
Exploration of Constantly Connected Dynamic
Graphs Based on Cactuses?

David Ilcinkas, Ralf Klasing, and Ahmed Mouhamadou Wade

LaBRI, CNRS & Bordeaux University
{ilcinkas,klasing,wade}@labri.fr

Abstract. We study the problem of exploration by a mobile entity
(agent) of a class of dynamic networks, namely constantly connected dy-
namic graphs. This problem has already been studied in the case where
the agent knows the dynamics of the graph and the underlying graph is a
ring of n vertices [5]. In this paper, we consider the same problem and we
suppose that the underlying graph is a cactus graph (a connected graph
in which any two simple cycles have at most one vertex in common).
We propose an algorithm that allows the agent to explore these dynamic
graphs in at most 2O(

√
logn)n time units. We show that the lower bound

of the algorithm is 2Ω(
√
logn)n time units.

Keywords: Exploration, Dynamic graphs, Mobile agent, Connectivity
over time

1 Introduction

Exploration of a graph by a mobile agent (physical or software) is the task that
the mobile agent, starting at a vertex of the graph, visits all vertices at least
once. In practice, many concrete systems can be modeled by graphs. This is
what makes the use of graphs very versatile. For example, graphs can be used
to model pipeline systems, underground tunnels, roads networks, etc. In this
case, the exploration is performed by a mobile robot. Graphs can also be used
to model more abstract environments such as computer networks. In this case,
the mobile entities used to explore these environments are software agents, that
is to say a program running in the environment.

This fundamental problem in distributed computing by mobile agents has
been extensively studied since the seminal paper by Claude Shannon [12]. How-
ever, the majority of the work concerns static graphs, while new generations of
interconnected environments tend to be extremely dynamic. To take into account
the dynamism of these extreme environments, for a decade, researchers have be-
gun to model these dynamic environments with dynamic graphs. Several models
have been developed. The interested reader may find in [2] a comprehensive
overview of the different models and studies of dynamic graphs (see also [7]).

? Partially supported by the ANR project DISPLEXITY (ANR-11-BS02-014). This
study has been carried out in the frame of “the Investments for the future” Pro-
gramme IdEx Bordeaux – CPU (ANR-10-IDEX-03-02).



One of the first models developed, and also one of the most classic, is the
model of evolving graphs [4]. For simplicity, given a static graph G, called under-
lying graph, an evolving graph G based on G is a (possibly infinite) sequence of
(spanning but not necessarily connected) subgraphs of G (see Section 2 for the
precise definitions). This model is particularly suited for modeling synchronous
dynamic networks.

In this paper, we study the problem of exploration of dynamic graphs consid-
ering the model of constantly connected evolving graphs. An evolving graph G
is called constantly connected if each graph Gi which composes it is connected.
This class of graphs was used in [10] to study the problem of information dissem-
ination. In 2010, Kuhn, Lynch and Oshman [6] generalize this class of dynamic
graphs by introducing the notion of T -interval-connectivity. Roughly speaking,
given an integer T ≥ 1, a dynamic graph is T -interval-connected if for any
window of T time units, there is a connected spanning subgraph that is sta-
ble throughout the period. (The notion of constant connectivity is equivalent
to the notion of 1-interval-connectivity.) This new concept, which captures the
connection stability over time, allows to derive interesting results: the T -interval-
connectivity allows a savings of a factor about Θ(T ) on the number of messages
necessary and sufficient to achieve a complete exchange of information between
all vertices [3, 6].

It turns out that the problem of exploration is much more complex in dynamic
graphs than in static graphs. Indeed, let us consider for example the scenario
where the dynamic graph is known. The worst-case exploration time of n-node
static graphs is clearly in Θ(n) (worst case 2n−3). On the other hand, the worst-
case exploration time of n-node (1-interval-connected) dynamic graphs remains
largely unknown. No lower bound better than the static bound is known, while
the best known upper bound is quadratic, and follows directly from the fact that
the temporal diameter of these graphs is bounded by n.

