
The cost of monotonicity in distributed

graph searching

David Ilcinkas1, Nicolas Nisse2,?, and David Soguet2

1 Université du Québec en Outaouais, Canada,
2 LRI, Université Paris-Sud, France
{ilcinkas,nisse,soguet}@lri.fr

Abstract. Blin et al. (2006) proposed a distributed protocol that ena-
bles the smallest number of searchers to clear any unknown asynchronous
graph in a decentralized manner. Unknown means that the searchers are
provided no a priori information about the graph. However, the strategy
that is actually performed lacks of an important property, namely the
monotonicity. That is, the clear part of the graph may decrease at some
steps of the execution of the protocol. Actually, the protocol of Blin
et al. is executed in exponential time. Nisse and Soguet (2007) proved
that, in order to ensure the smallest number of searchers to clear any n-
node graph in a monotone way, it is necessary and sufficient to provide
Θ(n log n) bits of information to the searchers by putting short labels on
the nodes of the graph. This paper deals with the smallest number of
searchers that are necessary and sufficient to monotoneously clear any
graph in a decentralized manner, when the searchers have no a priori
information about the graph.

The distributed graph searching problem considers a team of searchers
that is aiming at clearing any connected contaminated graph. The clear-
ing of the graph is required to be connected, i.e., the clear part of the
graph must remain permanently connected, and monotone, i.e., the clear
part of the graph only grows. The search number mcs(G) of a graph G

is the smallest number of searchers necessary to clear G in a monotone
connected way in centralized settings. We prove that any distributed
protocol aiming at clearing any unknown n-node graph in a monotone
connected way, in decentralized settings, has competitive ratio Θ(n

log n
).

That is, we prove that, for any distributed protocol P , there exists a
constant c such that for any sufficiently large n, there exists a n-node
graph G such that P requires at least c n

log n
mcs(G) searchers to clear G.

Moreover, we propose a distributed protocol that allows O(n

log n
)mcs(G)

searchers to clear any unknown asynchronous n-node graph G in a mono-
tone connected way.

Key words: Graph searching, Monotonicity, Competitive ratio.

? Additional supports from the project Fragile of the ACI Sécurité Informatique,
and from the project Grand Large of INRIA.

2 D. Ilcinkas, N. Nisse, and D. Soguet

1 Introduction

In graph searching [6, 17], a team of searchers is aiming at capturing an invisible
arbitrarily fast fugitive hidden in a graph (see [3] for a survey). Equivalently, an
undirected connected graph is thought as a system of tunnels contaminated by
a toxic gas. In this setting, the searchers are aiming at clearing the graph. The
search problem has been widely studied in the design of distributed protocols
for clearing a network in a decentralized manner [5, 7–9, 16]. Initially, all edges
are contaminated. The searchers stand at the vertices of the graph and move
along the edges. An edge is cleared when it is traversed by a searcher. A clear
edge e is recontaminated as soon as there exists a path P between e and a
contaminated edge such that no searchers are occupying any vertex or any edge
of P . A search strategy is a sequence of moves of the searchers along the edges of
the graph, such that, initially, all the searchers are placed at a particular vertex
of the graph, called the homebase. Moreover, this sequence of moves must satisfy
that recontamination never occurs, that is, a clear edge always remains clear. A
search strategy is aiming at clearing the whole network. Given a graph G and
a homebase v0 ∈ V (G), the search problem consists in designing a distributed
protocol that allows the smallest number of searchers to clear G starting from
v0. The search strategy must be computed online by the searchers themselves.

Note that, by definition, a search strategy satisfies two important properties.
First, a search strategy is monotone [4, 13]. That is, the contaminated part of
the graph never grows. This ensures that the clearing of the graph can be per-
formed in polynomial time. Secondly, a search strategy is connected [1, 2], in the
sense that, at any step of the strategy, the clear part of the graph induces a
connected subgraph. This latter property ensures safe communications between
the searchers. In the following, the search number mcs(G, v0) of a graph G with
homebase v0 ∈ V (G) denotes the smallest number of searchers required to clear
the graph in a monotone connected way, starting from v0, in centralized settings.

Several distributed protocols have been proposed to solve the search pro-
blem [1, 5, 7–9, 14, 16]. Two main approaches have been proposed in the previous
works. On one hand, Blin et al. proposed a distributed protocol that enables
mcs(G, v0) + 1 searchers to clear any unknown asynchronous graph G, starting
from any homebase v0 ∈ V (G), in a connected way [5]. That is, the clearing
of the graph is performed without the searchers being provided any informa-
tion about the graph. However, the search strategy that is actually performed
is not monotone and may be performed in exponential time, which is not sur-
prising since the problem of computing mcs(G, v0) is NP-complete [15]. On the
other hand, the distributed protocols that are proposed in [7–9, 14, 16] enable
mcs(G, v0) + 1 searchers to monotoneously clear a graph G, starting from a
homebase v0, such that the searchers are given some a priori information about
it. In this paper, we consider the problem from another point of view. More pre-
cisely, we address the problem of the minimum number of searchers permitting
to solve the search problem (again, the performed strategy must be connected
and monotone) without any a priori information about the graph.

