
Exploration of the T -Interval-Connected
Dynamic Graphs: the Case of the Ring

David Ilcinkas? and Ahmed Mouhamadou Wade?

LaBRI, CNRS & Bordeaux University
{ilcinkas,wade}@labri.fr

Abstract. In this paper, we study the T -interval-connected dynamic
graphs from the point of view of the time necessary and sufficient for
their exploration by a mobile entity (agent). A dynamic graph (more
precisely, an evolving graph) is T -interval-connected (T ≥ 1) if, for every
window of T consecutive time steps, there exists a connected spanning
subgraph that is stable (always present) during this period. This property
of connection stability over time was introduced by Kuhn, Lynch and
Oshman [6] (STOC 2010). We focus on the case when the underlying
graph is a ring of size n, and we show that the worst-case time complexity
for the exploration problem is 2n − T − Θ(1) time units if the agent
knows the dynamics of the graph, and n+ n

max{1,T−1} (δ−1)±Θ(δ) time
units otherwise, where δ is the maximum time between two successive
appearances of an edge.
Keywords: Exploration, Dynamic graphs, Mobile agent, T-interval-connectivity

1 Introduction

Partly due to the very important increase of the number of communicating ob-
jects that we observe today, the distributed computing systems are becoming
more and more dynamic. The computational models for static networks are
clearly not sufficient anymore to capture the behavior of these new communi-
cation networks. In fact, even the computational models that take into account
a certain degree of fault tolerance become insufficient for some very dynamic
networks. Indeed, the classical models of fault tolerance either assume that the
frequency of fault occurrences is small, which gives enough time to the algorithm
to adapt to the changes, or that the system stabilizes after a certain amount of
time (as in the self-stabilizing systems for example). Therefore, in the last decade
or so, many more or less equivalent models have been developed that take into
account the extreme dynamism of some communication networks. An interested
reader will find in [1] a very complete overview of the different models and studies
of dynamic graphs (see also [7]).

One of the first developed models, and also one of the most standard, is
the model of evolving graphs [3]. To simplify, given a static graph G, called

? Partially supported by the ANR project DISPLEXITY (ANR-11-BS02-014), the
INRIA project CEPAGE, and the European project EULER.

the underlying graph, an evolving graph based on G is a (possibly infinite)
sequence of spanning but not necessarily connected subgraphs of G (see Section 2
for precise definitions). This model is particularly well adapted for modeling
dynamic synchronous networks.

In all its generality, the model of evolving graphs allows to consider an ex-
tremely varied set of dynamic networks. Therefore, to obtain interesting results,
it is often required to make assumptions that reduce the possibilities of dynamic
graphs generated by the model. One example is the assumption of connectivity
over time, which states that there is a journey (path over time) from any vertex
to any other vertex. Another example is the assumption of constant connectiv-
ity, for which the graph must be connected at all times. This latter assumption,
which is very usual, has been recently generalized in a paper by Kuhn, Lynch and
Oshman [6] by the notion of T -interval-connectivity. Roughly speaking, given an
integer T ≥ 1, a dynamic graph is T -interval-connected if, for any window of
T consecutive time steps, there exists a connected spanning subgraph which is
stable throughout the period. (The notion of constant connectivity is thus equiv-
alent to the notion of 1-interval-connectivity). This new notion, which captures
the connection stability over time, allows the finding of interesting results: the
T -interval-connectivity allows to reduce by a factor of about Θ(T) the number
of messages that is necessary and sufficient to perform a complete exchange of
information between all the vertices [2, 6] (gossip problem).

In this paper, we carry on the study of these T -interval-connected dynamic
graphs by considering the problem of exploration. A mobile entity (called agent),
moving from node to node along the edges of a dynamic graph, must tra-
verse/visit each of its vertices at least once (the traversal of an edge takes one
time unit). This fundamental problem in distributed computing by mobile agents
has been widely studied in static graphs since the seminal paper by Claude
Shannon [8]. As far as highly dynamic graphs are concerned, only the case of
periodically-varying graphs has been studied [4, 5]. We focus here on the (worst-
case) time complexity of this problem, namely the number of time units used by
the agent to solve the problem in the T -interval-connected dynamic graphs. The
problem of exploration, in addition to its theoretical interests, can be applied
for instance to the network maintenance, where a mobile agent has to control
the proper functioning of each vertex of the graph.