The problem of exploration of constantly connected dynamic graphs has al-
ready been studied in the case where the underlying graph of the dynamic graph
is a ring of n vertices [5]. That article shows that if the agent knows the dynam-
ics of the graph, 2n − 3 units of time are necessary and sufficient to solve the
problem. The goal of this paper is to extend these results to larger families of
underlying graphs. Unfortunately, the problem turns out to be much more diffi-
cult than it seems. We will see that proving that any dynamic graph based on
a tree of cycles (a cactus) can be explored in time O(n) is already a challenging
problem. The difficulty of the exploration problem in general dynamic graphs is
further underlined by the fact that the exploration problem for static graphs is
the well-known Graph TSP problem (see e.g. [8, 9, 11]), which is already APX
hard in general graphs.

Our results. At a first instance, we will give two exploration methods that are
efficient for exploring a very large set of constantly connected dynamic graphs
based on a cactus, when the agent knows the dynamics of the graph. We will
then combine these two exploration methods. We show that the combination
of the two methods yields an algorithm that explores all constantly connected

2



dynamic graphs based on a cactus of n vertices in 2O(
√
logn)n time units, and

we derive a lower bound of 2Ω(
√
logn)n time units for the algorithm.

2 Preliminaries

This section provides precise definitions of the concepts and models discussed
informally earlier. We also give some previous results from the literature on the
problem studied.

Definition 1 (Dynamic graph). A dynamic graph is a pair G = (V, E), where
V is a static set of n vertices, and E is a function which maps to every integer
i ≥ 0 a set E(i) of undirected edges on V .

Definition 2 (Underlying graph). Given a dynamic graph G = (V, E), the
static graph G = (V,

⋃∞
i=0 E(i)) is called the underlying graph of G. Conversely,

the dynamic graph G is said to be based on the static graph G.

In this paper, we consider dynamic graphs based on a cactus of size n. We
also assume that the agent knows the dynamics of the graph, that is to say, the
times of appearance and disappearance of the edges of the dynamic graph.

Definition 3 (Constant connectivity). A dynamic graph is called constantly
connected if for any integer i, the static graph Gi = (V, E(i)) is connected.

Definition 4 (Cactus). A cactus is a graph G = (V,E) in which two connected
cycles have at most one vertex in common (see Figure 1).

Fig. 1: Example of a cactus

A mobile entity, called agent, operates on these dynamic graphs. The agent
can traverse at most one edge per time unit. It may also stay at the current node
(typically to wait for an incident edge to appear). We say that an agent explores
the dynamic graph if and only if it visits all the nodes.

3



Theorem 1. [5] For every integer n ≥ 3 and for every constantly connected
dynamic graph based on a ring with n vertices, there exists an agent (algorithm),
Explore-ring, capable of exploring this dynamic graph in at most 2n− 3 time
units, when the agent knows the dynamics of the graph.

Theorem 2. [6] For every constantly connected dynamic graph on n vertices,
at most n− 1 time units are sufficient for an agent to go from any vertex to any
other vertex in the graph, when the agent knows the dynamics of the graph.

Corollary 1. For every constantly connected dynamic graph on n vertices, there
exists an agent (algorithm) capable of exploring this dynamic graph in O(n2) time
units, when the agent knows the dynamics of the graph.

To give a simpler analysis of our algorithms, we consider the tree represen-
tation of a cactus given in [1].

For any given cactus, the set of all vertices V is partitioned into three subsets
of vertices. Call C-vertices the vertices of degree 2 that belong to one and only
one cycle, G-vertices the vertices that do not belong to any cycle, and H-vertices
the other vertices (which belong to at least one cycle and have a degree ≥ 3)
which we also call attachment vertices.

A subtree is a connected set consisting of H-vertices and G-vertices. A subtree
is called maximal if the sets of H-vertices and G-vertices that it consists of cannot
be extended. A graft is a maximal subtree that does not contain two H-vertices
belonging to the same cycle. Finally, a block is a graft or a cycle.