The cost of monotonicity in distributed graph searching 3

1.1 Model and definitions

The searchers are modeled by synchronous autonomous mobile computing en-
tities with distinct IDs. A network is modeled by a synchronous undirected
connected simple graph. The network is anonymous, that is, the nodes are not
labelled. The deg(u) edges incident to any node u are labelled from 1 to deg(u),
so that the searchers can distinguish the different edges incident to a node. These
labels are called port numbers. Every node of the network has a zone of local
memory, called whiteboard, in which searchers can read, erase, and write sym-
bols. It is moreover assumed that searchers can access these whiteboards in fair
mutual exclusion.

A search protocol P is a distributed protocol that solves the search problem,
i.e., for any connected graph G and any homebase v0 ∈ V (G), a team of searchers
executing P can clear G in a connected monotone way, starting from v0. In
these settings, the searchers do not know in advance in which graph they are
launched. The number of searchers used by P to clear G is the maximum number
of searchers that stand at the vertices of G over all steps of the execution of P .
The quality of a search protocol P is measured by comparing the number of
searchers it used to clear a graph G to the search number mcs(G, v0) of G. This
ratio, maximized over all graphs and all starting nodes, is called the competitive

ratio r(P) of the protocol P .

1.2 Our results

We prove that any search protocol for clearing n-node graphs has competitive
ratio Ω(n

log n
). Moreover, we propose a search protocol that has competitive ratio

O(n
log n

). More precisely, we prove that for any distributed protocol P , there
exists a constant c such that for any sufficiently large n, there exists a n-node
graph G with a homebase v0 ∈ VG, such that P requires at least c n

log n
mcs(G, v0)

searchers to clear G, starting from v0. On the other hand, we propose a search
protocol that uses at most O(n

log n
)mcs(G, v0) searchers to clear any connected

graph G in a connected monotone way, starting from any homebase v0 ∈ V (G).
Moreover, our protocol performs clearing of n-node graphs using searchers with
at most O(log n) bits of memory, and whiteboards of size O(n) bits.

1.3 Related work

In connected graph searching [1, 2, 10], the clear part must remain connected
during all steps of the search strategy. This property is very useful as soon as
we want to ensure the communications between the searchers to be secured.
Contrary to the classical, i.e., non-connected, graph searching [4, 13, 17], the
monotonicity has a cost in terms of number of searchers. Indeed, Alspash et al.

proved that recontamination does help in the case of connected graph search-
ing [18] (see also [11]). That is, they describe a class of graphs for which the
smallest number of searchers required to clear these graphs is strictly less than
the number of searchers necessary to clear them in a monotone connected way.

4 D. Ilcinkas, N. Nisse, and D. Soguet

This result has an important impact since it is not known whether the deci-
sion problem corresponding to the connected search number of a graph, i.e.,
the smallest number of searchers required to clear a graph in a connected way,
belongs to NP. Moreover, monotone strategies are of particular interest in de-
centralized settings since, first, they perform in polynomial time, and second, it
is a priori difficult to design non-monotone search strategies.

Several distributed protocols have been proposed to solve the search problem
for particular graph’s topologies. More precisely, Barrière et al. designed proto-
cols for clearing trees [1], Flocchini, Luccio and Song considered tori [7] and
meshes [8], Flocchini, Huang and Luccio considered hypercubes [9], and Luccio
dealt with Sierpinski’s graphs [14]. Assuming the searchers know the topology of
the graph G they must clear, these protocols enable mcs(G, v0)+ 1 searchers to
clear G in a monotone connected way, starting from any homebase v0 ∈ V (G).
The extra searcher, compared to the centralized case, is necessary and due to
the asynchrony of the network [8]. In [5], Blin et al. proposed a distributed pro-
tocol that allows mcs(G, v0) + 1 searchers to clear any unknown asynchronous
graph G in a connected way, starting from any homebase v0 ∈ V (G). In this
case, the searchers do not need any a priori information about the graph in
which they are placed. However, the search strategy that is actually performed
is not monotone and may be performed in exponential time. In [16], Nisse and
Soguet proposed to give to the searchers some information about the graph by
putting short labels on the nodes of the graph. They proved that Θ(n log n) bits
of information are necessary and sufficient to solve the search problem for any
n-node asynchronous graph G, using mcs(G, v0)+1 searchers and starting from
a homebase v0.

2 Lower Bound

This section is devoted to prove a lower bound on the competitive ratio of any
search protocol. For this purpose, we consider a game between an arbitrary search
protocol and an adversary. Roughly, the adversary gradually builds the graph,
which is actually a ternary tree, as the search protocol clears it in a monotone
connected way. The role of the adversary is to force the protocol to use the
maximum number of agents to clear the graph. The fact that the adversary can
build the graph during the execution of the search protocol is possible since the
searchers have no information concerning the graph they are clearing.

We need the following definition. A partial graph is a simple connected graph
which can have edges with only one end. Edges with one single end (resp., two
ends) are called half-edges (resp., full-edges). Let G = (V, H, F) be a partial
graph, where V is the vertex-set of G, H its set of half-edges and F its set of
full-edges. Let G− be the graph (V, F). Let G+ be the graph obtained by adding
a degree-one end to any half-edge of G.

Let us give some definitions and results that will be used in the following.
A ternary tree is a tree whose internal vertices have degree at most three. A
search strategy that is not constrained to satisfy neither the connected property,

The cost of monotonicity in distributed graph searching 5

nor the monotone property is simply a sequence of moves of the searchers along
the edges of a graph that results in clearing the whole graph. s(G) denotes the
smallest number of searchers that are necessary to clear a graph G in such a
way. The class of trees has particularly been studied regarding graph searching.
In particular, the following results have been proved.

