
Locating a Target with an Agent Guided by Unreliable
Local Advice∗

How to Beat the Random Walk when you have a Clock?

Nicolas Hanusse
CNRS, LaBRI/INRIA,

Université de Bordeaux 1
Bordeaux, France

nicolas.hanusse@labri.fr

David Ilcinkas
CNRS, LaBRI/INRIA,

Université de Bordeaux 1
Bordeaux, France

david.ilcinkas@labri.fr

Adrian Kosowski
Gdańsk University

of Technology
Gdańsk, Poland

adrian@kaims.pl
Nicolas Nisse

MASCOTTE, INRIA,
I3S(CNRS/UNS)

Sophia Antipolis, France
nicolas.nisse@sophia.inria.fr

ABSTRACT
We study the problem of finding a destination node t by
a mobile agent in an unreliable network having the struc-
ture of an unweighted graph, in a model first proposed by
Hanusse et al. [21, 20]. Each node is able to give advice
concerning the next node to visit so as to go closer to the
target t. Unfortunately, exactly k of the nodes, called liars,
give advice which is incorrect. It is known that for an n-
node graph G of maximum degree ∆ ≥ 3, reaching a target
at a distance of d from the initial location may require an
expected time of 2Ω(min{d,k}), for any d, k = O(logn), even
when G is a tree.

This paper focuses on strategies which efficiently solve the
search problem in scenarios in which, at each node, the agent
may only choose between following the local advice, or ran-
domly selecting an incident edge. The strategy which we put
forward, called R/A, makes use of a timer (step counter) to
alternate between phases of ignoring advice (R) and follow-
ing advice (A) for a certain number of steps. No knowledge
of parameters n, d, or k is required, and the agent need not
know by which edge it entered the node of its current lo-
cation. The performance of this strategy is studied for two
classes of regular graphs with extremal values of expansion,
namely, for rings and for random ∆-regular graphs (an im-
portant class of expanders). For the ring, R/A is shown to

achieve an expected searching time of 2d+kΘ(1) for a worst-
case distribution of liars, which is polynomial in both d and
k. For random ∆-regular graphs, the expected searching
time of the R/A strategy is O(k3 log3 n) a.a.s. The polylog-

∗A full version of this paper is available online [19]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’10, July 25–28, 2010, Zurich, Switzerland.
Copyright 2010 ACM 978-1-60558-888-9/10/07 ...$10.00.

arithmic factor with respect to n cannot be dropped from
this bound; in fact, we show that a lower time bound of
Ω(logn) steps holds for all d, k = Ω(log logn) in random
∆-regular graphs a.a.s. and applies even to strategies which
make use of some knowledge of the environment.

Finally, we study oblivious strategies which do not use
any memory (in particular, with no timer). Such strategies
are essentially a form of a random walk, possibly biased
by local advice. We show that such biased random walks
sometimes achieve drastically worse performance than the
R/A strategy. In particular, on the ring, no biased random
walk can have a searching time which is polynomial in d and
k.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph algorithms

General Terms
Algorithms, Theory

Keywords
Distributed Computing, Mobile Agent, Random Walks, Ex-
panders, Faulty Networks

1. INTRODUCTION:
THE SEARCH PROBLEM

Walking in the streets of Paris, you decide to visit the
famous Musée du Louvres, but do not know where it is sit-
uated. You first ask some people who say you should go to
the North. After a short walk, you ask a policeman who is
almost sure it is to the East. At the next intersection, you
are told to go to the South. At least one of the persons you
have met is mistaken. What is the best strategy to quickly
find the museum?

Locating an item (a piece of information, data, services,
etc.) is one of the most common tasks in a distributed envi-
ronment. This is, for instance, the role of search engines in

the World Wide Web. One idea for a user of a network to lo-
cate an item at some node is to send agents out to search for
the desired item [30, 27, 25]. If the mobile agent is provided
complete information about the network and the location
of the item, it can quickly find it by following a shortest
path from its current position to the node hosting the item.
Another way for the agent to find an item without being pro-
vided any information consists in exploring the whole net-
work until the desired item is encountered. Several works
have been devoted to the problem of exhaustive network ex-
ploration and numerous algorithms, both deterministic (e.g.,
Breadth First Search, Universal Traversal Sequences [1, 36],
Universal Exploration Sequences [29, 35]) and randomized
(e.g., random walks [2, 31, 26], biased random walks [4, 6]),
have been designed. In the context of large scale networks
like the World Wide Web or the Internet, it is impractical
to have full knowledge of the network because of its size and
dynamicity. It is also impossible to fully explore the net-
work since such an approach requires a time complexity (at
least) in the order of the number of nodes of the network.
Another important constraints to the complete exploration
of a network are the memory of the agent (e.g., see [15]) and
the notion of sense-of-direction [12, 13, 14].

In this paper, we consider the problem of locating an item
hosted by some node of the network when each of the nodes
maintains a database storing the first edge on a shortest
path to the node hosting the desired item (the destination).
The search is performed by a mobile agent with a limited
perception of the environment and with little memory which
starts from some initial node, the source. When occupying
a node, the mobile agent can perform a query to the node’s
database that reveals to it an edge that is the beginning of a
shortest path from the current node to the item. We assume,
however, that some nodes may provide wrong information,
that is, a node v may indicate an edge that does not be-
long to any shortest path from v to the destination. This is
motivated by the fact that inaccuracies occur in the nodes’
databases because nodes may malfunction or be malicious,
or may store out-of-date information due to the movement
of items or the dynamicity of the network. This is also the
case when you are searching some place in a city by asking
your way to some people you meet. A node providing wrong
information is called a liar, otherwise it is a truth-teller.

The problem is then to deal with the potentially incorrect
information and to find the desired item. That is, the mobile
agent can decide to follow the edge pointed by its current
node’s database or not. The performance of the search is
measured by comparing the searching time (a.k.a. hitting
time), i.e., the length of the walk followed by the agent from
the source to the destination, with the length d of a shortest
path between these nodes.

In this paper, we investigate the search problem in the
class of regular graphs in the presence of a bounded number
k of liars. Our main contribution is the design and study of
a randomized algorithm, called R/A that alternates phases
of pure random walk (R) with phases in which the agent
follows the advice (A). We show that Algorithm R/A im-
proves upon previous algorithms for the search problem in
paths and random ∆-regular graphs. In particular, in these
classes, we prove that the Algorithm R/A achieves search-
ing time much smaller than Ω(d + 2k), which is the lower
bound for general regular graphs [20]. Note that the graph
classes we consider capture the two extreme types of behav-

ior in terms of expansion, since random ∆-regular graphs
are good expanders, while the other classes are highly sym-
metric graphs with poor expansion. Note, however, that
Algorithm R/A is generic and works for any topology.

