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Abstract. Many articles deal with the problem of maintaining a rooted
shortest-path tree. However, after some edge deletions, some nodes can
be disconnected from the connected component Vr of some distinguished
node r. In this case, an additional objective is to ensure the detection
of the disconnection by the nodes that no longer belong to Vr. Without
any assumption on the asynchronous model (unfair daemon), with no
knowledge of the network and within an anonymous network, we present
a silent self-stabilizing algorithm solving this more demanding task and
running in less than 2n + D rounds for a network of n nodes and hop-
diameter D.

1 Introduction

Routing algorithms using the computation of distance/path vectors, like RIP
(Routing information protocol) or BGP (Border Gateway Protocol), are based
on the construction of shortest-path trees. For any destination r, a shortest-path
tree rooted at r is implicitly built by the routing scheme. Because of the dynam-
icity of the network, it may happen that the network is disconnected. Routing
to node r is only guaranteed from the nodes that belong to the same component
as r, namely Vr. For the other nodes, one should remove, in the routing tables,
information to reach r in order to prevent routing messages that will anyway
never reach r, and thus to save some bandwidth. A legitimate configuration is
characterized by the fact that every node that belongs to Vr knows a route to r
and every other node detects that r is not in its own component. The difficulty
of converging toward a legitimate configuration is called, in this context, the
count-to-infinity problem [LGW04]: for nodes that do not belong to Vr, some
control messages keep on being exchanged infinitely in order to find a path to r.
At the same time, the updates of routing tables for nodes belonging to Vr should
be done as fast as possible.

In practice, the most standard technics consist in exchanging distance/path
vectors periodically and in using some timers in order to guess if a node is still
within Vr. However, the convergence is not guaranteed without any assumption
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(i) on the asynchrony of the network and/or (ii) on some known upper bound
on the diameter or the size of the network. The convergence toward a legitimate
configuration can be often provided by self-stabilizing algorithms. However, so-
lutions that can be found in the literature are dedicated to the maintenance of
a BFS tree or shortest paths, but only for connected networks. Using them, we
still face the count-to-infinity problem in the disconnected components.

In the routing context, it is not always required to store information for every
node. In compact routing schemes [AGM+08,GGHI13], only some shortest-path
trees completely spanning the connected components are built and need to be
maintained. Given a set of roots r1, r2, . . . , rk, we aim at providing silent self-
stabilizing algorithms that both maintain a shortest-path tree toward each ri,
for nodes of Vri

, and detect the nodes that no longer belong to Vri
. In the

following, we present two algorithms for a single root for an unfair daemon but
our solutions hold for any k. The identifiers of nodes do not need to be unique.
Only ri’s identifiers should be different in order to distinguish the different roots.
Thus, for k = 1, our self-stabilizing algorithms work in anonymous networks in
the semi-uniform model.

1.1 Related works

Self-stabilizing single-destination shortest-path constructions. The single-desti-
nation shortest-path problem is to find shortest paths from all vertices in the
graph to a single destination vertex r. Edges can have weights and the length
of a path corresponds to its sum of weights. The oldest distributed algorithms
are inspired by the Bellman-Ford algorithm. In the articles dedicated to self-
stabilizing algorithms, the difficulty is to find an algorithm running in the worst
sequence of processes execution in an asynchronous setting. Models of processes
execution are called daemons. In [CS94,HL02], self-stabilizing algorithms for the
single-destination shortest-path problem are presented; both protocols require
a central daemon, that is only one process can be executed at each instant.
In [Hua05b], Tetz Huang proves that the algorithms in [CS94,HL02] also work
under the unfair daemon, which is the most general daemon. However, no upper
bounds on the time (rounds or number of execution steps) are given. The same
author presents an algorithm under the read/write separate atomicity model
(Dolev Model) in [Hua05a].

In [AGH90,CG02,JT03], self-stabilizing algorithms for the single-destination
shortest-path problem are presented; these algorithms ensure the loop-free prop-
erty: after any edge cost changes, even during the re-building phase, there is
always a path from any node to the destination. To sum up, none of these arti-
cles provide tight bounds on the complexity of the convergence time in the most
general asynchronous model, the unfair daemon, and the presented algorithms
are not silent in the disconnected components.

Self-stabilizing breadth-first tree constructions. Whenever edges do not have any
weight, shortest-path trees correspond to breadth-first trees. To our knowledge,
this restriction does not help to get all the desirable guarantees. Chen et al.
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present the first self-stabilizing BFS tree construction in [CYH91] under the
central daemon. Huang et al. present the first self-stabilizing BFS tree construc-
tion in [HC92] under the unfair distributed daemon. In [CYH91,HC92], the exact
network size has to be known by all nodes. Dolev, Israeli and Moran in [DIM93]
present the first self-stabilizing BFS spanning-tree construction algorithm under
read/write atomicity.