Theorem 1. Let T be a tree with n ≥ 2 vertices,

s(T) ≤ 1 + log3(n − 1) (Megiddo et al. [15])
For any v0 ∈ V (T), mcs(T, v0) ≤ 2s(T) − 1 (Barrière et al. [2])

The remaining part of this section is devoted to the proof of Theorem 2.

Theorem 2. Any search protocol for clearing n-node graphs has competitive

ratio Ω(n
log n

).

Proof. Let P be any search protocol. We prove that there exists a constant c > 0,
such that for any n ≥ 5, there exists a n-node ternary tree T (actually, if n is
odd, T has exactly one internal vertex of degree two, and none otherwise), such
that P uses at least k searchers to clear T in a monotone connected way, starting
from any homebase v0 ∈ V (T), with k ≥ c n

log n
mcs(T, v0).

Let n ≥ 5. We consider an unknown ternary tree T , that P has to clear
starting from v0 ∈ V (T). Let us describe the game executed turn by turn by P
and the adversaryA. Initially, the partial graph Tp consists of a single vertex, the
homebase v0, incident to three half-edges. All searchers are placed at v0. Then,
P and A play alternatively, starting with P . At each round, Tp = (V, H, F)
corresponds to the part of T that P currently knows. P chooses a searcher and
it moves this searcher along an edge e of Tp if it does not imply recontamination.
Such a move is always possible since P is a search protocol, and thus, it eventually
clears T . Note that e may be a half-edge or a full-edge. If e is a full-edge, then A
skips its turn. Otherwise, two cases must be considered. Either |V (T +

p)| < n−1,
or |V (T +

p)| = n − 1. In the first case, A adds a new end v to e such that v is
incident to two new half-edges f and h. That is, the partial graph becomes Tp =
(V ∪{v}, Hnew, Fnew), with Hnew = (H \{e})∪{f}∪{h} and Fnew = F ∪{e}. In
the latter case, A adds a new end v to e such that v is incident to only one new
half-edge f . Again, this is possible since P does not know the graph in advance.
The game ends when |V (T +

p)| = n. At such a round, A decides that the graph
T is actually T +

p .
Let us consider the last round, that is when |V (T +

p)| = n. We show that
at this round the number k of vertices of T +

p occupied by searchers is at least
k ≥ n/4. Let us first do the following easy remarks. At each round of the game,
T−

p is a ternary tree, and T +
p is a ternary tree with at least (n + 2)/2 leaves

(this can be easily prove by induction on the number of rounds). Moreover, T−
p

is exactly the clear part of T at this step of the execution of P . In other words,
the half-edges of Tp corresponds to the contaminated edges that are incident to
the clear part of T . Since the execution of P ensures that the strategy performed
is monotone, it follows that, at any round of the game, the vertices incident to
at least one half-edge are occupied by a searcher. From the previous remarks, it

6 D. Ilcinkas, N. Nisse, and D. Soguet

follows that T +
p is a ternary tree with at least (n + 2)/4 vertices occupied by a

searcher. Indeed, every parent of a leaf in T +
p must be occupied by a searcher,

and every node is parent of at most two leaves. Thus, P uses at least k ≥ n/4
searchers. By Theorem 1, mcs(T, v0) ≤ 2(1 + log3(n − 1)). Therefore,

k ≥ mcs(T, v0) ×
n

8(1 + log3(n − 1))
.

It follows easily that there is a constant c > 0 such that for any n ≥ 5 we have

k ≥ c
n

log n
mcs(T, v0) ,

which concludes the proof the theorem. ut

3 Upper Bound

In this section, we propose a search protocol mc search (for monotone connected
search) with competitive ratio O(n

log n
) for any n-node graph. Combining with

the lower bound proved in section 2, it shows that Θ(n
log n

mcs(G, v0)) searchers
are necessary and sufficient to clear any unknown n-node graph G in a monotone
connected way, starting from any homebase v0 and in decentralized settings.

Before describing the search protocol mc search, we need some definitions.
In the following, the depth of a rooted tree T is the maximum length of the
paths between the root and any leaf of T . Let v ∈ V (T) that is not the root.
Let u be the parent of v, then the edge {u, v} is called the parent-edge of v.
A complete ternary tree is defined as follows. The complete ternary tree T0 of
depth 0 consists of a single vertex, called its root. For any k ≥ 1, a complete
ternary tree Tk of depth k is a ternary tree in which all internal vertices have
degree exactly three, and there exists a vertex, called its root, that is at distance
exactly k from all leaves.

Theorem 3. (Barrière et al. [2])
For any k ≥ 0, mcs(Tk) = k + 1.

A graph H is a minor of a graph G if H is a subgraph of a graph obtained by
a succession of edge contractions∗ of G. A well known result is that, for any
graph G and any minor H of G, s(G) ≥ s(H). Note that this result is not valid
for the search number mcs, i.e., there exist some graph G, and H minor of G
such that mcs(H) > mcs(G) [2].

3.1 Idea of protocol mc search

Let us roughly describe the search protocol mc search. Let G be a connected
n-node graph and v0 ∈ V (G). The main issue of mc search is to maintain two

? The contraction of the edge e with endpoints u, v is the replacement of u and v with
a single vertex whose incident edges are the edges other than e that were incident
to u or v.