1.1 Related Work
The search problem in the presence of liars was first in-

vestigated by Kranakis and Krizanc [30]. In this seminal
work, they designed algorithms for searching in distributed
networks with ring or torus topology, when a node has a
constant probability of being a liar [30]. The case when the
number k of liars is bounded was first considered in [21],
where deterministic algorithms were designed for particular
topologies like the complete graph, ring, torus, hypercube,
and bounded degree trees. In particular, in bounded degree
trees, it is proved that the search time is lower-bounded by
Ω(d + 2min{k,d}) [21]. Simple randomized and memoryless
algorithms are designed in [20] for the case of bounded de-
gree graphs, where the mobile agent follows the advice with
some fixed probability p > 1/2. In this class of graphs,
the authors showed that the expected distance covered be-
fore reaching the destination is upper-bounded by O(d+rk),
where r = p

1−p [20]. Moreover, this bound is tight since they

proved a lower bound of Ω(d+ rk) in the torus [20]. While
this bound is a bit disappointing, it can be improved for
particular graph classes. In this paper, we focus on some
particular and widely used topologies.

Biased random walks.
Roughly speaking, the algorithms we present in this paper

consist of alternation of phases of given duration: either the
agent keeps on following the advice provided by the nodes
or it walks choosing the next visited node uniformly at ran-
dom in the neighboorhood of the current position. This is
closely related to biased random walks which are random
walks in which nodes have a statistical preference to shift
the walker towards the target, or more generally, prevent the
walker from staying too long in one vicinity [4]. More for-
mally, biased random walks are used in network exploration
in order to speed up the time required to visit the whole
network without an a-priori knowledge of the topology and
without an edge/node labeling requirement. For instance,
Ikeda et al. proved in [23] that, assuming the knowledge
of the degrees of the neighbors, a biased random walk can
explore (cover) any graph within O(n2 logn) edge traversals
whereas a uniform random walk takes Θ(n3) steps for some
graphs. In our context, however, the bias may be erroneous
due to the presence of liars.

Expanders and random regular graphs.
Expander graphs are highly connected sparse graphs that

play an important role in computer science and the theory
of communication networks (see [22] for a survey). Formally,
a graph G = (V,E) is a c-expander if, for any X ⊂ V with
|X| ≤ |V |/2, then |N(X)\X| ≥ c|X| where N(X) is the set
of neighbours of X. Expanders arise in questions about de-
signing networks that connect many users while using only
a small number of switches (e.g., see [3]). They also arise in
constructions of error-correcting codes with efficient encod-
ing and decoding algorithms, derandomisation of random
algorithms, embeddings of finite metric spaces, etc.

Expanders and random regular graphs have been exten-

sively studied for the design of optimal networks and algo-
rithms for routing [33, 28, 17]. Because of their low diame-
ter and high connectivity, random regular graphs are also of
interest in Peer-to-Peer networks (e.g., see [18]). More gen-
erally, it can be observed that many interaction networks
like peer to peer overlay networks, small worlds and scale-
free networks are expanders despite this is not proved in the
original papers. For instance, Bourassa and Holt [8] pro-
posed a fully decentralized protocol based on random walks
for the nodes to join and leave the network. They conjec-
tured that their protocol produces random regular graphs,
which was proved formally in [9]. On the other hand, Cooper
[10] et al. show that random regular graphs are expanders.

1.2 Terminology and the model
Throughout the paper, a distributed network is for our

purposes an undirected n-node graph G = (V,E). There
are two distinguished nodes in the graph, the source s ∈ V ,
and the destination t ∈ V , hosting the desired item. The
distance d(u, v) between two nodes u and v corresponds to
the number of edges of a shortest path from u to v. We
set d(s, t) = d. The number of liars is denoted by k ≥ 0.
For any v ∈ V and r ≥ 0, let Nv(r) denote the distance-r
neighborhood of v, i.e., the set of all nodes u ∈ V such that
dist(u, v) ≤ r. We will call the subgraph Bv(r) = G[Nv(r)]
the ball with center v and radius r. The deg(u) edges in-
cident to any node u are labeled by port numbers, from 1
to deg(u), so that the searchers can distinguish the different
edges incident to a node. There is no sense-of-direction [12,
13, 14], meaning that the local labeling of the edges satisfies
no global consistency constraints (e.g., right/left in a path,
or North/South/East/West in a grid). In most cases, we as-
sume that the agent does not know the label of the port by
which it entered the current node. Note that in a ∆-regular
graph, all nodes are indistinguishable for the agent.

At each step of the execution of an algorithm, the agent
performs a query to its current node v ∈ V . If v = t, the item
is found and the mobile agent stops. Otherwise, a piece of
advice a ∈ {1, · · · , deg(v)} is given to the agent, representing
the port number a of the next edge e incident to v which
should be crossed in order to reach t. If v is a truth-teller,
e belongs to a shortest path between v and t. Otherwise, v
is called a liar. Finally, the mobile agent chooses some edge
incident to v and traverses it. In the following, the set of
liars is denoted by L and the set of truth-tellers by T T . A
priori, a search algorithm can take into account the set of
advice encountered so far to choose the next edge to cross.
In particular, this means that a node should always provide
the same advice, otherwise it would easily be identified as a
liar. However, for practical applications, it is natural to limit
the agent’s memory. Here, we consider that the agent only
has a timer (whose size is specified below). Hence, a lying
node may or may not provide always the same advice (but a
node cannot change its status: it is either consistently a liar
or a truth-teller). Finally, the agent will also be assumed to
have no global knowledge about the size of the network, the
number of liars, and the value of d.

We are mainly interested in the expected number of edge
traversals, named the searching time, taken by the mobile
agent to reach the target t, and in comparing it with d.

1.3 Results and structure of the paper
We design and study Algorithm R/A [tR,tA] defined as fol-

lows. The mobile agent alternates between phases in which
it performs a random walk for tR ≥ 0 steps and then follows
advice for tA ≥ 0 steps (Algorithm 1). Note that this algo-

Algorithm 1 Algorithm R/A with phase durations tR, tA.

Algorithm R/A [tR, tA]: Repeat the following sequence of
two phases until the target is reached:

1. Random phase (R): the mobile agent performs a pure
unbiased random walk for tR steps;

2. Advice phase (A): the mobile agent follows the advice
for tA steps.

rithm can fundamentally work for any topology. However, a
cautious design of duration is necessary. For instance, if the
duration of the phase A is much larger than that of phase
R, the mobile agent could be stuck forever in the same area
full of liars. By carefully parameterizing the durations, we
prove that:

• in the path (similarly in the ring), an agent using a
counter of O(log k) bits and following Algorithm R/A
ends up at the target t within 2d+O(k5)+o(d) moves
with probability 1−Θ(1/kc−3), where c is a constant
(Section 2), and

• in random ∆-regular graphs, an agent using a counter
of O(log k+log logn) bits and following Algorithm R/A
ends up at the target t within O(c3 · k3 log3 n) steps

with probability 1−1/2Ω(c), where c is a constant (Sec-
tion 3).