It is not difficult to see that a cactus is formed by a set of blocks attached
via H-vertices (see Figure 2.(a)).

(a) (b)

H3

G2H2C1H1G1

H6
C5

C1

G2

C2

C3 C4

G3

G1

H2H1

H3

C4

H4

H5
H4

C3

C5H6G3H5C2

Fig. 2: Tree representation of a cactus

If we add an edge between the blocks and the H-vertices, we obtain the
tree TG = (VG, EG) such that each element of VG is a block or an H-vertex.
Figure 2.(b) gives the tree representation of the cactus shown in Figure 1. We
say that a cactus is rooted if the tree that represents it is rooted.

4



Given that constantly connected dynamic graphs based on trees (or grafts)
are static, in this paper we consider cactuses that only consist of cycles and H-
vertices. In the following, we will assume that the cactus is rooted at the block
where the agent starts exploration. If the agent starts on an H-vertex, one of
the blocks attached to the H-vertex will be the starting block.

In this paper, we use the classical formalism of static trees. We will talk about
degree, child, parent, height or depth of a block.

3 Chain method

In this section, we give a simple algorithm inspired by DFS to explore constantly
connected dynamic graphs based on a cactus of n vertices. The principle of the
algorithm is very simple. If the agent enters a ring it has not visited yet, it visits
it using the algorithm Explore-ring for exploring dynamic graphs based on
the ring (see Theorem 1), then passes to the point of attachment of its closest
unexplored child and explores it recursively. If all its children have already been
explored and there is a ring not yet explored, then it goes to its parent.

Algorithm 1 Chain-method()

1: while not all vertices have been visited do
2: if the current ring is not yet explored then
3: Explore-ring (current ring)
4: end if
5: if there is a child not yet explored then
6: Go-to-the-attachment-vertex (with this child)
7: else
8: Go-to-the-attachment-vertex (with the parent)
9: end if

10: end while

Theorem 3. For any integer n ≥ 3, and for any constantly connected dynamic
graph based on a cactus of n vertices, there is an agent, executing the algorithm
Chain-method, able to explore this dynamic graph in at most

∑k
i=1((di+2)ni−

(di + 3)) time units, where ni is the size of the ring i, di its degree, and k the
number of rings of the cactus.

Proof. An agent executing the algorithm Chain-method pays on each ring Rni

of the cactus at most 2ni − 3 units of time to explore it (see Theorem 1). To
switch to the point of attachment of a child or the parent (if it has one), ni − 1
time units are sufficient (see Theorem 2). As the degree of a block is equal to the
number of incident edges, then on each ring Rni

of the cactus, the agent pays at
most (di+2)ni− (di+3) units of time. The cactus is composed of k rings, hence

the agent pays at most
∑k
i=1((di + 2)ni − (di + 3)) units of time to explore the

dynamic graph. �

5



Note that if the degree of each ring is constant, then the time to explore
the dynamic graph using the Chain-method is in O(n), where n is the size of
the cactus. Figure 3 presents a cactus of size n in which exploration using the
Chain-method takes time Ω(n2). Indeed, any algorithm exploring this graph
has to explore the Ω(n) attached cycles of length 3. However, when the Chain-
method is used, the adversary may choose the dynamicity of the graph such
that changing from one attached cycle to another takes time Ω(n), hence the
overall exploration time is Ω(n2).

n
3

Fig. 3: Difficult graph for the Chain-method

4 Star method

Because the exploration method that we gave earlier is not effective for explor-
ing constantly connected dynamic graphs based on cactuses with rings of large
degree, this section provides an exploration technique to overcome this.