We consider the problem in two scenarios. In the first one, the agent knows
entirely and exactly the dynamic graph it has to explore. This situation cor-
responds to predictable dynamic networks such as transportation networks for
example. In the second scenario, the agent does not know the dynamics of the
graph, that is the times of appearance and disappearance of the edges. This case
typically corresponds to networks whose changes are related to frequent and
unpredictable failures. In this second scenario, Kuhn, Lynch and Oshman [6]
noted that the exploration problem is impossible to solve under the single as-
sumption of 1-interval-connectivity. In fact, it is quite easy to convince oneself
that by adding the assumption that each edge of the underlying graph must
appear infinitely often, the exploration problem becomes possible, but the time

2

complexity remains unbounded. In this article, and only for the second scenario,
we therefore add the assumption of δ-recurrence, for some integer δ ≥ 1: each
edge of the underlying graph appears at least once every δ time units.

It turns out that the problem of exploration is much more complex in dynamic
graphs than in static graphs. Indeed, let us consider for example the first sce-
nario (known dynamic graph). The worst-case exploration time of n-node static
graphs is clearly in Θ(n) (worst case 2n − 3). On the other hand, the worst-
case exploration time of n-node (1-interval-connected) dynamic graphs remains
largely unknown. No lower bound better than the static bound is known, while
the best known upper bound is quadratic, and directly follows from the fact that
the temporal diameter of these graphs is bounded by n. Therefore, we focus here
on the study of T -interval-connected dynamic graphs whose underlying graph is
a ring. Note that, in this particular case, the T -interval-connectivity property,
for T ≥ 1, implies that at most one edge can be absent at a given time.

Our results. We determine in this paper the exact time complexity of the ex-
ploration problem for the n-node T -interval-connected dynamic graphs based on
the ring, when the agent knows the dynamics of the graph. This is essentially
2n−T − 1 time units (see Section 3 for details). When the agent does not know
the dynamics of the graph, we add the assumption of δ-recurrence, and we show
that the complexity increases to n + n

max{1,T−1} (δ − 1) ± Θ(δ) time units (see

Section 4 for details).

2 Model and definitions

This section gives the precise definitions of the concepts and models informally
mentioned in the introduction. Some definitions are similar or even identical to
the definitions given in [6].

Definition 1 (Dynamic graph). A dynamic graph is a pair G = (V, E), where
V is a static set of n vertices, and E is a function which maps to every integer
i ≥ 0 a set E(i) of undirected edges on V .

Definition 2 (Underlying graph). Given a dynamic graph G = (V, E), the
static graph G = (V,

⋃∞
i=0 E(i)) is called the underlying graph of G. Conversely,

the dynamic graph G is said to be based on the static graph G.

In this article, we consider the dynamic graphs based on the n-node ring,
denoted Cn.

Definition 3 (T -interval-connectivity). A dynamic graph G = (V, E) is T -
interval-connected, for an integer T ≥ 1, if for every integer i ≥ 0, the static
graph G[i,i+T [= (V,

⋂i+T−1
j=i E(j)) is connected.

Definition 4 (δ-recurrence). A dynamic graph is δ-recurrent if every edge of
the underlying graph is present at least once every δ time steps.

3

A mobile entity, called agent, operates on these dynamic graphs. The agent
can traverse at most one edge per time unit. It may also stay at the current node
(typically to wait for an incident edge to appear). We say that an agent explores
the dynamic graph if and only if it visits all the nodes.

3 The agent knows the dynamics of the graph

In this section, we assume that the agent perfectly knows the dynamic graph to
be explored.

3.1 Upper bound

The following theorem shows that the worst-case exploration time is actually
small, bounded by 2n, when the underlying graph is a ring. Furthermore, it
shows that the agent can benefit from the T -interval-connectivity to spare an
additive term T . Note that our upper bound is constructive.

Before proceeding with the formal theorem and its proof, let us informally
describe the key ingredients of the proof of the most general case.

We consider two algorithms, being the algorithms always going in the clock-
wise, resp. counter-clockwise, direction, traversing edges as soon as the dynamic
graph allows it. At the beginning of the process, the agents try to traverse dis-
tinct edges and thus, at each time step, at least one of them progresses. During
this phase, the average speed of the two agents is thus 1/2 (edge traversals per
time unit). However, when the agents are about to meet each other (thus after
time at most n), their progression can be stopped by the absence of a unique
edge e.

If this edge e is absent for at least n − 1 time steps, then any agent has
enough time to change its direction and to explore all the nodes of the graph in
the other direction, hence completing exploration within 2n steps.