Blin et al. in [BPBRT10] present an universal transformer of self-stabilizing
tree construction with any metric on semi-uniform networks to a loop-free super
stabilizing algorithm under the fair daemon. All these cited works assume that
the network is a connected graph.

Self-stabilizing routing algorithm. In [BDV07], Bein et al. present a self-stabi-
lizing algorithm building local routing tables under the fair daemon (the tables
ensure the routing from any node v to its t closest nodes) in O(D) rounds in the
connected component, in but O(t) rounds within the disconnected component.
Choosing the parameter t correctly helps to tackle the count-to-infinity problem.
However, it means that in order to use their solution an upper bound on the
network size has to be known.

Leader election algorithms. Surprisingly, one way to get closer to our goal is
to focus on the problem of leader election, as in [DLV11,ACD+14], under the
very general daemon, the unfair one, without any knowledge about the network
topology. In [DLV11] (resp. in [ACD+14]), for each component, a BFS tree rooted
at the selected leader is built within 4n+ 11D+ 4 rounds (resp. 3n+D rounds).
Note that D stands for the diameter of the unweighted network.

Since, in each component, the selected leader is the node with smallest iden-
tifier, one could change a little bit these uniform algorithms into semi-uniform
algorithms, by forcing the node r to have the smallest identifier in adding a
single bit to every identifiers. However, this trick can work only for k = 1 and it
is not clear what would be the convergence time for a weighted network.

1.2 Model

A distributed system S is an undirected graph G = (V,E) where vertex set
V is the set of nodes and edge set E is the set of communication links. A
link {u, v} belongs to E if and only if u and v can directly communicate (links
are bidirectional); so, u and v are neighbors. We note by Γ (v) the set of v’s
neighbors: Γ (v) = {u ∈ V | {u, v} ∈ E}. Edges have positive weight. In the
following, D stands for the hop-diameter of the underlying graph, that is the
maximum over all pairs {u, v} of the minimum number of edges in a shortest
path from u to v.

Each node v maintains a set of shared variables such that v can read its own
variables and those of its neighbors, but it can modify only its variables. The
state of a node is defined by the values of its local variables. The union of states
of all nodes determines the configuration of the system. The program of each
node is a set of rules. Each rule has two parts, the guard and the action. The
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guard of a v’s rule is a Boolean expression involving the state of the node v,
and those of its neighbors. The action of a v’s rule updates v’s state. So, every
rule will be graphically described by two braces. The first brace contains the
predicates such that their conjunction is the rule guard; and the second brace
contains the rule action (i.e. one or several local variable updates).

A rule can be executed only if it is enabled, i.e., its guard evaluates to true. A
node is enabled if at least one of its rules is enabled. A configuration is said to be
terminal if and only if no node is enabled. In a semi-uniform algorithm, all nodes
except one, denoted r, perform the same distributed algorithm. Vr denotes the
connected component of distinguished node r. In anonymous networks, nodes
do not have distinct identifiers. However, we assume that a node can distinguish
its neighbors since out-links of every node can be locally numbered.

During a computation step under the daemon S, ci →S ci+1, one or several
enabled nodes in configuration ci are selected by the daemon S. Theses nodes will
simultaneously and atomically read their neighbors states and then perform their
actions so that the system reaches the configuration ci+1 from ci. An execution e
under daemon S is a sequence of configurations e = c0, c1, · · · , where ci+1 is
reached from ci by one computation step under S: ∀i > 0, ci →S ci+1. The
centralized daemon selects at each computation step only one node. The fair
daemon may select several nodes at each step, but it produces only fair executions
(an always enabled node is eventually activated). There is no requirement on the
unfair daemon; so unfair executions are produced by the unfair daemon.

We say that an execution e is maximal if it is infinite, or if it reaches a
terminal configuration. We note by C the set of all possible configurations, and
by ES the set of all maximal executions under the daemon S. The set of maximal
executions under the daemon S starting from a particular configuration c ∈ C is
denoted ES

c .

Definition 1 (Silent Self-stabilization to L). Let L be a subset of C, called
set of legitimate configurations. A distributed system is silent and self-stabilizing
under the daemon S to L if and only if the following conditions hold:

– all executions under S are finite;
– all terminal configurations belong to L.