The cost of monotonicity in distributed graph searching 7

dynamic rooted trees T and S. At each step, T is a subtree of the clear part of
G, and S is a minor of T with same root. Intuitively, S represents the current
positions of the searchers in G, and T enables the searchers to move in the clear
part of the graph by performing a DFS of T . Initially, S = T = {v0} and all
searchers are at v0.

Roughly speaking, at each step, Protocol mc search tries to clear an edge of
G that is chosen such that S becomes as close as possible to a complete ternary
tree. If the chosen edge e reaches a new vertex, i.e., a vertex that is not occupied
by a searcher yet, e is added to S and labelled Minor. Otherwise, e is labelled
Removed, meaning that e has been cleared but it does not belong to S nor T .

At some step of the execution of Protocol mc search, it might happen that
some vertices of S are not “useful” to let S be the densest possible ternary tree.
Such vertices are those vertices of S with degree two or less in S, and whose
all incident edges (in G) have been cleared. Let v be such a vertex and e its
parent-edge. Protocol mc search is aiming at “contracting” e. There are two
cases according whether v is a leaf of S or not. In the first case, e is labelled
Removed. In the latter case, e will be used by the searchers to circulate between
the different components of S in G. For this purpose, e is labelled Tree. As a
consequence, edges labelled Minor and Tree induce a tree T that enables the
searchers to circulate in the clear part of G, by performing a DFS. Especially, T
enables the searchers to reach all vertices of S.

We will show in the next sections that Protocol mc search eventually clears
G in a monotone connected way, starting from v0, and using N > 0 searchers.
Moreover, mc search organizes the moves of the searchers in such a way that
the following three properties are satisfied at any step. These three properties
enable to show that N = O(n

log n
× mcs(G, v0)).

1. T and S have maximum degree three,

2. the vertex-set of S is the set of vertices of G occupied by a searcher at this
step, and

3. S has depth k ≥ 1 only if there exists a previous step when S was the
complete ternary tree Tk−1.

Let us consider k to be the maximum depth of S during the clearing of G.
By properties 1,2 and 3,

N ≤ |V (Tk)| = |V (Tk)|
log |V (Tk)| × log |V (Tk)|.

Moreover, by property 3, Tk−1 is minor of G, thus s(Tk−1) ≤ s(G) ≤
mcs(G, v0) and |V (Tk−1)| ≤ 2|V (G)|. By Theorems 1 and 3, log |V (Tk)| =
O(k) = O(mcs(Tk−1)) ≤ O(s(Tk−1)) ≤ O(s(G)) ≤ O(mcs(G, v0)). Finally,
since the function x

log x
is strictly increasing, and |V (Tk)| = 3 |V (Tk−1)| + 1 ≤

3 |V (G)| + 1 = 3 n + 1, we obtain:

N = O(n
log n

× mcs(G, v0)).

8 D. Ilcinkas, N. Nisse, and D. Soguet

3.2 Protocol mc search

In this section, we describe the main features of protocol mc search that is des-
cribed in Figure 1. For the purpose of simplifying the presentation, we assume in
this figure that searchers are able to communicate by exchanging messages of size
O(log n) bits. This assumption can be implemented by an additional searcher.
This extra searcher will be used to schedule the moves of the other searchers
and to transmit few information between the searchers. For this purpose, the
extra searcher performs a DFS of the tree T that enables it to reach any other
searcher. First, we describe the data structure used by mc search.

Every searcher has a state variable `eve` ∈ {0, · · · , n}. Roughly, this variable
indicates the distance between the vertex currently occupied by the searcher and
the root, in the tree S. Initially, any searcher has `eve` = 0.

The whiteboard of every vertex v ∈ V (G) contains one vector statusv. For
any edge e ∈ E(G) incident to v, statusv[e] takes a value in L = {Contaminated,
Removed, T ree, Minor}. Initially, for any vertex v and any edge e, statusv[e] =
Contaminated. To simplify the presentation, we assume that each edge e =
{u, v} ∈ E(G) has only one label `(e) = statusv[e] = statusu[e] ∈ L. This also
may be implemented by the extra searcher. Moreover the whiteboard of every
vertex v contains a boolean rootv which is either true if v is the current root of
S or false.

The protocol is divided in O(|E(G)|) phases. At each phase, at least an
edge is relabelled. Note that any edge labelled Contaminated (resp., Minor,
resp., Tree) can be labelled Minor or Removed (resp., Tree or Removed, resp.,
Removed). The edges labelled Removed are not relabelled, which proves that
Protocol mc search terminates.

Let us define some notations. At any step, T is the subgraph of G induced
by the edges labelled Minor or Tree. In the next section, we prove that T is
indeed a tree. S is the minor of T obtained by contracting all edges labelled
Tree. Initially, T is rooted at v0. Finally, for any vertex v ∈ V (G), mv, tv, rv, cv

denote the number of edges incident to v that are respectively labelled Minor,
Tree, Removed, Contaminated.