If the edge e does not stay absent long enough and reappears at time t, we
modify the two algorithms as follows. The agent previously progressing in the
clockwise, resp. counter-clockwise, direction, starts now by exploring the ring
in the opposite direction, before going back in the usual direction the latest
possible so that it reaches the edge e at time at most t. At time t, the two
modified algorithms cross each other, and then continue their progression in
their usual direction until one of them terminates the exploration. Note that,
after time t, we have again the property that, at each time step, at least one
agent progresses.

Globally, except during the period when e is absent, the average speed of
the two agents is 1/2. Besides, the modification of the algorithms allows each of
the agent to explore an additional part of the ring. Unfortunately, these parts
of the ring are traversed twice instead of once. Nevertheless, intuitively, the
speed of both the modified agents is 1 during the period when e is absent. This
compensates the loss induced by traversing twice some parts of the ring. Overall,

4

the average speed is thus globally of at least 1/2, which implies that at least one
of the two modified agents performs exploration within time 2n.

When the dynamic graph is T -interval connected, all edges must be present
during T − 1 steps between the removal of two different edges. This fact is used
to gain an additive term of T − 1 on the exploration time, yielding to a time of
roughly 2n−T . A much more precise analysis of the modified algorithms allows
us to obtain the exact claimed bounds.

Theorem 1. For every integers n ≥ 3 and T ≥ 1, and for every T -interval-
connected dynamic graph based on Cn, there exists an agent (algorithm) exploring
this dynamic graph in time at most

2n− 3 if T = 1

2n− T − 1 if 2 ≤ T < (n+ 1)/2⌊ 3(n−1)
2

⌋
if T ≥ (n+ 1)/2

Proof. Fix n ≥ 3 and an arbitrary dynamic graph based on the ring Cn. Let
v0, v1, · · · , vn−1 be the vertices of Cn in clockwise order. Assume that the agent
starts exploration from v0 at time 0. In order to prove this theorem, we will
describe various algorithms, and we will show that at least one of them will
allow the agent to perform exploration within the claimed time bound. Let T
be this bound.

First assume that at most one edge e is absent during the time interval [0, T).
Then, an agent going to the closest extremity of e and then changing direction
will explore all nodes of the ring in time at most 3(n − 1)/2 ≤ T . So let us
assume from now on that at least two different edges are absent at least once
each during the time interval [0, T).

Before proceeding with the rest of the proof, we introduce the following
notations. Given a time interval I and two algorithms A and B, let dIA be the
number of edge traversals performed by agent A during the time interval I, let
αIA, resp. αIA,B , be the number of time steps in I for which agent A, resp. both
agents A and B, do(es) not move. Note that it never helps to wait at a node
when all its incident edges are present. Hence, without loss of generality, an
agent always stays at a node because of the absence of an incident edge. Finally,
let βI be the number of time steps in I for which no edges are absent.

Let us now consider two simple algorithms. L, respectively R, is the algorithm
always going in the clockwise, resp. counter-clockwise, direction, traversing edges
as soon as the dynamic graph allows it. Now consider the sum of the number
of edges traversed by each of the two algorithms until some time t. Since only
one edge can be absent at a given time, this sum increases by at least one (and
obviously by at most two) at each time step, until this sum is larger or equal
to n − 1. So let e be the unique unexplored edge when this sum reaches n − 1.
If the sum jumps directly from n − 2 to n, then fix e to be any of the last two
unexplored edges. In both cases, let t1 be the first time one of the two agents
reaches one extremity of e. We consider two cases.

5

Case 1. The edge e is absent during the whole interval [t1, t1 + n− 1).
In this case, the first agent to reach an extremity of e, at time t1, goes
back in the opposite direction and explores the ring in n − 1 further steps.
This gives an exploration time of at most t1+n−1. Let I1 = [0, t1). We have

t1 =

{
dI1L + αI1L (1)

dI1R + αI1R (2)
and, since L and R are always trying to traverse distinct edges during I1 and
at most one edge may be removed at any time, we also have
αI1L + αI1R + βI1 ≤ t1 (3)

Besides, we have dI1L + dI1R ≤ n− 1 (4)
and since there are at least two removed different edges during the whole
interval [0, t1 + n− 1), we have
βI1 ≥ T − 1 (5)
(1)+(2)+(3)+(4)+(5) → t1 + n− 1 ≤ 2n− T − 1.

For T = 1, this bound is one unit larger than the claimed bound. If the
inequality (4) is in fact strict, then the correct bound is obtained. Otherwise,
it means that at time t1 − 1, both agents were free to move. This implies
that either βI1 ≥ 1 or that the inequality (3) is strict. In both cases, this
also gives the correct bound.