Stabilization time. We use the round notion to measure the time complex-
ity. The first round of an execution e = c1, c2, · · · is the minimal prefix e1 =
c1, · · · , cj , such that every node having an enabled rule in c1 either executes a
rule or is neutralized during a computation step of e1. A node v is neutralized
during a computation step ci → ci+1, if v is enabled in ci but not anymore in
configuration ci+1.
Let e′ be the suffix of e such that e = e1e

′. The second round of e is the first
round of e′, and so on.

The stabilization time is the number of rounds of an execution reaching a legit-
imate configuration from any initial one.
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Definition 2 (Round of a component). The end of the i+ 1-st round in the
(connected) component H ⊆ G in a computation e is defined recursively as the
configuration of the execution e where every node v ∈ H(V ) that was enabled
at the end of the i-th round of e in H have been either activated or neutralized
once.

We can notice that the i-th round in a component H ⊆ G can end earlier
than the i-th round (when the component is not explicitly given then the round
is global).

Definition 3 (Node convergence). A node v is said to have converged to its
final state s under the daemon S at the configuration c1 if along all executions
under S from c1, the node v keeps its state s.

1.3 Our contributions

We present two self-stabilizing silent algorithms on anonymous semi-uniform
weighted networks working under the unfair daemon. Both algorithms build a
shortest-path tree rooted at r in Vr, and isolate the nodes in the other connected
components.

We first present a simple distributed algorithm, namely Algorithm DcD,
which is quite natural. We show that the convergence time may unfortunately
be as high as Ω(n2) rounds in some n-node graphs of large diameter.

Changing a little bit this algorithm, we end up with a second algorithm
FDcD. This latter algorithm converges to a legitimate configuration within less
than 2n+D rounds in any n-node weighted graph of hop-diameter D.

2 Our algorithms

This section is devoted to the presentation of our two algorithms, DcD (Discon-
nection Detection) and FDcD (Fast Disconnection Detection). These algorithms
are using the same key idea and are thus very similar (although their perfor-
mances are different).

The value of variable st indicates the status of the node: I for isolated (the
node has no parent and no children); E for erroneous and C for correct.

A non-isolated node u (stu 6= I) has two other meaningful variables: the
variable du containing the shortest weighted distance to r, and the variable
parentu containing a pointer to the first out-link on the shortest path to r.
Thus, only non-isolated nodes can belong to a branch (i.e. have children and/or
a parent).

The single rule for node r is the same for both algorithms (Figure 1).

Definition 4 (Children of node u). childrenu =
{v ∈ Γ (u) | (stu 6= I) ∧ (stv 6= I) ∧ (parentv = u) ∧ (dv ≥ du + ω{u, v})}

Definition 5 (Correct state). A node u is said to be in a correct state if:
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Rr



{
Proot(u) ≡ (str 6= C) ∨ (parentr 6= r) ∨ (dr 6= 0){
str ← C
parentr ← r
dr ← 0

Fig. 1. Algorithm DcD or FDcD on node r.

– its status variable is C,
– its distance variable is set to d(u, r) the weighted distance from u to r and
– the weighted distance d(parentu, r) of parentu to r is du − ω{u, parentu}.

Definition 6 (Legitimate state). A node u is said to be in a legitimate state
if:

– it belongs to Vr and is in a correct state;
– or it does not belong to Vr and it has status I.

Definition 7 (Legitimate configuration). A legitimate configuration is a
configuration where every node is in a legitimate state.

2.1 A first and simple algorithm : Algorithm DcD

Algorithm DcD is given in figure 2. It is roughly based on the following idea.
Whenever a node detects a local anomaly, it somehow detaches from its parent,
warns its whole sub-tree, and then reconnects to another tree.
A given node u detects an anomaly in the relationship with its parent in four
cases:

– the parent node is not in its neighborhood;
– it is not the best out-link for the destination r;
– the value of du is not coherent with the value of dparentu

;
– it, or its parent, has not status C.

When a node u detects an anomaly in the relationship with its parent, it takes
the status E (rule RC). Notice that the error status is propagated in sub-trees.
When a leaf has the error status, then it can quit its tree: either it becomes
isolated (rule RI) or it joins a “correct” branch (rule RC). So any erroneous
sub-trees are eventually deleted.

Only nodes with status C may gain new children; and only nodes without
children may change the value of their variable d or parent (rule RC) to join
a new branch. These two properties ensure that the execution of the rule RC

by a node u does not create anomaly (because a node u doing RC during a
computation step has no children and it cannot gain children during this step).