In both results, no knowledge of n, d, or k is required.
Finally, in the case of random ∆-regular graphs, we pro-
vide a lower bound of Ω(logn) which holds for all d, k =
Ω(log log n) and applies even to strategies which are in some
sense not oblivious with respect to the environment.

Tables 1 and 2 establish a comparison between the perfor-
mances of Algorithm R/A, and the performances of the Bi-
ased Random Walk (BRW). In the BRW strategy, the agent
flips a biased coin and accepts the advice with probabil-
ity p and rejects it with probability 1 − p, in which case it
also selects any of the remaining incident edges with uniform
probability in the number of remaining incident edges. Note
that when the searched graph is a line, if p = 1/2, BRW is
the pure Random Walk.

2. SEARCHING THE PATH
In this section, let us assume that the initial graph is a

path P of n nodes. For this topology, we look at the be-
havior of the generic algorithms, which we later study for
expanders. Recall that k denotes the number of liars.

Note that whereas it is of course possible to design ex-
tremely simple and efficient algorithms specifically for search-
ing a path, such algorithms will usually not perform well in
general. Consider for example the 1D Cow Path strategy
proposed in [5], which does not take into account the ad-
vice. For i ∈ [1, blog2 dc], it just consists in going 2i steps in
one given direction, then in going 2i+1 steps in the opposite
direction and repeats the sequence until the target is found.
This algorithm is efficient in the case of the path, always
reaching its target in at most 9d steps [5]; however, this is not

Strategy Expected searching time Memory Reference

BRW [p < 1/2] 2Ω(d) −
[31]

BRW [p = 1/2] Ω(dn) −
BRW [p > 1/2] Ω(d+ 2Ω(k)) − [20]

R/A 2d+ kΘ(1) + o(d) timer (O(log t)) Thm. 2

Table 1: Searching in a path with liars. The listed strategies have no knowledge of inbound ports used by
the agent. The number of rounds required to complete the search is denoted by t.

Strategy Expected searching time (a.a.s.) Memory Reference

∗ lower bound Ω(min{(∆–1)k, (∆–1)d, log∆-1 n}) Thm. 6

BRW [p > 1/2] Θ(min{(∆–1)k, nΘ(1)}) −
BRW [p = 1/2] Ω(log2

∆-1 n) − [10]

BRW [p < 1/2] nΘ(1) −
∗ R/A/E O(k logn) Θ(log k + log log∆-1 n) Thm. 3

R/A O(k3 log3 n) timer (O(log t)) Thm. 4

Table 2: Searching with liars in random ∆-regular graphs. Results marked with (∗) allow the agent to make
use of labels of inbound ports and to have knowledge of n and k. The number of rounds required to complete
the search is denoted by t.

the case when the expansion of the graph is large (e.g., the
d-Dimensional Cow Path approach will require Ω(dD) steps
for D-dimensional grid). Moreover, this algorithm requires
some sense-of-direction, or at least knowledge of the port by
which the agent enters each node.

It is interesting to note that the Biased Random Walk
(BRW) performs badly on the path, see Table 1. When
the probability of following advice is p ≤ 1/2, the strategy
proves ineffective even when there are no liars in the net-
work [31]. For p > 1/2, the searching time is sometimes
exponential in the number of liars [20]. Regardless of the
value of p, the searching time of BRW in the path is always
lower-bounded by Ω(d+ 2min{k,d}).

In this section, we study the performance of Algorithm
R/A[L,L] on a path. Recall that, following this algorithm,
the search consists of rounds of length 2L > 0. During each
round, the mobile agent first executes a random walk during
L steps (phase R), and then it follows the advices during the
next L steps (phase A).

Let u0, u1, . . . , uL be the sequence of nodes traversed by
the mobile agent in a phase R and let v0 = uL, v1, · · · , vL
be the sequence of nodes traversed by the mobile agent in
a phase A. We are interested in the gain X = XA +XR of
vL with respect to u0 defined by X = d(u0, t)−d(vL, t), XR
(resp. XA) being the gain during phase R (resp. A).

In the following, we will make use of an assumption: uL
is almost always close to u0. More formelly, let C` be the
event defined by uL is at distance at most

√
2L` from u0,

i.e., uL ∈ Bu0(
√

2L`). We get:

Lemma 1 (Random Phase). Let c > 0 and k > 0. At
the end of Phase R, we have:

1. With probability at least 1− 2/kc, event Cc log k holds;

2. With probability at least 1− 2/e, event C1 holds.

Let |i| ≤ L with same parity as L.

3. Pr(d(uL, u0) = i) ≤ pmax = 0.8/
√
L;

4. If |i| ≤
√

2L, Pr(d(uL, u0) = i) ≥ pmin = 0.1/
√
L.

Proof. Let X1, X2, . . . , XL be independent random vari-
ables such that Pr(Xi = 1) = Pr(Xi = −1) = 1

2
. The gain

XR = d(u0, t) − d(uL, t) during phase R is XR =
PL
i=1 Xi,

that is, uL is at distance |XR| from u0. From Chernoff’s
bound, we have:

Pr(|XR| ≥ a) ≤ 2e
−a2
2L , a > 0.

For the first statement (resp. the second), take a =
√

2cL log k

(resp. a =
√

2L).
Let −L ≤ i ≤ L such that L − i ≡ 0[2]. The probability

that XR = i is exactly
`

L
L/2+|i|/2

´
/2L. We recall that we

should have L/2 + i/2 moves in one given direction and
L/2 − i/2 moves in the opposite direction. We prove the
lemma in the case L = 2`, the case L odd is similar. The
function f(2j) =

`
L
`+j

´
/2L is a decreasing function (0 ≤ j ≤

`). Hence, for all 0 ≤ j ≤ `, f(2j) ≤ f(0) =
`
L
`

´
/2L. By the

Stirling Formula, f(0) ∼
q

2
πL
≤ 0.8/

√
L.

The last statement is similar. Indeed, since the function
f is decreasing, we get that, for any i = 2j with |i| ≤

√
2L,

f(i) ≥ f(2b
√

2L/2c) ≥ f(2
√
L). Moreover, f(2

√
L) =`

L
`+
√
L

´
/2L =

√
(2)·(eln(2)−1)2

4
√
π
√
L

+ o(L−3/2). Hence, f(2
√
L) ≥

0.1/
√
L.

Consider the subpath of P \ {t} containing u0. It can be
decomposed into at most 2k + 1 maximal subpaths of con-
secutive nodes such that each subpath is composed only of
nodes of same state, that is liars or truth-tellers. We as-
sume that the subpaths (or sets of nodes) are ordered from

the subpath furthest from t to the subpath closest to t. De-
fine Li (resp. Ti) as the i-th set of liars (resp. truth-teller)
of the path.