Let us describe a phase of the execution of Protocol mc search. A phase
starts by the election of the searcher that will perform the move or the labelling
of an edge. The elected searcher is an arbitrary searcher with minimum `eve` and
that occupies a vertex v ∈ V (G) satisfying one of the following four conditions,
that we detail below. Case a: tv + mv ≤ 2 and cv ≥ 1, Case b: mv = 1, tv = 0
and cv = 0, Case c: mv + tv = 2, mv > 0, cv = 0 and v is not the root, Case d:
mv +tv = 2, cv = 0 and v is the root. We prove below that, while the graph is not
clear, at least one vertex occupied by a searcher satisfies one of these conditions.

We will prove that, at any phase, any searcher actually occupies a vertex
of S. Therefore, this election can easily be implemented by the extra searcher
performing a DFS of T . Moreover, that can be done with O(log n) bit of memory,
since the extra searcher only needs to remember the minimum `eve` of a searcher
satisfying one of the above conditions that it meets during this DFS.

The cost of monotonicity in distributed graph searching 9

Once the extra searcher has performed this DFS and has gone back to the
root, let k be the minimum `eve` satisfying one of the conditions, it has met.
Then, the extra searcher performs a new DFS to reach a searcher A with `eve` =
k at a vertex v ∈ V (G) satisfying one of the conditions. We consider the four
cases.

Case a. tv + mv ≤ 2 and cv ≥ 1. That is, v has degree at most two in T and it
is incident to a contaminated edge e. This case is aiming at adding an edge
to T and S for letting S to be as close as possible to a complete ternary tree.
In this case, the extra searcher has led another searcher B from the root
to v during its second DFS. The searcher B, followed by the extra searcher,
clears e and reaches its other end u ∈ V (G). Either there is an other searcher
at u, i.e., u belongs to S, or not, i.e., u /∈ V (T). In the first case, the extra
searcher labels e with Removed, i.e. e is clear but it does not belong to T .
Then, B and the extra searcher goes back to the root. In the second case,
the extra searcher labels e with Minor, i.e. e is added to S and T . Then, B
remains at u to guard it, and B takes `eve` = k + 1.

Case b. mv = 1, tv = 0 and cv = 0. That is, v has degree one in T and S,
and it is incident to no contaminated edge. This case is aiming at removing
a leaf from S and T , because no other edge incident to this vertex might be
added to T . This corresponds to relabelling Removed the edge e incident to
v in S that was labelled Minor. Moreover, let P be the maximal-inclusion
path in T , such that v is an end of P , all edges of P are labelled Tree and all
internal vertices in P have degree two in T , then all these edges are relabelled
Removed, which corresponds to removing all the vertices of P from T .
In this case, searcher A traverses the edge e labelled Minor, labelling it
Removed. Let u be the other end of e. Once e has been removed from T , if u
has degree one in T and its incident edge f in T has label Tree, f is removed
in a similar way. This process is done recursively while it is possible. Note
that u cannot be incident to a contaminated edge, otherwise, the protocol
ensures that another searcher with `eve` < k would have stand at u. To
conclude this case, the extra searcher and searcher A go back to the root
and takes `eve` = 0. Again, it is possible thanks to a DFS of T .

Case c. mv + tv = 2, mv > 0, cv = 0 and v is not the root. That is, v has
degree two in T and at least one in S and it is incident to no contaminated
edge. This case is aiming at contracting an edge e in S. That corresponds
to relabelling Tree an edge incident to v in S that was labelled Minor. We
prove that the parent-edge of such vertex is actually labelled Minor.
In this case, searcher A traverses the edge e labelled Minor, labelling it
Tree. Then, searcher A goes back to the root and takes `eve` = 0. Since,
this case correspond to the contraction of e in S, we need to update, i.e., to
decrease by one, the level of any searcher standing at a descendant of v. For
this purpose, the extra searcher can perform a DFS of Tv the subtree of T
rooted in v. Finally, the extra searcher goes back to the root.

10 D. Ilcinkas, N. Nisse, and D. Soguet

Initially all searchers stand at v0 with `eve` = 0. T = (v0, ∅) with v0 as root.
During the execution of mc search, T is the tree that consists of edges labelled Tree or Minor.

Description of the execution of any phase of Protocol mc search.

While there exists an edge labelled Contaminated do

1. Election of a searcher A occupying a vertex v, with minimum `eve`, say L, such that one of
the four following cases is satisfied.
(Case a) tv + mv ≤ 2, cv ≥ 1
(Case b) mv = 1, tv = 0, cv = 0
(Case c) mv + tv = 2, mv > 0, cv = 0 and v is not the root
(Case d) mv + tv = 2, cv = 0 and v is the root

2. (Case a)
A searcher B standing at the root is called and goes to v.
Let e be an edge incident to v and labelled Contaminated;
B clears e; Let u be the other end of e;
if u is occupied by another searcher then

Label e Removed;
Searcher B goes to the root;

else Label e Minor; Searcher B takes `eve` = L + 1; endif

(Case b)
Let e be the edge incident to v labelled Minor.
Label e Removed and let u its other end;
if v is the root then u becomes the new root;

all searchers standing at v go to u; endif
While mu = 0, tu = 1, cu = 0 do

Let f be the edge incident to u labelled Tree.
Label f Removed; Let u′ the other end of f and A goes to u′;
if u is the root then u′ becomes the new root

and all searchers standing at u go to u′; endif
u← u′;

EndWhile
Searcher A goes to the root;