The algorithm we give here uses a similar technique as the exploration algo-
rithm for dynamic graphs based on the ring. Assume that the agent starts explor-
ing from some vertex of some constantly connected dynamic graph G based on a
cactus C of n vertices. From the starting point, the agent explores the starting
ring. The major difference with the exploration algorithm for dynamic graphs
based on the ring is that when an agent arrives at a vertex where an unexplored
subtree is attached, it explores the subtree recursively and then it returns to
the point of attachment and continues its exploration. However, when returning
to the point of attachment, the problem is that the agent cannot continue the
exploration according to the basic exploration algorithm on the starting ring, as
the dynamicity has changed on the ring.

In order to cope with this dynamicity problem, we need to refine the approach
appropriately. We take into account the time needed to recursively explore the

6



sub-cactuses by introducing the following transformation of G into another dy-
namic graph G′, based on a ring Rn′ of larger size n′. The dynamic graph G′ is
constructed as follows. We retain the starting ring of C and the dynamics of the
graph G based on this part. We replace every H-vertex of C with two C-vertices
by adding a static path of length equal to twice the recursive cost of exploring
the subtree attached to the H-vertex. Thus, we obtain a constantly connected
dynamic graph based on a ring of size n′ (see Figure 4). The dynamic graph G′
is constantly connected because we retained the dynamics of the subgraph of G
based on the starting ring of C, which respects the constant connectivity.

2f (C2)

2f (C3)

n1 n1

2f (C1)C1

C2

C3

H3

H2

H1

Fig. 4: Correspondence between the dynamic graph based on C and the dynamic graph
based on Rn′

Theorem 4. For any integer n ≥ 3 and for any constantly connected dynamic
graph based on a cactus C, there is an agent (algorithm) capable to explore this

dynamic graph in at most
∑k
i=1 2pi(3ni− 3) time units, where pi is the depth of

the ring i in the rooted tree, ni is the size of the ring i in the rooted tree, k the
number of rings of the cactus, and n =

∑k
i=1 ni − k + 1 the number of vertices

of the cactus.

Proof. For some n ≥ 3, let C be a cactus with n vertices and let G be a con-
stantly connected dynamic graph based on C. Let us first determine the size
of the dynamic graph G′ based on Rn′ which is obtained from G by the above
construction.

Suppose that C is rooted at the starting block. By construction, the size n′

of G′ is the sum of the size of the root ring plus the sum of twice the costs of
the recursive exploration of the sub-cactuses that are attached, using the Star-
method.

7



Denote by f(C) the cost of exploring any constantly connected dynamic
graph based on the cactus C using the Star-method. If C is reduced to a ring
of size n, then f(C) = 3n− 4, because to explore a ring of size n and return to
the starting vertex, an agent executing the algorithm Explore-ring needs at
most 3n − 4 time units. Otherwise let n1 be the size of the root ring, and let
C1, C2, . . . , C` be the sub-cactuses attached to the root, then we have

f(C) = 3(n1 − 1) + 2
∑̀
i=1

f(Ci). (1)

In order to obtain the recursive cost (1), we use the following algorithm for
exploring a dynamic ring. For a constantly connected dynamic graph based on
a ring RN , one virtually deploys one agent on each vertex of the ring RN , using
N − 1 time units. The virtual agents then move in clockwise direction along
the ring whenever they can. As there are N agents and in each round, only one
agent can be held up by the adversary, after N − 1 rounds there is one (virtual)
agent that has never been held up, hence this agent explores the ring in N − 1
additional time units. This agent is chosen as the actual exploration algorithm.

We consider a slightly modified version of this algorithm to explore the trans-
formed dynamic graph G′. Instead of allocating n′− 1 time units for the deploy-
ment phase, we assume that n1 − 1 time units are sufficient. Now let Agent B
be the virtual agent that is never held up in G′. We define the Agent A following
the Star-method as follows.

First Agent A uses n1 − 1 time units to reach the starting node v of Agent
B. If v is not a node of the starting ring, then Agent A goes to the attachment
node in C corresponding to the static subpath containing v.