We can show that algorithm DcD converges to a legitimate configuration.
However, for graphs with large diameter (D = Θ(n)) it may converge in Ω(n2)
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RC



{
Pupdate(u) ≡ (stu 6= C) ∧ (childrenu = ∅) ∧ (∃v ∈ Γ (u) | stv = C) stu ← C
parentu ← argmin(v∈Γ (u))∧(stv=C)(dv + ω{u, v})
du ← dparentu + ω{u, parentu}

RE




PfullError(u) ≡

[
(parentu 6∈ Γ (u)) ∨ (stparentu 6= C)
∨ (dparentu + ω{u, parentu} 6= du)
∨ (∃v ∈ Γ (u) | (stv = C) ∧ (dv + ω{u, v} < du))

]
∧ (stu = C){

stu ← E

RI


{

Pisolate(u) ≡ (stu = E) ∧ (childrenu = ∅) ∧ (∀v ∈ Γ (u) | stv 6= C){
stu ← I

Fig. 2. Algorithm DcD on node u.

rounds. This lower bound is based on a graph Gn defined right after and presented
in Figure 3. It uses several copies of the undermentioned graph Hi.

Definition 8 (Graph H). The graph called H is a 5-node graph composed by
a path (a, b, c, e) where node e and a are connected together via an intermediate
node f .

Definition 9 (Graph Gn). The graph Gn is composed of n copies of graph H:
H0, H1, . . . ,Hn−1. To build Gn simply connect every Hi to Hi+1 by merging nodes
ei and ai+1 (the index indicates the copy).

This graph Gn has 4n+ 1 nodes and diameter 2n.
Lemma 1. For the graph Gn of O(n) nodes, algorithm DcD may converge to a
legitimate configuration within Ω(n2) rounds.

Proof. Let consider a graph G and set node a0 to be the root of Gn. In this proof
we will mainly consider two possible configurations for any graph Hi:

– An illegitimate configuration, called ic, where nodes bi, ci, ei, fi have their
parents variables respectively set to ai, bi, ci, ai, which leads node ei to have
its distance set to dai + 3.

– And also the legitimate configuration, where nodes bi, ci, ei, fi have their
parents variables respectively set to ai, bi, fi, ai and dai

= 2i. This leads
node ei to have its distance set to 2i+ 2.
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a0 b0 c0 e0

a1 b1 c1 e1
a2 b2 c2 e2

f0 f1 f2

Fig. 3. G3 with the node names

0 1 2 2 6 7 83 4 5

1 63

Fig. 4. Configuration X1 of G3

First, we can notice that an illegitimate configuration can turn to a legitimate
configuration for graph Hi only if node ai already stores a distance of 2i, which
implies that every Hk such that k < i is in legitimate state.

Let us define the configuration Xi for 0 ≤ i ≤ n as follow. The root node
a0 is in correct state, every Hk for k < i is in the legitimate configuration and
every Hj for j ≥ i is in the illegitimate configuration. The configuration X1 is
shown on figure 4 for n = 3. Xn is the legitimate configuration of Gn.

We will study one execution from X0 in which configurations Xi such that
i ∈ (1, 2, . . . , n) are successively reached. This execution has n steps, during the
ith step, configuration Xi is reached from configuration Xi−1.

Let us compute the number of rounds required to execute the (i+ 1)th step.
The node ei has to switch its parent from ci to fi, resulting in changing its
distance from 2i+ 3 to 2i+ 2. The difficulty is that to change its parent, node ei

must have the status I. The node ei will get the status I only after the status E
is propagated into ei sub-tree which takes 3 rounds. After what, the status I
is propagated from en−1 to ei which takes 3(n − i − 1) more rounds. Now, we
need to bring every Hj such that j > i into the illegitimate configuration. That
can be done by activating successively, for every Hj such that j > i, every node
except node fj , after what the remaining nodes (fj | j > i) can be activated in
an arbitrary order. Therefore, the (i + 1)th step takes at least 3(n − i − 1) + 3
rounds.

In this execution, the total number of rounds needed to converge to the
legitimate configuration on Gn is thus greater than

∑n
i=1 3(n − i). Which gives

the lower bound of Ω(n2). �
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2.2 A more efficient solution

With algorithm FDcD, presented in Figure 5, a node u joins a correct branch
sooner than with algorithm DcD. Nevertheless, no anomaly is created when a
node modifies the value of its variable d or parent.

When an anomaly is detected by a node u in the relationship with its parent,
if there is an alternative parent to connect to, then u changes parent (rule RC).
Otherwise, u takes status E (rule RE). Algorithm FDcD’s rules are quite similar
to DcD’s, the only differences lie in RC and RE guards. A node p is an alternative
parent for node u if it has status C and if :

– p is a better out-link than parentu (i.e. the cost of the path from u to r going
through p is smaller than the cost of the path going through parentu);

– or du matches dp (i.e. dp + ω{p, u} = du).

