, resp. infinitely, many
times in this execution, and let F ′ be the set of nodes in F that are neighbors of at
least one node in F . Note that the set F is necessarily non-empty as it contains at least
node r.

Let execution e1 be a suffix of e in which every node v ∈ F is never executed. In e1,
only the nodes from F will be executed. Let dmax be the maximum distance stored
in dv for any node v ∈ F within e1. From Lemma 7, if a node executes an infinite
number of steps during an execution of algorithm FDcD, then it will necessarily change
its distance an infinite number of times. Moreover, distances stored at a given node
cannot be negative.

Thus, there exists a suffix e2 of e1 such that for any node v in F , dv > dmax + ωv,
where ωv is the maximum weight of an edge incident to v.

Within e2, a node v′ ∈ F ′ cannot have status C, otherwise any node v that belongs
to Γ(v′)∩F would apply RC with distance value at most dmax +ω(v, v′) which would be
in contradiction with the definition of e2. Moreover, we have dv > dv′ , and thus v′ does
not belong to childrenv.

Looking at the algorithm, one can observe that, if a rule can be applied for a node v ∈
F during e2, then it can still be applied after removing the nodes in F ′ from the graph.
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Figure 6: The graph G3
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Figure 7: The initial configuration init3

In other words, the nodes in F can have the same execution in the graph obtained after
removing the nodes in F . Now consider any connected component H of F . Notice that
r is not a node of H. Since all nodes in H are activated infinitely many times, it means
that there are an infinite number of rounds in H, without the nodes reaching a terminal
configuration in H. Corollary 4 establishes that every node of H are isolated after at
most 2n − 2 rounds in H. Then, every node of H are and stays disabled forever, they
have reached their terminal state. This concludes the proof of this lemma. �

A corollary of this lemma is that any execution is weakly-fair because there are no
nodes that are always enabled (at the end of a finite execution, no nodes are enabled).
Therefore, the bound on the number of rounds from Theorem 1 also applies in the case
of an unfair daemon. We obtain the following main theorem.

Theorem 2. Under an unfair daemon, Algorithm FDcD always converges to a legitimate
state within a finite number of steps and in at most 2n+D − 2 rounds, where D is the
hop-diameter of the connected component Vr containing node r.

5. Lower bound on the number of steps

In this section, we prove that the step complexity of our algorithm can be as large
as 2n/2 in some n-node unweighted graphs. This lower bound is based on a family of
graphs {Gk}k≥1, defined as follows.

Definition 12 (Graph Gk). For any positive integer k, the graph Gk consists of one
isolated node r, and k triangles with node sets {a1, b1, c1}, · · · , {ak, bk, ck}, where ci is
merged with ai+1, for 1 ≤ i < k. (See Fig. 6.)

In order to obtain the desired number of steps, we consider a particular initial con-
figuration for each graph Gk, called initk. In this configuration, the root node r is
correctly initialized: str = C, parentr = r, and dr = 0. Moreover, we have sta1 = C,
parenta1 = a1, and da1 = 1. Finally, all other nodes are in state I. As an illustrative
example, the initial configuration of the graph G3 is presented in Fig. 7.
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Figure 8: Rule applications performed by bk and ck after each application of Rule RC by ak.

The intuition behind the exponential lower bound is the following. Node a1 cannot
stay in state C and thus eventually switches to state E, and finally to state I when
becoming childless. As for node c1, it first switches to sate C, having a1 as parent, then
it gains state E when a1 switches to state E. Node c1 eventually comes back in state
C when becoming childless, but this time choosing b1 as its parent. The state E then
propagates to c1 via b1, both of them eventually switching to state I when becoming
childless. To summarize, c1 is basically doing twice the transition from C to E when
a1 is doing it once. More generally, we will prove that the number of such transitions
by node ci+1 is twice the number of such transitions by node ci, yielding to the desired
bound.

In order to derive more formally our lower bound on the number of steps, we prove
by induction the following property.

Definition 13 (Property Pk). Given a positive integer k, we say that Property Pk

holds if and only if there exists an execution of our algorithm on Gk, starting from the
configuration initk, such that the node ci applies exactly 2i−1 times the sequence of rules
RC , RE , RC , RE , RI , for 1 ≤ i ≤ k.

Lemma 9. For any positive integer k, Property Pk holds.

Proof. We prove this lemma by induction on k.
Let us first consider the graph G1, in the initial configuration init1. The execution

of our algorithm proving Property P1 is defined by the following rule executions: RC by
b1, RC by c1, RE by a1, RE by c1, RC by c1, RE by b1, RE by c1, and finally RI by c1.
This execution is depicted by the concatenation of Fig. 8 and 9.

Fix any positive integer k and assume that Property Pk holds. We will prove that
Property Pk+1 holds as well. Let Ek be the desired execution on Gk whose existence is
proved by the induction hypothesis. We now extend this execution to fit it to the graph
Gk+1, with the initial configuration initk+1, as follows.