Now, whenever the (virtual) Agent B stays on a subpath P corresponding
to some sub-cactus Ci for at least f(Ci) consecutive time units, Agent A uses
this time to recursively explore the sub-cactus Ci. If, after completing this explo-
ration, Agent B is still lying on P , then Agent A simply waits on the attachment
node. Whenever Agent B lies on the part corresponding to the starting ring (that
is outside of the added subpaths), Agent A behaves exactly as Agent B. This

part of the exploration of G takes at most (n1 − 1) + 2
∑`
i=1 f(Ci) time units.

After that, Agent A returns to its starting position. This takes at most n1−1
time units.

Solving recurrence (1), we obtain the bound announced in the theorem. �

If the height of the rooted tree of the cactus is constant, then the time to
explore the dynamic graph using the Star-method is O(n) time units, where n
is the size of the cactus. Figure 5 presents a cactus of size n in which explo-
ration using the Star-method takes time 2Ω(n)n. Indeed, when using the Star-
method, from the starting point, the agent explores the starting cycle. When
it reaches the rightmost vertex of the starting cycle, it explores the sub-cactus
attached to the right recursively. However, the time allocated by the Star-
method to do so corresponds to twice the exploration time of the sub-cactus.
Hence, recursively, each additional cycle of length 4 will introduce an additional

8



factor of 2 in the cost. As the number of cycles of length 4 is Ω(n) and the cycle
of length n/2 to the right needs exploration time Ω(n), the overall exploration
time is 2Ω(n)n.

Starting point

n
2

Fig. 5: Difficult graph for the Star-method

5 Mixed method

Note that if the agent is on a block that has a subtree attached to it, then
the extra cost of exploring the block plus the subtree is equal to the block size
minus one if the agent uses the Chain-method, and it is equal to the cost
of exploring the subtree if the agent uses the Star-method. Because none of
the two methods presented above alone allows to have a bound of O(n) without
further assumptions, in this section we introduce a combination of both methods,
that is to say, on some blocks the agent will use the Star-method to explore,
and on the remaining blocks it will use the Chain-method. The use of the two
methods is as follows. If the agent is on a block that has no child, then it uses
the ring exploration algorithm. Otherwise, on a block and a given subtree, in
order to choose its method of exploration, the agent will compare the cost of
exploring the subtree with the block size. If the block size is greater than the
cost of exploring the subtree, then the agent uses the Star-method to explore
the block and the subtree, otherwise it uses the Chain-method to explore them.
In the following, we call this exploration algorithm Mixed-method.

5.1 Upper bound for the algorithm Mixed-method

In this section, we give an upper bound on the complexity of the algorithm
Mixed-method.

Theorem 5. An agent executing the algorithm Mixed-method needs at most
2 ·22

√
logn ·n time units to explore any constantly connected dynamic graph based

on a cactus of n vertices.

9



Proof. Fix an arbitrary constantly connected dynamic graph based on a cac-
tus C of n vertices. In order to study the exploration used by the Mixed-
method, we will discuss another algorithm, denoted Explore-cactus, which
is less efficient but easier to analyze. The upper bound obtained for this less ef-
ficient algorithm will also give us a valid upper bound for the Mixed-method.
Given a parent ring Rn1

in the cactus, let C1, . . . , C` be its sub-cactus children.
The Mixed-method chooses for each child the best of the Star-method and
the Chain-method in terms of the time for exploring the sub-cactus and the
size of the parent. The algorithm Explore-cactus itself chooses the method
to be used according to the criteria below. Assume without loss of generality
that the sub-cactuses C1, . . . , C` are ranked in descending order of their num-
ber of vertices. The algorithm Explore-cactus chooses the Chain-method
for the sub-cactuses C1, . . . , Cc−1, and the Star-method for the sub-cactuses
Cc, . . . , C`, where c = 2

√
logn. According to the ordering of the sub-cactuses, the

number of vertices of each sub-cactus Cc, . . . , C` cannot exceed a fraction 1/c
of the total number of vertices of the cactus rooted at the parent Rn1 . There-
fore, a ring cannot have more than logc n ancestors (potentially including itself)
for which the Star-method was chosen. In summary, the total time used by
the algorithm Explore-cactus on the dynamic graph based on C is at most
2logc n(c− 1 + 3)n ≤ 2 · 22

√
lognn by definition of c. This concludes the proof of

the theorem. �

5.2 Lower bound for the algorithm Mixed-method

It turns out that the algorithm Mixed-method does not explore all constantly
connected dynamic graphs based on a cactus of size n in O(n) time units. We
have the following theorem to prove it.