Lemma 2 (Advice Phase). Let c ≥ 1 such that
√
c+ 1−√

c > 1/
√

2k log k, and L > 32k3. Let k′ be the number of

liars at distance at most
p

2(c+ 1)L log k from u0. Condi-
tion on Cc log k, we have:

1. −k′ ≤ XA < 0 with probability at most pmax · k′ =
O(k′/

√
L);

2. XA ≥
√

2L/k′−1 with probability at least
√

2Lpmin(1−
2/e) = Θ(1);

3. E(X) = E(XA) and E(XA) ≥
√
L

40k′ − 1.

Proof. By hypothesis, uL belongs to Bu0(
√

2cL log k),
the path of 2

√
2cL log k + 1 consecutive nodes centered at

node u0.
We first prove that after phase A, the distance can only

increase by at most k′ units. If uL is a liar belonging to Li,
we know that during phase A, the distance to t can increase
by at most |Li| ≤ k units, i.e., XA = d(u0, t) − d(vL, t) ≤
d(u0, t) − d(uL, t) + |Li|. In this case, since d(uL, vL) ≤ k,

we have that vL ∈ Bu0(
p

2(c+ 1)L log k) because, by the

choice of L and c,
p

2(c+ 1)L log k−
√

2cL log k > k. Hence,
|Li| ≤ k′.

If uL is a truth-teller, the distance to t decreases by a
number of units which is the minimum of L and the distance
to the next set of liars (towards t).

Let us focus of the gain XA during phase A. XA < 0 if
and only if uL is a liar node. Otherwise XA ≥ 0. XA = 0 is
possible as soon as uL is a truth-teller being a neighbor of a
liar and L is even.

From Lemma 1, we know that for any given node v at
distance at most L from u0 and such that d(u0, v) has same
parity as L, Pr(uL = v) ≤ pmax. Moreover, by hypothesis,
uL belongs to Bu0(

√
2cL log k) that contains at most k′ liars.

Hence, with probability at most pmaxk
′, uL is a liar and thus

−k′ ≤ XA < 0.
Whenever uL is a truth-teller, uL belongs (or not) to

Bu0(
√

2L). By Lemma 1, any nodes ofBu0(
√

2L) has almost
the same probability to be chosen (there is a multiplicative
factor of at most pmin/pmax). XA = i if there are i con-
secutive truthtellers before the next liar. Let us prove that
XA = Ω(

√
L/k′) with constant probability. We just focus

on truth-tellers belonging to Bu0(
√

2L).
For y ≥ 1, let ty be the number of disjoint sequences of

consecutive truth-tellers of length y of Bu0(
√

2L). Note thatP
y≥1 ty ≤ k

′. By definition, we have:

X
ty≥1

y · ty ≥ 2
√

2L− k′ + 1 (1)

Since at least
P
y≥x(y− x)ty vertices in Bu0(

√
2L) are at

distance at least x from the next liar in the direction of t,
we have

Pr(XA ≥ x) ≥ pmin(1− 2/e)
X
y≥x

(y − x)ty (2)

Taking x =
√

2L/k′ − 1, we have
Px
y=0 xty ≤

√
2L − k′.

From Eq. (1), it follows that
P
y≥x(y−x)ty ≥

√
2L+ 1 and

Pr(XA ≥
√

2L/k′ − 1) ≥
√

2Lpmin(1− 2/e) = Θ(1).

The expectation of XA is

E(XA) ≥ −k′ Pr(XA < 0) (3)

+(
√

2L/k′ − 1) Pr(XA ≥
√

2L/k′ − 1) (4)

≥ −k′2pmax (5)

+(
√

2L/k′ − 1)
√

2Lpmin(1− 2/e) (6)

≥ −0.8k′2√
L

+
0.1
√

2(1− 2/e)(
√

2L− k′)
k′

(7)

Since L > 32k′3, we get:

E(XA) ≥
√
L

k′
(−1/40 + 1/20)− 1 (8)

≥
√
L

40k′
− 1 (9)

Since X = XR + XA and E(XR) = 0, we get E(X) =
E(XA)

We now need some definitions. The advice cone Cu of a
liar u is the set of nodes v such that there is a path v0 =
v, v1, . . . , vi = u from v to u with vj = Adv(vj−1). For
r ≥ 1, we note the r-restricted advice cone of a liar u by
Cu(r) = Cu ∩ Nu(r). The r-zone of a liar u is NCu(r)(r),
that is the set of all vertices at distance at most r from Cu(r)
(including Cu(r)). Finally, a r-box is a connected component
of the subgraph induced by all r-zones.

In other words, consider one of the two components of
P \ {t}, and let {u1, · · · , uk} be the liars in this component,
ordered by decreasing distance to t. The cone of u1 consists
of u1 plus the component of P \ {u1} that does not contain
t. For any i > 1, Cui consists of the subpath of truth-tellers
between ui−1 and ui, plus ui. It follows that, on the path,
a r-box containing k′ ≥ 1 liars {u′1, · · · , u′k′} consists of a
subpath P ′ = {v1 · · · , vp}, such that the neighbors of v1

and vp not in P ′ are truth-tellers, u′1 = v2r+1, u′k′ = vp−r−1,
and for any 1 < i < k′, u′i is between u′i−1 and u′i+1, and
for any 1 ≤ i < k′, d(ui, ui+1) ≤ 2r. In particular, a r-box
containing k′ liars is a subpath of length at least 3r+ 1, and
at most (2k′ + 1)r + k′.

Lemma 3 (Inside a box). Let L = Ω(k′3), c ≥ 1, and
r =
√

2cL log k. Let us assume that event Cc log k always oc-
curs. Given a r-box B of k′ ≤ k liars, the agent, initially lo-
cated within any node of B, leaves the box after O(k′2

√
c log k)

expected rounds of Algorithm R/A[L,L] in the direction of
the target. The exit time is O(max{c log k, k′2

√
c log k}) with

probability 1− 2/k′c.

Proof. First, let us make some easy remarks.

• If, at the end of a phase A, the mobile agent still stands
in B, then it is on a liar u or on the neighbor of u in
its cone (indeed, in this case, at the end of phase A,
the agent oscillates between these two nodes).

• Condition on event Cc log k, either the agent exits from
the box in the direction of the target or stay within
the box. Once the agent is outside the box after one
phase R, during phase A, it increases its distance from
B of at least r + 1 (the distance minimum to the first
liar of the next box) and at most L (if no liars are
encountered).

Now, we prove that the gain during i rounds is very close
to the lower bound of its expectation E(iX) ≥ i(

√
L/40k′ −

1) obtained in Lemma 2 (note that, at each round starting
in some vertex u of the box, Bu(r) contains at most k′ liars,
and thus Lemma 2 applies). More formally, let X[i] (resp.
XR[i] and XA[i]) be the gain obtained during the first i-
th rounds of algorithm R/A (resp. phase R and phase A)
within the box. By definition, X[0] = 0 and as soon as
X[i] > (2k′ + 1)r + k′, the agent exits from the box.