Case 2. The edge e is not absent during the whole interval [t1, t1 + n− 1).
Then let t2 be the smallest time t ≥ t1 such that the edge e is present at
time t. We define two new algorithms, one of which will explore the dynamic
graph within T .

Let L′ be the algorithm that is equal to L until some time t, at which L′

goes back in the other direction forever. More precisely, L′ is the algorithm
for which t is the largest possible value such that L′ arrives at the extremity
of e at time at most t2. Similarly, let R′ be the algorithm that is equal to
R until some time t, at which R′ goes back in the other direction forever.
More precisely, R′ is the algorithm for which t is the largest possible value
such that R′ arrives at the extremity of e at time at most t2. Let Texp be
the exploration time of the first between L′ and G′ exploring the dynamic
graph.

In order to analyze the algorithms L′ and R′, we introduce two other algo-
rithms. Let L′′, respectively R′′ be the algorithm defined as L′, resp. R′, but
turning back exactly one time unit later than L′, resp. R′.

Let I1 = [0, t1), I2 = [t1, t2), I1,2 = [0, t2), I3 = [t2, Texp), and I = [0, Texp).
On I1, we have
t1 ≥ αI1L′′ + αI1R′′ − αI1L′′,R′′ + βI1 (1)

t1 ≥ αI1L + αI1R + αI1L′′,R′′ + βI1 (2)
As in the first case, we have

t1 =

{
dI1L + αI1L (3)

dI1R + αI1R (4)

(1)+(2)+(3)+(4) → αI1L′′ + αI1R′′ + 2βI1 ≤ dI1L + dI1R (5)
On I1,2, we have

6

t1+t2 =

{
d
I1,2
L′′ + α

I1,2
L′′ (6)

d
I1,2
R′′ + α

I1,2
R′′ (7)

Note that, by definition of L′′ and R′′

d
I1,2
L′′ ≤ dI1,2L′ + 1 (8)

d
I1,2
R′′ ≤ dI1,2R′ + 1 (9)

(6)+(7)+(8)+(9) → 2(t1 + t2) ≤ dI1,2L′ + d
I1,2
R′ + α

I1,2
L′ + α

I1,2
R′ + 2 (10)

Note that on I2 L
′′ and R′′ are not blocked because the edge e is absent

during this interval. Hence

α
I1,2
L′′ = αI1L′′ (11)

α
I1,2
R′′ = αI1R′′ (12)

(5)+(10)+(11)+(12) → 2(t1 + t2) + 2βI1 ≤ dI1L + dI1R + d
I1,2
L + d

I1,2
R + 2 (13)

On I3, we have
Texp − (t1 + t2) ≥ αI3L′ + αI3R′ + βI3 (14)
and
Texp − (t1 + t2) = dI3L′ + αI3L′ (15)

Texp − (t1 + t2) = dI3R′ + αI3R′ (16)

(14)+(15)+(16) → Texp − (t1 + t2) + βI3 ≤ dI3L′ + dI3R′ (17)

(17)+ 1
2 (13) → Texp + βI1 + βI3 ≤ 1

2 (dI1L + dI1R + d
I1,2
L′ + d

I1,2
R′) + dI3L′ + dI3R′ + 1

(18)
Note that βI1 + βI3 = βI

Let x, resp. y, be the number of edges traversed by L′, resp. R′, before turn-
ing back. Then

d
I1,2
R′ = 2x+ dI1L (19)

d
I1,2
L′ = 2y + dI1R (20)

dI3R′ = dI1L − x (21)

dI3L′ = dI1R − x (22)

dI1L + dI1R ≤ n− 1 (23)
and since there are at least two removed different edges during the interval
βI ≥ T − 1 (24)
Finally, we get the sought result
(18)+(19)+(20)+(21)+(22)+(23)+(24) → Texp ≤ 2n− T − 1.

One can again argue similarly as in the first case to gain one time unit in
the case T = 1, which concludes the proof. �

3.2 Lower bound

We now prove that the precise bound given in Section 3.1 is actually the exact
worst-case time complexity of the exploration problem.

Theorem 2. For every integers n ≥ 3 and T ≥ 1, there exists a T -interval-
connected dynamic graph based on Cn such that any agent (algorithm) needs at

7

least
2n− 3 if T = 1

2n− T − 1 if 2 ≤ T < (n+ 1)/2⌊ 3(n−1)
2

⌋
if T ≥ (n+ 1)/2

time units to explore it.