Theorem 6. There is a constantly connected dynamic graph based on a cactus
of n vertices such that the exploration of the dynamic graph by an agent executing
the algorithm Mixed-method takes at least 1/2 · 2

√
logn · n time units.

Proof. Let h be an arbitrary even integer. Let d = 2h+1. Consider a cactus based
on a rooted complete d-ary tree of height h, that is to say all internal vertices have
exactly d children and all of whose leaves are at distance h from the root (i.e. at

depth h). For p between 0 and h, let fh(p) = d(2d+ 3)h−p −∑h−p−1
i=0 (2d+ 3)i.

Any internal vertex of depth p is a ring of size fh(p + 1) + 1. The leaves are
cycles of size d+4

3 (which is an integer by definition of h). For any cycle, the
points in common with the parent cycle and with each of the d child cycles, if
they exist, are all different (see Figure 6). Let th(p) be the time that algorithm
Mixed-method uses on a sub-cactus rooted at a cycle of depth p ≤ h. We now
prove that for any p ≤ h, we have th(p) = fh(p). The proof is by induction on
(h− p). By Theorem 1, for p = h, we have th(h) = 3d+4

3 − 4 = d = fh(h). Fix p
such that 1 ≤ p ≤ h and suppose by induction hypothesis that th(p) = fh(p). At
a cycle of depth p− 1, for each of its children, the two methods are equivalent.
Hence, the time used by the algorithm Mixed-method will be th(p − 1) =

10



2 (fh(p) + 1 + d · th(p)) − 3 + fh(p) + 1 − 1. After simplification, and using the
induction hypothesis, we obtain th(p− 1) = (2d+ 3)fh(p)− 1, which is equal to
fh(p − 1). This concludes the proof by induction. Hence, the total exploration
time of the cactus by the algorithm Mixed-method is fh(0). We now compute
a lower bound on fh(0). We have

fh(0) = d(2d+ 3)h −
h−1∑
i=0

(2d+ 3)i

= d(2d+ 3)h − (2d+ 3)h − 1

2d+ 2

≥ d− 1

2d+ 2
· (2d+ 3)h

≥ 2d2 · (2d+ 3)h−1

≥ 2h · dh+1

≥ d

2
· dh+1

We now calculate the total number n of vertices of the cactus. According to
the definition of the cactus, we have n =

∑h−1
p=0 (dp · fh(p+ 1)) + dh · d+4

3 + 1.
Therefore,

n ≤
h−1∑
p=0

(
dp · d(2d+ 3)h−p−1

)
+ dh+1/3

≤ d(2d+ 3)h−1
h−1∑
p=0

(d/(2d+ 3))p + dh+1/3

≤ 2d(2d+ 3)h−1 + dh+1/3

≤ (2d)h(1 + 3/(2d))h−1 + dh+1/3

≤ dh+1/2 · 4/3 + dh+1/3

≤ dh+1.

From this, we deduce that d ≥ 2
√
logn. Combining all these bounds, we obtain

fh(0) ≥ 1/2 · 2
√
logn · n, which concludes the proof. �

6 Conclusion

In this paper, we studied the time complexity for exploring constantly connected
dynamic graphs based on cactuses, under the assumption that the agent knows
the dynamics of the graph. We gave an exploration algorithm for dynamic graphs
that we called Mixed-method, and we have shown that for exploring the whole
class of constantly connected dynamic graphs based on cactuses of n vertices,

11



d

fh(1) + 1

fh(2) + 1

fh(h− 1) + 1fh(h− 1) + 1

fh(h) + 1 fh(h) + 1
fh(h) + 1 fh(h) + 1

d + 4

3

d d

d

d d
d + 4

3

d + 4

3

d + 4

3

d

Fig. 6: Lower bound for the Mixed-method

with this algorithm, 2Θ(
√
logn) ·n units of time are necessary and sufficient. This

study opens several perspectives.