Due to the Cc log k assumption, |XR[i]| ≤
p

2c(iL) log k)
since the i-th iteration of phases R of length L can be seen
as one iteration of phase R of lenght iL. Hence, X[i] =

XA[i]+XR[i] ≥ XA[i]−
p

2c(iL) log k. So as soon as XA[i] ≥p
2c(iL) log k + ((2k′ + 1)r + k′) with high probability, the

agent exits from the box.
In order to get an upper bound on the exit time from the

box, we define another random variable YA.

YA = −k′ with probability pmaxk
′

=

√
2L

k′
− 1 with probability

√
2Lpmin(1− 2/e)

= 0 otherwise

From Lemma 2, XA ≥ YA, i.e., for any m, Pr(XA ≥ m) ≥
Pr(YA ≥ m).

It follows that E(YA) ≥
√
L/40k′ − 1 = Θ(

√
L
k′). We note

YA[i] the sum of YA’s on i iterations. Since, the iterations of

YA are independent, E(YA[i]) = Θ(i
√
L
k′). Using Hoeffding

bound, we have:

Pr (|YA[i]− E(YA[i])| ≥ δE(YA[i])) ≤

2 exp

„
− 2 δ2E(YA[i])2

i(k′ +
√
L/k′ − 1)2

«
.

By taking δ = 1/2, we get that YA[i] ≥ i
√
L

80k′ with proba-
bility at least

1−2 exp
“
− iL

2·402(k′2+
√
L−k′)2

”
≈ 1−2 exp

`
− i

2·402

´
. Hence,

as soon as i ≥ c log k, we get that XA[i] ≥ YA[i] = Θ(i
√
L
k′)

with probability at least 1−2k−c. Finally, for i = Ω(k′2 log k),

we get that Θ(i
√
L
k′) = Ω(

p
2c(iL) log k + ((2k′ + 1)r + k′)).

To conclude, as soon as i = Ω(k′2 log k), we get that

XA[i] − ((2k′ + 1)r + k′) ≥ |XR[i]| ≥
p

2c(iL) log k with
probability at least 1−2k′−c. Hence, X[i] ≥ ((2k′+1)r+k′)
and the mobile agent leaves the box with high probability.
By remark above, it will never go back inside.

Lemma 4 (Outside the box). Assume that the agent
stays outside of any box during one iteration. With probabil-
ity 1, X = d(u0, t)− d(vL, t) ≥ 0 and E(X) = L. Moreover,
given event Cc log k, X ≥ L−

√
2Lc log k

Proof. Since the agent stays outside a box, it implies
that it only encounters truth-tellers during L steps of phase
A. Since XR ≥ −L with probability one, we have X = XA+
XR ≥ 0 and E(X) = E(XA) + E(XR) = L + 0. Moreover,
given Cc log k, XR ≥ −

√
2Lc log k

Theorem 1. Assuming the knowledge of k, if L > 32k3,
Algorithm R/A finds the target within 2d+O(Lk2 log k)+o(d)
steps with probability 1−Θ(1/kc−3).

Proof. Let us decompose the unique path into sequence
of safe area and r-boxes with r =

√
2cL log k. We just fo-

cus on the set of boxes that are between s and t. Boxes
B1, . . . ,Bi are ordered by the distance toward the target,
that is B1 is closer to t than B2 and so on.

The proof is based on one property: conditioning on Cc log k,
once the mobile agent exits from a box B, it will never come
back to B with high probability. Then Lemmas 3 and 4 will
be applied to compute exactly the amount of steps to cross
the safe area and boxes.

Let ki be the number of liars in box Bi. By definition,
k ≥

P
ki. By definition, the total number of vertices of the

boxes is less from
P

2kir ≤ 2kr and the expected number
of iterations to cross all of them is less that

P
O(k2

i log k) =
O(k2 log k). In our analysis, the event Cc log k is assumed
within the boxes and the first round R after exiting a box.
The probability to have this event during Θ(k2 log k) itera-
tions is greater than 1− 2/kc−3.

To traverse a safe area of length larger than L, event
Cc log k is not required. Once the distance decreases by L
units in a safe area, the agent is unable to come back to a
already visited box.

By construction, the agent exits from a box during a phase
R. During the next phase A, either it reaches the next box
in one iteration or it stays in a safe area. In this last case,
the distance can not increase and decreases by L units on
expectation. From Lemma 4, we know that the gain in the
next iteration is non-negative with probability 1.

Since the safe areas between s and t have at most d =
d(s, t) vertices, it takes 2d/L iterations on average to tra-
verse them and, from Lemma 1, 2d/L + o(d/L) iterations
with probability 1− 2k−c. We just have to add at most 2k
extra iterations for the transitions between safe areas and
boxes. The total number of iterations is at most 2d/L +
O(k2 log k) + o(d/L) with probability 1−Θ(k−c+3).

To conclude this section, we prove that the knowledge of
k is not necessary to achieve the same performance as the
one of Theorem 1.

Theorem 2. The iterated execution of Algorithm R/A[Li =
23i, Li], with parameter i starting at i = 0 and increasing by
one unit every ti = i · 22i phases, finds the target within
2d+O(k5 log k) + o(d) steps with probability 1−Θ(1/kc−3),
without assuming knowledge of k.

Proof. Whenever the number of iterations (2d/L on av-
erage) required to cross safe areas is larger than the ones to
traverse the boxes of liars (roughly 40k2√log k iterations),
the time to reach the target is dominated by the time of
traversal of the safe areas.

For i = 5/3 + log2 k, the i-th execution of the proposed
algorithm corresponds to the execution of R/A[L,L], with

L = 25/3+log2 k = 32k3 during O(i · 22i) = O(k2 log k) iter-
ations. According to Theorem 1, this finds the target with
probability 1−Θ(1/kc−3).

Now, the total number of steps of the proposed algorithm
until it terminates its (5/3 + log2 k)th iteration is

O(

5/3+log2 kX
i=1

Liti) = O(

5/3+log2 kX
i=1

23i ·i ·22i) = O(

log2 kX
i=1

i ·(25)i)

= O(25 log2 k log k) = O(k5 log k)

Either the target is reached during these steps

(d <
32·40·k5

√
log2 k

2
) or the agent spend more time in the safe

areas and the target is reached within 2d+ o(d) steps.

3. SEARCHING IN RANDOM ∆-REGULAR
GRAPHS

3.1 Preliminaries: Properties of Random ∆-
regular graphs

A particular class of graphs with powerful expansion prop-
erties is that of random ∆-regular graphs. A random ∆-
regular graph Gn,∆ is an element of G(n,∆), the set of ∆-
regular graphs with n nodes viewed as a probability space
with uniform probability [24]. It is well known that a ran-
dom regular graph does not have the same properties as
those of the standard random graphs model, namely the
Erdős-Rényi random graphs G′n,p with parameter p 1, even
when the parameter p is chosen so that both graphs have
the same expected number of edges (p = ∆/n). For ∆ =
o(logn), Gn,∆ is connected asymptotically almost surely (a.a.s.),
whereas this is not the case for G′n,∆/n. Random ∆-regular
graphs were proved to be very powerful expanders, a.a.s. [34,
18]. Moreover, there exists a quick randomized algorithm for
generating such graphs [34].