(Case c)
Let e be the parent-edge of v and u its other end;
Label e with Tree;
Let Tv be the subtree of T obtained by removing e and containing v;
Any searcher occupying a vertex of Tv decreases its `eve` by one;
Searcher A goes to the root;

(Case d)
Let e be an edge that is closest to v in T such that e is labelled Minor;
Let u be the vertex such that e is its parent-edge;
Label e with Tree;
Let T ′ be the subtree of T obtained by removing e and that does not contain v;
Any searcher occupying a vertex of T ′ decreases its `eve` by one;
u becomes the new root;
All searchers that were standing at v go to u;

endWhile

Fig. 1. Protocol mc search

The cost of monotonicity in distributed graph searching 11

Case d. mv + tv = 2, cv = 0 and v is the root. That is, v has degree two in T
and it is incident to no contaminated edge. This case is aiming at contracting
an edge in S. There are two cases according whether v is incident to an edge
labelled Minor, or not. If v is incident to an edge labelled Minor, let e
be this edge. Otherwise, let w be the vertex that is one of the two vertices
closest to v in T and such that mw > 0, let e be the edge labelled Minor
incident to w, and let u be the other end of e. Note that we will prove that
such a vertex w has degree two in T and is incident to exactly one edge
labelled Minor. This case is aiming at contracting the edge e in S. That
corresponds to relabelling the edge e with Tree. This case also modifies the
position of the root.
In this case, all searchers standing at v (the root) are aiming at traversing
the edge e and at labelling it Tree. If e is incident to v, it can easily be
done. Otherwise, the searchers choose one of the two edges incident to v
and traverse all edges labelled Tree that they meet until reaching a vertex
incident to an edge labelled Minor, i.e., the vertex w. Then, they traverse
e = {w, u} and relabelled it Tree. In both cases, the searchers reach the
vertex u that becomes the new root, i.e., the booleans rootv and rootu are
updated. Again, we need to update, i.e., to decrease by one, the level of
any searcher standing at a descendant of v in the subtree containing u. This
can be done by the extra searcher as in the previous case. Finally, the extra
searcher goes back to the new root.

3.3 Correctness of Protocol mc search

This section is devoted to prove the following theorem.

Theorem 4. Let G be a connected n-node graph and v0 ∈ V (G). Protocol

mc search enables O(n
log n

mcs(G, v0)) searchers to clear G in a monotone con-

nected way, starting from v0.

Proof. The difficult part of the proof consists in showing that not too many
searchers are used. Thus, let us first prove that Protocol mc search clears G in
a monotone connected way. Initially, all edges are labelled Contaminated and
the label of an edge e becomes Minor or Removed as soon as e is traversed by a
searcher. Moreover, after this traversal, each of its ends is occupied by a searcher
(Case a). The strategy is obviously monotone since a searcher is removed from a
vertex v if either v is occupied by an other searcher (Case a), or no contaminated
edge is incident to v, i.e. cv = 0, (Cases b, c and d). Therefore, the strategy is
monotone and connected since it is monotone and starts from a single vertex v0.
Finally, Protocol mc search eventually clears G. Indeed, at each step, an edge
is labelled, and any edge is relabelled at most three times: Minor, T ree, and
Removed in this order. Thus, no loop can occur. Moreover, we prove below that
T is a tree. Therefore, at any step, at least the searchers occupying its leaves
satisfy the conditions of the cases a, b, c, or d. Thus, while there remains a
contaminated edge, a searcher will eventually be called to clear this edge.

12 D. Ilcinkas, N. Nisse, and D. Soguet

The remaining part of the section is devoted to prove that Protocol mc search

uses at most O(n
log n

mcs(G, v0)) searchers. For this purpose, it is sufficient to
prove the three properties described in section 3.1. More precisely, we prove the
following lemma.

Lemma 1. Let us consider a phase of the execution of Protocol mc search. Let

T be the subgraph of G induced by the edges labelled Minor or Tree. Let S be

the minor of T when all edges labelled Tree have been contracted.

1. T and S are rooted trees with maximum degree at most three,

2. the vertex-set of S is the set of vertices of G occupied by a searcher at this

phase, and

3. S has depth k ≥ 1 only if there exists a previous step when S was the complete

ternary tree Tk−1.

The proof is by induction on the number of phases of the execution of Protocol
mc search. Initially, the result is obviously valid. Let p > 0 be a phase of the
execution of mc search and let us assume that the result is valid for any previous
phase. Let T ′ be the subgraph of G induced by the edges labelled Minor or Tree
after phase p − 1, and S′ the minor corresponding to the contraction of edges
labelled Tree.

First we prove that S and T are acyclic. Note that, by definition, for any
vertex v ∈ V (G), mv + tv is the degree of v in T ′. According to the induction
hypothesis, T ′ is a tree with maximum degree at most three. Let v be a vertex
incident to at least one edge labelled Contaminated and that is not occupied by
a searcher. By monotonicity of the strategy, all edges incident to v are labelled
Contaminated. Thus, such a vertex does not belong to T ′. Let us show that
after phase p, T is a tree with maximum degree three. We consider the four
cases (a),(b),(c) and (d).

Case a. Either an edge e = {v, u} is added to T ′, i.e., T = (V (T ′)∪{u}, E(T ′)∪
{e}), or T ′ remains unchanged, i.e., T = T ′. Since, v ∈ V (T ′) and u /∈ V (T ′),
T is a tree in both cases. Moreover, mv + tv ≤ 2, thus v has degree at most
two in T ′. Thus T has maximum degree at most three.