In the short term, it would be interesting to find a new method in order to
obtain a better upper bound on the exploration time of dynamic graphs based
on cactuses. At a second stage, an interesting question to investigate would
be if T -interval-connectivity (for T > 1) allows to save a significant factor in
the exploration time of the cactuses. A natural further objective is to extend
the family of underlying graphs. Note that the families of underlying graphs
considered so far (ring and cactuses) have the property that at most one edge
can be absent at a given time in every bi-connected component. Studying families
of underlying graphs that do not possess this property seems to be a challenging
problem.

A more general objective is to establish whether there is an agent which knows
the dynamics of the graph and which is able to explore all T -interval-connected
dynamic graphs where the underlying graph has m edges in time O(m), or even
o(m). A further perspective is to consider the exploration problem of T -interval-
connected dynamic graphs using more than one agent, assuming standard models
of communication between the agents. The objective would be to study whether

12



dynamic graph exploration can be performed more efficiently by using more than
one agent. Finally, the computational complexity of the exploration problem for
dynamic graphs is largely unknown. As noted in the Introduction, the explo-
ration problem for static graphs is already APX hard in general graphs, hence
the exploration problem for dynamic graphs is at least APX hard in general
graphs. However, it is not known whether this non-approximability result for
dynamic graphs is tight, and whether efficient approximation algorithms for the
exploration problem in dynamic graphs can be derived.

References

1. R. Burkard and J. Krarup: A Linear Algorithm for the Pos/Neg-Weighted 1-
Median Problem on a Cactus. Computing, volume 60(3), pages 193–216, 1998.

2. A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro: Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent and
Distributed Systems, volume 27(5), 2012.

3. C. Dutta, G. Pandurangan, R. Rajaraman, and Z. Sun: Information spreading in
dynamic networks. CoRR, abs/1112.0384, 2011.

4. A. Ferreira: Building a Reference Combinatorial Model for Dynamic Networks:
Initial Results in Evolving Graphs. INRIA, RR-5041 (2003)

5. D. Ilcinkas and A.M. Wade. Exploration of the T -Interval-Connected Dynamic
Graphs: the Case of the Ring. In Structural Information and Communication Com-
plexity (SIROCCO), LNCS 8179, pages 13–23, 2013.

6. F. Kuhn, N.A. Lynch, and R. Oshman: Distributed computation in dynamic net-
works. In 42nd ACM Symposium on Theory of Computing (STOC), pages 513–522,
2010.

7. F. Kuhn and R. Oshman, Dynamic networks: models and algorithms. ACM
SIGACT News, volume 42(1), pages 82–96, 2011.

8. T. Mömke and O. Svensson: Approximating Graphic TSP by Matchings. In 52nd
IEEE Symposium on Foundations of Computer Science (FOCS), pages 560–569,
2011.

9. M. Mucha: 13/9-approximation for Graphic TSP. In 29th Int. Symposium on The-
oretical Aspects of Computer Science (STACS) pages 30–41, 2012.

10. R. O’Dell and R. Wattenhofer: Information dissemination in highly dynamic
graphs. In DIALM-POMC, pages 104–110, 2005.

11. A. Sebö, J. Vygen: Shorter Tours by Nicer Ears: 7/5-approximation for graphic
TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combi-
natorica, to appear.

12. C.E. Shannon: Presentation of a maze-solving machine. In 8th Conf. of the Josiah
Macy Jr. Found. (Cybernetics), pages 173–180, 1951.

13