We recall here some properties of random ∆-regular graphs
that will be useful in the paper.

Lemma 5 (diameter [7]). There exists a constant D
such that the diameter of Gn,∆ a.a.s. satisfies the relation
| diamGn,∆−(log∆-1 n+ log∆-1 logn)| < D.

Lemma 6 (tree-like neighbourhood [32, 11]). There
exists a constant c > 0, the subgraph induced by Bu(c logn)
is a.a.s. a tree.

Lemma 7 (mixing time [16, 10]). For any starting node
u of Gn,∆ and after following a random walk of Mn,∆ =

8 logn
log(∆/4)

steps, for every node v, the probability that the

walk ends at v is at least 1/n− 1/n3.

This last lemma implies that we will restrict considera-
tions to the case ∆ > 4 in the following discussion.

3.2 Upper Bounds
Before discussing the behavior of the R/A algorithm for

random regular graphs, we introduce a new algorithm called
R/A/E (Algorithm 2). Algorithm R/A/E is formulated in a
way which assumes that we have knowledge of the port by
which we entered each node in order to locally explore a ball
in the exploration phase. Then, we show how to apply an
analogous analysis to the R/A algorithm, for an agent with
no knowledge of inbound ports.

The values of parameters tR, (resp. tA and rE), which are
used for determining the duration of phase R (resp. A and
E), are all set deterministically a priori and will be described
later.

Let r1 = log∆-1 n− 1, let r2 = log∆-1 n+ log∆-1 logn+D,
where D is the constant from Lemma 5, and let the target t
be an arbitrarily chosen node in graph G ∈ Gn,∆.
1In the Erdős-Rényi model, a random graph is built in the
following way: for any pair of nodes, flip a biased coin and
it exists an edge between these two nodes with probability
p

Algorithm 2 Algorithm R/A/E with parameters tR, tA, rE .

Algorithm R/A/E [tR, tA, rE]: Repeat the following sequence
of three phases until the target is reached:

1. Random phase (R): the mobile agent performs a pure
unbiased random walk for tR steps;

2. Advice phase (A): the mobile agent follows the advice
for tA steps;

3. Exploration phase (E): the mobile agent explores lo-
cally, that is, visits all the nodes at distance up to a
given radius rE from its location at the start of the
phase.

Theorem 3. For a graph G ∈ Gn,∆, the R/A/E algorithm
with parameters: tR = Mn,∆, tA = r1 − log∆-1 k, and rE =
log∆-1 k + (r2 − r1), completes any search in expected time
O(k logn), a.a.s.

Proof. We will call an execution of three successive phases
(random walk, advice, exploration) an iteration of the algo-
rithm. The number of steps within each iteration is deter-
ministically bounded by the sum of the durations of its three
phases:

tR+tA+O((∆–1)rE) = O(log∆-1 n)+O(log∆-1 n)+O(k logn)

= O(k logn).

To achieve O(k logn) expected search time, it now suffices
to prove that the probability of locating the target in any
iteration is Θ(1).

First, observe that regardless of the initial location of the
agent, after completion of the random walk (R) phase, the
agent is located at any node s of the graph with probability
at least 1/n−O(1/n3) by the definition of the mixing time
Mn,∆. We remark that by Lemma 5, the distance between
s and the target t is bounded by d(s, t) ≤ diam(G) < r2,
a.a.s.

The proof is completed by showing that if indeed d(s, t) <
r2, then the probability of locating the target in any iteration
of algorithm R/A/E is Θ(1). Let κ denote the random vari-
able describing the number of liars encountered by the agent
during the advice (A) phase. Let s′ be the location of the
agent at the end of the advice phase. Observe that if κ = 0,
then either the target is reached in the advice phase, or in
each of the tA steps of the advice phase, the agent moves
towards the target by a distance of 1, and consequently:

d(s′, t) = d(s, t)− tA ≤ r2 − (r1 − log∆-1 k) = rE .

Then, the target will be reached in the exploration (E) phase.
So, it suffices to show that the event κ = 0 occurs with
probability Θ(1). Observe that a sufficient condition for
this event to occur is that the neighborhood Ns(tA) does
not contain any liars, or equivalently, that we have s ∈ V \S
l∈LNl(tA), where L ⊆ V is the set of liars. Since the

graph is of maximum degree ∆, we have for any node l:

|Nl(tA)| ≤ (∆–1)tA ≤ 1

k
(∆–1)r1 ≤ n

2k
.

So, |
S
l∈LNl(tA)| ≤ |L| n

2k
= n

2
, and |V \

S
l∈LNl(tA)| ≥ n

2
.

Recall that s is chosen as any node from V with probability
1/n−O(1/n3), hence the event s ∈ V \

S
l∈LNl(tA) occurs

with probability (n/2)(1/n − O(1/n3)) = 1/2 − O(1/n2) =
Θ(1), which completes the proof.

Theorem 4. For a graph G ∈ Gn,∆, the R/A algorithm
with parameters: tR = Mn,∆ + log∆-1 k + (r2 − r1) and
tA = r1 − log∆-1 k, completes any search in expected time
O(k2 log2 n), a.a.s.

Proof. Observe that the only difference between algo-
rithms R/A/E[Mn,∆, r1− log∆-1 k, rE] and R/A[Mn,∆ + rE ,
r1 − log∆-1 k], where rE = log∆-1 k + (r2 − r1), is that the
exploration phase up to a radius of rE in algorithm R/A/E
has been replaced by a pure unbiased random walk of rE
steps at the start of the random phase of the next iteration
of algorithm R/A. Observe that if node t is reached from
node s′ by exploration up to depth rE , then d(s′, t) ≤ rE ,
and so the probability that t is reached by a random walk
of rE steps starting from s′ is at least 1

(∆−1)rE = Ω(1
k logn

).

If the success probability of an iteration of algorithm R/A/E
is denoted as p, then the success probability of two consecu-
tive iterations of R/A is Ω(p

k logn
). Recalling from the proof

of Theorem 3 that p = Θ(1), we have that in expectation,
after O(k logn) iterations of algorithm R/A, the target is
found. Since the duration of each iteration is O(k logn),
this completes the proof.

We now show that by appropriately setting the number
of phases in each iteration, it is possible to apply Algorithm
R/A to the searching problem without knowledge of n or k.
We start by proving the following lemma.

Lemma 8. Let L1 = log∆-1 n − log∆-1 k − 1 and L2 = k.
Then, for any fixed integer c, the target is located with prob-
ability 1− 1/2Ω(c) during the execution of ck logn iterations
of Algorithm R/A[100L1, L1] and ck logn iterations of Algo-
rithm R/A[100L2, L2], a.a.s.