Case b. mv + tv = 1, thus v is a leaf of T . Let u′ ∈ V (T ′) be the neighbor
of v and e = {u′, v} that is labelled Minor. First e is relabelled Removed,
thus v is removed from T ′. Then, if u′ is of degree one in T ′ \ {v} and its
incident edge f in T ′ \ {v} is labelled Tree, f is relabelled Removed, i.e.
u′ is removed from T ′ \ {v}. This process is repeated recursively. Thus, T
is a tree obtained from T ′ by recursively removing leaves of T ′. Hence, the
maximum degree of T is at most three.

Cases c and d. At most one edge of T ′ is relabelled Tree, thus T ′ = T . In
the proof of the Claim (see above) we prove that exactly one edge of T ′ is
relabelled Tree.

It follows that T is a tree with maximum degree at most three. Since S is a
minor of T , S is a tree.

The cost of monotonicity in distributed graph searching 13

Before proving that the maximum degree of S is three, we prove the second
property. We prove by induction on p that the vertices occupied by a searcher are
exactly: the root, and those vertices the parent-edge of which is labelled Minor.

Initially, the result is obviously valid. Let p > 0 be a phase of the execution
of mc search and let us assume that the result is valid for any previous phase.
We consider the four cases a, b, c and d. Let V ′

M be the set of vertices such that
their parent-edge are labelled Minor after the phase p − 1.

Case a. An edge e = {v, u} labelled Contaminated is the only edge to be
relabelled. It is relabelled either Removed or Minor. In the first case, S = S′

and the searchers occupy exactly the same vertices than after the phase p−1,
thus the property holds. In the second case, u is a leaf of T , and e is the
parent edge of u. Thus S = (V (S′)∪{u}, E(S′)∪{e}). Moreover the vertices
occupied by a searcher are exactly V (S′) ∪ {u}. Thus the property holds.

Case b. Let e = {v, u} be the edge adjacent to v labelled Minor. e is the only
edge relabelled from Minor to Removed. All the other relabelled edges are
labelled from Tree to Removed. Thus VM = V ′

M \ {v}. Indeed note that if
the root changes, the parent-edge of each vertex in V ′

M \{v} does not change.
If the root does not change, then S = (V (S′) \ {u}, E(S′) \ {e}). Moreover
the vertices occupied by a searcher are exactly V (S) and the property holds.
If the root changes to w, S = (VM ∪ {w}, E(S′) \ {e}), the vertices occupied
by a searcher are exactly V (S) and the property holds.

Case c. The parent-edge e of the vertex v is the only edge relabelled, and
according to induction hypothesis it is relabelled from Minor to Tree. Thus
S = (V (S′) \ {v}, E(S′) \ {e}). Moreover the vertices occupied by a searcher
are exactly V (S), thus the property holds.

Case d. Let e be an edge that is closest to v in T ′ such that e is labelled Minor.
We will prove in the next proof that such an edge always exists. If this edge
does not exist nothing happens and the property holds.
Let u be the vertex such that e is its parent-edge. The edge e is the only
edge relabelled, it is relabelled from Minor to Tree. Thus VM = V ′

M \ {u}.
Indeed the root changes such that the parent-edge of each vertex in VM

does not change and u is the new root. The root changes to u, thus S =
(VM ∪ {u}, E(S′) \ {e}). Moreover the vertices occupied by a searcher are
exactly VM ∪ {u} and the property holds.

Thus, at phase p, the vertex-set of S is the set of vertices of G occupied by
a searcher at this phase.

In order to prove that S has maximum degree at most three, we need the
following claim:

Claim. Let v ∈ V (T) incident to an edge e labelled Tree, and such that e is not
its parent-edge. Let Tv be the subtree of T obtained by removing e from T and
that does not contain v. There exists an edge f = {u, w} labelled Minor, such
that f is the parent edge of w, u has degree two in T , and the subtree P of Tv

obtained by removing f from Tv and that contains u consists of a path of edges
labelled Tree.

14 D. Ilcinkas, N. Nisse, and D. Soguet

Obviously, Tv contains at least one edge labelled Minor because all leaves of
T are labelled Minor. Indeed, when a leaf is added to T , its incident edge is
labelled Minor (Case a) and, when a leaf and its incident edge e labelled Minor
are removed, the whole path of edges labelled Tree at which e is attached are
removed (Case b).

We now prove that, for any vertex u ∈ V (T) that is not the root, such that
all its incident edges in T are labelled Tree, u has degree two in T . Since we
have proved that a leaf can only be incident to an edge labelled Minor, u has
degree at least two in T . For purpose of contradiction, let us assume that u has
degree three in T . Let us consider the phase of the execution of mc search such
that the last edge incident to u and labelled Contaminated has been relabelled.
From this phase, the degree of u in T might only have decreased. It follows that
this vertex cannot have satisfied conditions corresponding to Cases b,c, or d.
Thus, u has never been the root otherwise it would still be the case. Moreover,
the parent-edge of u has never been relabelled contradicting the fact that it is
labelled Tree. Hence, such a vertex u has degree exactly two in T .