Proof. For any integers n ≥ 3, and 2 ≤ T ≤ d(n+ 1)/2e, we define a T -interval-
connected dynamic graph Gn,T based on Cn. Let v0, v1, · · · , vn−1 be the vertices
of Cn in clockwise order. Assume that the exploration starts from v0 at time 0.
In Gn,T , the edge {v0, v1}, respectively {vT−1, vT }, is absent in the time interval
[0, n− 2T + 1), respectively [n− T, 2n). Note that this dynamic graph is indeed
T -interval-connected.

Consider any agent (algorithm). We will now prove that the time it uses to
explore Gn,T is at least 2n− T − 1. Since the agent must explore all vertices, it
must in particular explore both vT−1 and vT . We consider two cases.

Case 1. vT−1 is explored before vT .
To visit vT−1 without going through vT , the agent must traverse the edge
{v0, v1}. By construction, this edge is absent until time n−2T+1. Moreover,
the length of the path between v0 and vT−1 without going through vT is T−1.
Thus the agent needs at least n − T time units to reach vT−1 for the first
time. Since the edge {vT−1, vT } is absent in the time interval [n−T, 2n), the
fastest way of reaching vT is to traverse the whole ring through v0, inducing
n − 1 additional time units. So in this first case, the agent needs at least
2n− T − 1 time units to explore Gn,T .

Case 2. vT is explored before vT−1.
To visit vT without going through vT−1, the agent must use the path v0,
vn−1, up to vT , which is of length n − T . When at node vT , and since the
edge {vT−1, vT } is absent in the time interval [n − T, 2n), the fastest way
of reaching vT−1 is to traverse the whole ring through v0, inducing n − 1
additional time units. Thus also in the second case, the agent needs at least
2n− T − 1 time units to explore Gn,T .

This proves the theorem for values of T in [2, d(n+ 1)/2e]. In fact, this also
proves the theorem for T = 1 because Gn,2 is obviously also 1-interval-connected,
and the claimed bound is the same for T = 1 and T = 2. Besides, note that
only one edge is ever removed in Gn,d(n+1)/2e. This dynamic graph is therefore
1-interval-connected for any T , and thus the theorem is also proved for values
of T larger than (n+ 1)/2. �

4 The agent does not know the dynamics of the graph

In this section, we assume that the agent does not know the dynamics of the
graph, i.e., it does not know the times of appearance and disappearance of the
edges. As explained in the introduction, we assume here the δ-recurrence prop-
erty, for a given δ ≥ 1, in order for the problem to be solvable in bounded
time.

8

4.1 Upper bound

We first prove that there exists a very simple algorithm that is able to explore
all the δ-recurrent T -interval-connected dynamic graphs based on the ring. This
algorithm consists in moving as much and as soon as possible in a fixed arbitrary
direction, see Algorithm 1.

Algorithm 1 Stubborn-Traversal(dir)

Input: a direction dir

for each time step do
if the edge in the dir direction is present then

traverse it
else

wait
end if

end for

Theorem 3. For every integers n ≥ 3, T ≥ 1 and δ ≥ 1, and for any di-
rection dir, Algorithm Stubborn-Traversal(dir) explores any δ-recurrent
T -interval-connected dynamic graph based on Cn in time at most

n− 1 +

⌈
n− 1

max{1, T − 1}

⌉
(δ − 1).

Proof. Fix an arbitrary direction dir and let us analyze the algorithm Stubborn-
Traversal(dir). Note first that it will complete exploration after traversing
exactly n−1 edges. To bound its exploration time, it thus remains to bound the
number of time steps when the agent cannot move.

Since the dynamic graph is δ-recurrent, an edge cannot be absent for more
than δ − 1 consecutive time steps. Furthermore, since the dynamic graph is
T -interval-connected, two time steps in which two different edges are absent
must be separated by at least T − 1 time steps in which all edges are present.
Therefore, the agent can traverse at least max{1, T − 1} edges between two
consecutive blocks at different nodes. To summarize, the agent can be blocked

at most
⌈

n−1
max{1,T−1}

⌉
times during at most δ − 1 time steps.

Putting everything together, the agent will perform edge traversals for n− 1

time steps and will wait for at most
⌈

n−1
max{1,T−1}

⌉
(δ−1) time steps, which gives

the claimed bound. �

4.2 Lower bound

It turns out that the simple and natural Algorithm 1, described and analyzed in
Section 4.1, is almost optimal, up to an additive term proportional to δ.