Proof. We consider two cases. If k ≥
√
n, then a sin-

gle iteration of R/A[100L2, L2] includes a random phase
of length 100k ≥ 100

√
n. By the properties of random

regular graphs [10], a random walk of this length reaches
the target t with probability at least Θ(1√

n logn
). After

ck logn ≥ c
√
n logn iterations of R/A[100L2, L2], the prob-

ability of reaching the target is 1− 1/2Ω(c).
If k <

√
n, then we have 100L1 = 100(log∆-1 n−log∆-1 k−

1) > 50 log∆-1 n−100 > 8 logn
log(∆/4)

= Mn,∆, for all ∆ ≥ 5 and

sufficiently large n. Since increasing the duration of the ran-
dom phase does not affect the correctness of the reasoning
in the proof of Theorem 4, we obtain that 2 consecutive it-
erations of R/A[100L1, L1] reach the target with probability
Θ(1

k logn
). Hence, after ck logn iterations of R/A[100L1, L1],

the probability of reaching the target is 1− 1/2Ω(c).

Theorem 5. Consider an execution of Algorithm R/A[100i, i]
which consists of stages numbered with successive integers
j = 1, 2, 3, . . ., and the j-th stage includes exactly one it-
eration of the algorithm with the iteration length parameter
set to i, for all i = 1, 2, . . . , j. The target is located within
O(c3 · k3 log3 n) steps with probability 1 − 1/2Ω(c), a.a.s.,
without assuming the knowledge of k or n.

Proof. Once the j-th stage of the algorithm, where j =
2ck logn, has been completed, at least ck logn iterations of
the algorithm have been performed with parameter values
R/A[100L1, L1] and R/A[100L2, L2] from Lemma 8 (since

L1, L2 ≤ ck logn). Hence, by Lemma 8, the target has been

located with probability 1− 1/2Ω(c). It suffices to note that
the j-th stage is completed within Θ(j2) phases, or equiva-
lently within Θ(j3) = Θ(c3 · k3 log3 n) steps.

3.3 Lower Bound
Before proving the main theorem, we put forward a lower

bound for a search scenario in a tree, which is a modifica-
tion of the formulation of the known lower bound for trees
from [20].

Proposition 1. Let T = (VT , ET) be a complete (∆–1)-
ary tree having l levels with a root at node s, let a (1 ≤ a ≤ l)
be a known value, and let t be a target node chosen uniformly
at random from the set of nodes of T such that d(s, t) = a.
Assume that for all nodes of T , the advice is directed towards
s, and the direction of the advice of s is arbitrarily chosen.
Then in expectation any search strategy requires Ω((∆–1)a)
steps to reach target t from source s.

Proof. The distribution of the advice in the given tree
is independent of the location of the target t. Hence, the
expected search time from s to t cannot be improved with
respect to strategies in a model with no advice.

Theorem 6. For a graph G ∈ Gn,∆, with k liars and
source-target distance d, any search strategy requires
Ω(min{(∆–1)k, (∆–1)d, log∆-1 n}) steps in expectation, a.a.s.

Proof. Let us denote r = b c
2

log∆-1 nc, where c is the
constant from Lemma 6. The number of required steps is
not less than the source-target distance, and so, if d ≥ r,
since r = Ω(log∆-1 n), the claim clearly holds. We can thus
assume that d < r.

Consider a searching process in which the source vertex s
is such that Bs(2r) is a complete (∆–1)-tree (such a vertex
can be found a.a.s. by Lemma 6), and let the target vertex
t be chosen uniformly at random subject to the constraint
d(s, t) = d. Since Bs(d) is a (∆–1)-tree, there exists a unique
shortest path P of length d between s and t inG. If k < d−1,
let the k nodes of path P which are closest to s be liars,
whose advice is directed along path P to vertex s. If k ≥ d,
let all vertices of P (excluding s and t) be likewise defined
as liars, and place the remaining liars at arbitrary nodes of
G outside Ns(2r).

Observe that, for any v ∈ Ns(r), we have d(v, t) ≤ d(v, s)+
d(s, t) ≤ 2r, and a path of length at most 2r connects v and
t in Bs(r). This path is the unique shortest path connecting
v and t in G, since otherwise there would have to be another
path in G of length at most 2r connecting v with t and the
tree Bs(2r) would contain a cycle, a contradiction. We will
say that a node v ∈ V gives useless advice if the following
conditions are fulfilled: v ∈ Ns(r), v 6= t, and v directs the
agent along the path in the tree Bs(2r) leading from v to s.
Since for all v ∈ Ns(r) \ P , the unique shortest path from v
to t in G leads via s, we obtain that all nodes v ∈ Ns(r) \P
give useless advice. Moreover, all of the liars located on path
P give useless advice by construction of the set of advice for
liars.

To complete the proof, we will consider two possibilities:

• The search strategy reaches the target t, visiting only
nodes which give useless advice. Then, until t is dis-
covered, the visited subgraph must be a subtree of
Bs(r). The searching time for t is the same as in a

corresponding set-up for the complete (∆–1)-ary tree
with useless advice, and by Proposition 1, we obtain
that in expectation the number of required steps is
Ω((∆–1)d(s,t)) = Ω((∆–1)d).

• Some of the nodes encountered in the search do not
give useless advice. Let v be the first such encountered
node. If v /∈ Ns(r), then d(s, v) > r, so the search
process takes Ω(r) = Ω(log∆-1 n) steps. Otherwise,
the search process before encountering node v must be
confined to the tree Ns(r), and node v must lie on the
path P . Node v is necessarily the node of P located
closest to s which is not a liar, i.e., d(s, v) = k + 1.
By applying Proposition 1 analogously as before, we
have that the number of steps of the search which are
performed in expectation before reaching v is at least
Ω((∆–1)d(s,v)) = Ω((∆–1)k).

The claimed bound is the minimum of the obtained bounds,
taken over the considered cases.

4. CONCLUSIONS
We have shown that there exists a simple, generic search-

ing strategy which, for network topologies such as the path
(and ring) or random regular graphs, allows an anonymous
agent to locate the target efficiently. The number of moves
is polynomial in the number of faults which appear in the
network. The proposed R/A strategy is based on alternat-
ing phases in which the agent follows advice and performs a
random walk. The precise duration of the phases has to be
fine-tuned, depending on the graph class in which the search
is performed (Theorems 2 and 4). As a matter of fact, by
a minor modification to the proofs, it is possible to select
a phase duration which gives good results for both of the
specific graph classes studied in this paper.

The persistent memory of the agent following the R/A
strategy is limited to a timer which counts the number of
performed steps. Somewhat surprisingly, the memory re-
quirement cannot be decreased to 0 without affecting the
performance of the algorithm even on the path.