Let f be the edge labelled Minor that is the closest to v in Tv. Let u be the
end of f that is closest to v. Obviously, u is not the root and its parent-edge
is labelled Tree. It only remains to prove that u has degree exactly two in T .
Similarly to the previous paragraph, we assume, for purpose of contradiction,
that u has degree three in T . Again, this leads to the fact that its parent-edge
could not have been relabelled, a contradiction. Thus, u has degree two and it is
incident to an edge labelled Minor and another edge labelled Tree. Moreover,
all internal vertices of the path between u and v have degree two in T and they
are incident to edges labelled Tree. This concludes the proof of the Claim. �

Now, let us prove that S has maximum degree at most three. According to
the induction hypothesis, S′ has maximum degree at most three. To prove that
the maximum degree of S is at most three, the four cases a, b, c and d must be
considered by taking into account the previous claim. Indeed using the Claim,
we get that the degree in S of a node v is actually equal to mv + tv, i.e., its
degree in T . The induction consists to prove that at the end of the phase p, for
all node v ∈ S, mv + tv ≤ 3 according to the case a, b, c and d. The formal proof
is omitted due to lack of space and can be found in [12].

To conclude the proof of the lemma, let us prove the third property. First,
for any searcher occupying a vertex v of S, its level is the distance between v and
the root. Let k ≥ 1 and let us consider the first phase p at which the depth of S
becomes k. The phase p consists of the clearing of a contaminated edge e = {u, v}
with u ∈ V (S) occupied by a searcher with level k − 1, and v ∈ V (G) \ V (T).
Since the move performed at phase p is executed by the searcher with smallest
level, it means that no searcher with level less than k − 1 can move. That is, all
internal vertices of S have degree three and S has depth k − 1, i.e. S = Tk−1.
This concludes the proof of the lemma and of the theorem. ut

The cost of monotonicity in distributed graph searching 15

References

1. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder
by mobile agents. In 14th ACM Symp. on Parallel Algorithms and Architectures
(SPAA), pages 200-209, 2002.

2. L. Barrière, P. Fraigniaud, N. Santoro, and D. Thilikos. Connected and Internal
Graph Searching. In 29th Workshop on Graph Theoretic Concepts in Computer
Science (WG), Springer-Verlag, LNCS 2880, pages 34–45, 2003.

3. D. Bienstock. Graph searching, path-width, tree-width and related problems (a
survey) DIMACS Ser. in Discrete Mathematics and Theoretical Computer Science,
5, pages 33–49, 1991.

4. D. Bienstock and P. Seymour. Monotonicity in graph searching. Journal of Algo-
rithms 12, pages 239-245, 1991.

5. L. Blin, P. Fraigniaud, N. Nisse and S. Vial. Distributing Chasing of Network
Intruders. In 13th Colloquium on Structural Information and Communication
Complexity (SIROCCO), Springer-Verlag, LNCS 4056, pages 70-84, 2006.

6. R. Breisch. An intuitive approach to speleotopology. Southwestern Cavers VI(5),
pages 72-78, 1967

7. P. Flocchini, F.L. Luccio, and L. Song. Decontamination of chordal rings and tori.
Proc. of 8th Workshop on Advances in Parallel and Distributed Computational
Models (APDCM), 2006.

8. P. Flocchini, F.L. Luccio, and L. Song. Size Optimal Strategies for Capturing an
Intruder in Mesh Networks. Proceedings of the 2005 International Conference on
Communications in Computing (CIC), pages 200-206, 2005

9. P. Flocchini, M. J. Huang, F.L. Luccio. Contiguous search in the hypercube for
capturing an intruder. Proc. of 18th IEEE Int. Parallel and Distributed Processing
Symp. (IPDPS), 2005.

10. P. Fraigniaud and N. Nisse. Connected Treewidth and Connected Graph Searching.
In 7th Latin American Theoretical Informatics Symp. (LATIN), LNCS 3887, pages
470-490, 2006.

11. P. Fraigniaud and N. Nisse. Monotony properties of connected visible graph search-
ing. In 32th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG), LNCS 4271, pages229-240, 2006.

12. D. Ilcinkas, N. Nisse, and D. Soguet. The cost of monotonicity in distributed
graph searching. Technical Report, LRI-1475, University Paris-Sud, France, Sept.
2007.

13. A. LaPaugh. Recontamination does not help to search a graph. Journal of the
ACM 40(2), pages 224-245, 1993.

14. F. L. Luccio Intruder capture in Sierpinski graphs. Proceedings of the 4th Inter-
national Conference on Fun with algorithms (FUN), Springer-Verlag, LNCS 4475,
pages 249-261, 2007.

15. N. Megiddo, S. Hakimi, M. Garey, D. Johnson and C. Papadimitriou. The com-
plexity of searching a graph. Journal of the ACM 35(1), pages 18-44, 1988.

16. N. Nisse and D. Soguet. Graph searching with advice. In 14th Colloquium on
Structural Information and Communication Complexity (SIROCCO), Springer-
Verlag, LNCS 4474, pages 51-67, 2007.

17. T. Parson. Pursuit-evasion in a graph. Theory and Applications of Graphs, Lecture
Notes in Mathematics, Springer-Verlag, pages 426-441, 1976.

18. B. Yang, D. Dyer, and B. Alspach. Sweeping Graphs with Large Clique Number.
In 15th Annual International Symp. on Algorithms and Computation (ISAAC),
pages 908-920, 2004.