As long as any node other than ck is concerned in Ek, we can apply the same compu-
tation steps in Gk+1. Besides, whenever a rule RC is applied by ck in Ek, we ensure that
bk+1 and ck+1 (the neighbors that ck has in Gk+1 but not in Gk) are in state I and thus
do not modify the satisfiability of any predicate from rule RC (it is the case for the first
execution of RC by ck and it will be the case by construction for the other executions).
Moreover, after each application of RC by ck, the correct status is propagated to the the
nodes bk+1 and ck+1 by having them apply rule RC , see Fig. 8.

Similarly, no predicates from RE see their satisfiability changed by the existence of
these two nodes when a rule RE is applied by ck in Ek. Indeed, by construction, both
bk+1 and ck+1 store a greater distance than d, the distance stored by ck, because they
have just applied the rule RC based on the value d, and thus have distance value d+ 1.
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Figure 9: Rule applications performed by bk and ck after each application of Rule RE by ak.

Moreover, after each such application of RE by ck, we propagate twice the status E to
ck+1 (the first time directly, then through bk+1) thanks to the following rule executions:
RE by ck+1, RC by ck+1, RE by bk+1, and RE by ck+1. Then, both these nodes switch
back to their initial state I in order for the remainder of the execution Ek to continue
(both nodes apply Rule RI). The sequence of added rule applications is depicted in
Fig. 9.

Finally, whenever a rule RI is applied by ck in Ek, our construction ensures that bk+1
and ck+1 are in state I and thus do not modify the satisfiability of any predicate from
rule RI .

This extended execution is thus well defined and has the required properties, which
concludes the proof of this lemma. �

This technical lemma allows us to obtain the main result of this section.

Corollary 5. For any n ≥ 4, there exists a n-node graph and a particular initial config-
uration from which our algorithm uses at least 2n/2 steps to stabilize.

Proof. For even values of n, this follows directly from Lemma 9. For odd values of n,
it is sufficient to just add an additional isolated node to the graph G(n−3)/2. �

Note that this construction can be used to obtain the same lower bound for the
algorithm presented in [20].

6. Conclusion

Our algorithm is the first self-stabilizing algorithm to simultaneously compute shortest-
path trees and discover disconnected components in the most general scheduling scenario,
the unfair daemon. We also prove theoretically a linear upper bound on the number of
rounds. Our work can be useful to save both memory space and messages in the setting
of routing in dynamic networks without any restriction on the behavior of the distributed
system.

This work, as many of the works on self-stabilization, considers the powerful model of
shared memory with composite atomicity, in which, in a single atomic step, a node can
read its own variables and those of its neighbors and can modify its own variables. This
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model allows for simpler and more elegant algorithms and proofs than other more realistic
models, but does not restrict the applicability of the algorithms designed in it. Indeed,
there exist general self-stabilizing transformers between this model and more realistic
ones. Dolev, Israeli, and Moran proposed in [16] a transformer from the composite
atomicity model to the more realistic model of read/write atomicity: in one atomic
step, a node can read the state of one of its neighboring nodes, or update its own
state, but not both simultaneously. Another transformer [26] permits to go from this
model to a message passing model with FIFO but unreliable bidirectional channels of
communication. Finally, one can use a further transformer [27] to handle unreliable
capacity-bounded non-FIFO channels.

Our contribution can lead to some new results: the algorithm can easily be adapted
to a wider class of routing metrics as shown in [20] and our exponential lower bound also
holds for the algorithm in [20].

The algorithm FDcD analyzed in this paper is very efficient in terms of number of
rounds but might be costly in terms of number of steps. We have to point out that for
self-stabilizing algorithms, very few results on the number of steps are known and the
majority of analyses are done on restrictive scheduling scenarios.

Thus, the first natural open problem is to design a shortest-path algorithm with a
polynomial step complexity while preserving a small round complexity under the unfair
daemon, even if the disconnection discovering goal is removed. One has to keep in
mind that under the unfair daemon, the combinatorial explosion on the number of state
configurations can quickly lead to a large number of cases to be considered. There is
some hope that getting a polynomial step complexity could be possible, but such an
algorithm is unknown today.

It would also be interesting to experimentally compare this algorithm to (potentially)
less robust ones such as [20, 21, 23] for which either the upper bound on the number
of execution steps or the behavior under the most general daemon are unknown. In
this paper, our focus goes to hard instances: we showed that our algorithm achieves
stabilization for any initial state and any sequence of actions. Having experimental
results would be very interesting but lies outside the scope of this paper, as it would
require significant specific research advances. Indeed, on one hand, random uniform
schedulings are very unlikely to behave as worst-case schedulings, and devising realistic
probabilistic distributions remains challenging and largely open. On the other hand, it
would be interesting to have experimental results for instances in which the number of
execution steps tends to be large. Nevertheless, we are not aware of any experimental
technique that would permit to compare different algorithms under equivalently hard-
case scenarios. It seems very hard to design such experimental routines and proposing
one would be a very interesting result on its own. The main difficulty in designing such an
experimental protocol is that both the initial states of the processes and the scheduling of
hard- (or worst-) case scenarios strongly depend on the algorithm. Thus it is not trivial
at all to find a general way of generating hard instances. We therefore believe that these
questions are intriguing but challenging open research subjects related to our work.
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