It is natural to ask if the proposed R/A strategy or its vari-
ants may be applied to other graph classes, with a searching
time polynomial in the number of liars and the distance to
the target. Whereas the approach applied for paths in Sec-
tion 2 generalizes e.g. to some cases of 2-dimensional grids,
we leave this question open, e.g., for the much wider class
of graphs of bounded doubling dimension.

5. ACKNOWLEDGMENTS
Works of N. Hanusse and D. Ilcinkas are partially sup-

ported by ANR ALADDIN and N. Nisse is partially sup-
ported by ANRs AGAPE and DIMAGREEN. These three
authors are partially supported by the DCR project.

6. REFERENCES
[1] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and

C. Rackoff. Random walks, universal traversal
sequences, and the complexity of maze problems. In
Proc. of the 20th Symp. on Foundations of Comp. Sc.
(FOCS), pages 218–223, 1979.

[2] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and
C. Rackoff. Random walks, universal traversal

sequences and the complexity of maze problems. In
Proc. 20th FOCS, pages 218–223, 1979.

[3] O. Amini, F. Giroire, F. Huc, and S. Pérennes.
Minimal selectors and fault tolerant networks.
Networks. to appear.

[4] Y. Azar, A. Z. Broder, A. R. Karlin, N. Linial, and
S. Phillips. Biased random walks. Combinatorica,
16(1):1–18, 1996.

[5] R. Baeza-Yates, J. Culberson, and G. Rawlins.
Searching in the plane. Information and Computation,
106:234–252, 1993.

[6] R. Beraldi. Biased random walks in uniform wireless
networks. IEEE Trans. Mob. Comput., 8(4):500–513,
2009.

[7] B. Bollobás and W. F. de la Vega. The diameter of
random regular graphs. Combinatorica, 2(2):125–134,
1982.

[8] V. Bourassa and F. Holt. Swan: Small-world wide
area networks. In Proceedings of International
Conference on Advances in Infrastructure, 2003.

[9] C. Cooper, M. E. Dyer, and C. S. Greenhill. Sampling
regular graphs and a peer-to-peer network.
Combinatorics, Probability & Computing,
16(4):557–593, 2007.

[10] C. Cooper and A. Frieze. The cover time of random
regular graphs. SIAM J. Discret. Math.,
18(4):728–740, 2005.

[11] C. Cooper, A. Frieze, and T. Radzik. Multiple random
walks in random regular graphs. Technical report,
Dept. Mathematical Sciences of Carnegie Mellon,
2008.

[12] P. Flocchini, B. Mans, and N. Santoro. Sense of
direction: Definitions, properties, and classes.
Networks, 32(3):165–180, 1998.

[13] P. Flocchini, B. Mans, and N. Santoro. Sense of
direction in distributed computing. Theor. Comput.
Sci., 291(1), 2003.

[14] P. Flocchini, A. Roncato, and N. Santoro. Computing
on anonymous networks with sense of direction.
Theor. Comput. Sci., 1-3(301):355–379, 2003.

[15] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and
D. Peleg. Graph exploration by a finite automaton.
Theor. Comput. Sci., 345(2-3):331–344, 2005.

[16] J. Friedman. A proof of alon’s second eigenvalue
conjecture. In STOC, pages 720–724. ACM, 2003.

[17] A. M. Frieze. Edge-disjoint paths in expander graphs.
SIAM J. Comput., 30(6):1790–1801, 2000.

[18] C. S. Greenhill, F. B. Holt, and N. C. Wormald.
Expansion properties of a random regular graph after
random vertex deletions. Eur. J. Comb.,
29(5):1139–1150, 2008.

[19] N. Hanusse, D. Ilcinkas, A. Kosowski, and N. Nisse.
How to beat the random walk when you have a clock?
Research Report 7210, INRIA, Feb. 2010.
http://hal.inria.fr/inria-00458808/PDF/RR-7210.pdf.

[20] N. Hanusse, D. J. Kavvadias, E. Kranakis, and
D. Krizanc. Memoryless search algorithms in a
network with faulty advice. Theor. Comput. Sci.,
402(2-3):190–198, 2008.

[21] N. Hanusse, E. Kranakis, and D. Krizanc. Searching

with mobile agents in networks with liars. Discrete
Applied Mathematics, 137:69–85, 2004.

[22] S. Hoory, N. Linial, and A. Wigderson. Expander
graphs and their applications. Bulletin of the
American Mathematical Society, 43(4):439–561, 2006.

[23] S. Ikeda, I. Kubo, N. Okumoto, and M. Yamashita.
Impact of local topological information on random
walks on finite graphs. In J. C. M. Baeten, J. K.
Lenstra, J. Parrow, and G. J. Woeginger, editors,
ICALP, volume 2719 of Lecture Notes in Computer
Science, pages 1054–1067. Springer, 2003.

[24] S. Janson, A. Ruciński, and T. Luczak. Random
Graphs. Wiley-Interscience, 2000.

[25] A. Kaporis, L. M. Kirousis, E. Kranakis, D. Krizanc,
Y. Stamatiou, and E. Stavropoulos. Locating
information with uncertainty in fully interconnected
networks with applications to world wide web
retrieval. Computer Journal, 44:221–229, 2001.

[26] A. R. Karlin and P. Raghavan. Random walks and
undirected graph connectivity: A survey. In Discrete
Probability and Algorithms, volume 72, pages 95–101.
Institute for Mathematics and Its Applications, 1995.

[27] L. M. Kirousis, E. Kranakis, D. Krizanc, and
Y. Stamatiou. Locating information with uncertainty
in fully interconnected networks. Networks,
42:169–180, 2003.

[28] J. M. Kleinberg and R. Rubinfeld. Short paths in
expander graphs. In FOCS, pages 86–95, 1996.

[29] M. Koucký. Universal traversal sequences with
backtracking. J. Comput. Syst. Sci., 65(4):717–726,
2002.

[30] E. Kranakis and D. Krizanc. Searching with
uncertainty. In Proc. SIROCCO’99,, pages 194–203,
1999.

[31] L. Lovász. Random walks on graphs: A survey.
Combinatorics, pages 1–46, 1993.

[32] E. Makover and J. McGowan. Regular trees in random
regular graphs. Technical report, arxiv, 2008.

[33] S. E. Nikoletseas, K. V. Palem, P. G. Spirakis, and
M. Yung. Short vertex disjoint paths and
multiconnectivity in random graphs: Reliable network
computing. In Proceedings of the 21st International
Colloquium on Automata, Languages and
Programming (ICALP), pages 508–519, 1994.

[34] S. E. Nikoletseas and P. G. Spirakis. Expander
properties in random regular graphs with edge faults.
In STACS, pages 421–432, 1995.

[35] O. Reingold. Undirected connectivity in log-space. J.
ACM, 55(4), 2008.

[36] M. E. Saks. Randomization and derandomization in
space bounded computation. In IEEE Conference on
Computational Complexity, pages 128–149, 1996.