9

Theorem 4. For every integers n ≥ 3, T ≥ 1, and δ ≥ 1, and for every agent
(algorithm), there exists a δ-recurrent T -interval-connected dynamic graph based
on Cn such that this agent needs at least

n− 1 +

⌊
n− 3

max{1, T − 1}

⌋
(δ − 1)

time units to explore it.
This result holds even if the agent knows n, T and δ.

Proof. Let n ≥ 3, T ≥ 1, and δ ≥ 1. Fix an arbitrary agent (algorithm) A.
We construct as follows the δ-recurrent T -interval-connected dynamic graph
Gn,T,δ(A) based on Cn that this agent will fail to explore in less than the claimed
bound.

Let v0, v1, · · · , vn−1 be the vertices of Cn in clockwise order. Assume that
the agent starts exploration from v0 at time 0. For any integer 1 ≤ i ≤ n− 1, if
the node vi is explored by going from v0 in the counter-clockwise direction, then
node vi is denoted vi−n. Finally, let T̃ = max{1, T − 1}.

In the dynamic graph Gn,T,δ(A), only the edges {vT̃+1, vT̃+2}, {v2T̃+1, v2T̃+2},
and so on, and {v0, v−1}, {v−T̃ , v−T̃−1}, {v−2T̃ , v−2T̃−1}, and so on, may be
absent. The actual times of appearance and disappearance of these edges depend
on the algorithm A. For any integer i ≥ 0, each time the agent arrives at node
v−iT̃ in the counter-clockwise direction, the edge {v−iT̃ , v−iT̃−1} is removed until
either the δ-recurrence forces the edge to reappear or the agent leaves the node
v−iT̃ to go on v−iT̃+1. Similarly, for any integer i ≥ 1, each time the agent arrives
at node viT̃+1 in the clockwise direction, the edge {viT̃+1, viT̃+2} is removed
until either the δ-recurrence forces the edge to reappear or the agent leaves the
node viT̃+1 to go on viT̃ . Note that between two time steps with two different
absent edges, there are at least T − 1 time steps for which no edges are absent.
The dynamic graph is therefore T -interval-connected. It is also δ-recurrent by
construction.

By definition of the dynamics of the graph, the agent needs to wait δ−1 time
units to go from v−iT̃ to v−iT̃−1, for i ≥ 0, or to go from viT̃+1 to viT̃+2, for i ≥ 1.

To explore all the vertices, the agent needs to perform at least
⌊

n−3
max{1,T−1}

⌋
such

traversals. The waiting time of the agent is thus at least
⌊

n−3
max{1,T−1}

⌋
(δ − 1).

Since the agent needs also at least n− 1 time units to traverse enough edges so
that all vertices are explored, we obtain the claimed bound. �

5 Conclusion

We studied in this paper the problem of exploration of the T -interval-connected
dynamic graphs based on the ring in two scenarios, when the agent is specific
to the dynamic graph, and when the agent does not know the dynamics of the
graph. The next objective is obviously to extend these results to larger families
of underlying graphs. Unfortunately, this problem is much more difficult than it

10

seems: proving that any dynamic graph based on a tree of cycles (a cactus) can
be explored in time O(n) is already a challenging open problem.

References

1. A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro, Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent
and Distributed Systems, volume 27(5), 2012.

2. C. Dutta, G. Pandurangan, R. Rajaraman, and Z. Sun. Information spread-
ing in dynamic networks. CoRR, abs/1112.0384, 2011.

3. A. Ferreira, Building a reference combinatorial model for MANETs. Net-
work, IEEE, volume 18(5), pages 24–29, 2004.

4. P. Flocchini, B. Mans, and N. Santoro. On the exploration of time-varying
networks. Theoretical Computer science, volume 469, pages 53-–68, 2013.

5. D. Ilcinkas and A. M. Wade. On the Power of Waiting when Exploring Public
Transportation Systems. In 15th International Conference On Principles Of
Distributed Systems (OPODIS), LNCS 7109, pages 451–464, 2011.

6. F. Kuhn, N.A. Lynch, and R. Oshman, Distributed computation in dynamic
networks. In 42nd ACM symposium on Theory of computing (STOC), pages
513–522, 2010.

7. F. Kuhn and R. Oshman, Dynamic networks: models and algorithms. ACM
SIGACT News, volume 42(1), pages 82–96, 2011.

8. C. E. Shannon, Presentation of a maze-solving machine. 8th Conf. of the
Josiah Macy Jr. Found. (Cybernetics), pages 173–180, 1951.

11