Any configuration during the execution of algorithm FDcD induces a BFS
tree rooted at node r that spans a subset of Vr, a forest rooted at different
illegal roots and some isolated nodes.

RC




Pcreate(u) ≡ (stu 6= C) ∧ (childrenu = ∅) ∧ (∃v ∈ Γ (u) | stv = C)
Pupdate(u) ≡ (∃v ∈ Γ (u) | (stv = C) ∧ (dv + ω{u, v} < du))
Pcorrect(u) ≡ [ (parentu /∈ Γ (u)) ∨ (du 6= dparentu + ω{u, parentu})

∨ (stparentu 6= C) ∨ (stu 6= C) ]
∧ [∃v ∈ Γ (u) | (stv = C) ∧ (dv + ω{u, v} = du) ] stu ← C

parentu ← argmin(v∈Γ (u))∧(stv=C)(dv + ω{u, v})
du ← dparentu + ω{u, parentu}

RE


{

Perror(u) ≡ (stu = C) ∧ (∀v ∈ Γ (u) | (du < dv + ω{(v, u}) ∨ (stv 6= C)){
stu ← E

RI


{

Pisolate(u) ≡ (stu = E) ∧ (childrenu = ∅) ∧ (∀v ∈ Γ (u) | stv 6= C){
stu ← I

Fig. 5. Algorithm FDcD on node u.
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3 Correctness and convergence time of algorithm FDcD

All the proofs in this section hold for both algorithms, except Lemma 6 and
thus Theorem 1, that hold only for Algorithm FDcD. We start this section by
proving that the set of terminal configurations coincides with the set of legitimate
configurations. This will be done thanks to the following two lemmas, the first
one dealing with the connected components that do not contain node r, if some
exist, and the second one dealing with the connected component Vr containing
root node r.

Lemma 2. For any connected component H not containing node r, any termi-
nal configuration in H is a legitimate configuration.

Proof. The proof is done by contradiction. So consider that for some connected
component H not containing node r, there exists a terminal configuration in
which at least one node has not status I.

Further assume that there exists some node that has status C. Consider the
node u ∈ H with status C having the smallest distance value du. By construction,
u can apply rule RE , which is in contradiction with the configuration being
terminal. Therefore any node that does not have status I must have status E.

Consider now the node u ∈ H that has status E having the largest distance
value du. By construction and from the previous point, this node has no child
and no neighbor have status C. Therefore node u can apply rule RI , and we
obtain again a contradiction, which concludes the proof of the lemma. �

Lemma 3. Any terminal configuration within the connected component Vr is
legitimate.

Proof. The proof is done by contradiction. Let consider it exists some non-
legitimate terminal configuration of the connected component Vr.

Further, assume that there exists some node that has status E. Consider the
node u of Vr with status E having the largest distance value du. Note that no
node v that has status C can be a child of u, otherwise v could apply rule RE or
rule RC . Therefore, node u has no child and thus can apply rule RI or rule RC ,
a contradiction.

Nodes have thus either status C or I. Assume now that there exists some
node that has status I. Consider some node u with status I having at least
one neighbor with status C. Such a neighbor node must exist because we are
considering a connected component without any node with status E, but with
at least one node that has status C, namely node r. Obviously, node u can apply
rule RC , a contradiction. So every node in Vr must have status C.

Now consider the node u in Vr having the smallest distance value du among
the nodes in Vr that are not in a correct state. Then, either it exists some node
v with status C in Γ (u) such that du ≥ dv + ω{u, v}, or not. If such a node v
exists then node u can apply rule RC . If it does not, then, by definition, it can
apply rule RE . In both those cases there is a contradiction, which concludes the
proof. �
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After noticing that any legitimate configuration is a terminal one, we conclude
with the following corollary.

Corollary 1. The set of terminal configurations coincide with the set of legiti-
mate configurations.

We now prove that algorithm FDcD always terminates within 2n + D − 2
rounds under a fair daemon, where D is the hop-diameter of the connected
component containing r. Before proceeding with the proof, let us introduce some
useful concepts.

Definition 10 (Branch). A branch is a maximal sequence of nodes v1, · · · , vk,
for some integer k ≥ 1, such that none of the nodes have status I and, for every
i ≤ k, we have vi ∈ childrenvi+1 . The node vi is said to be at depth k − i. If
vk = r but the state of r is not terminal, or simply if vk 6= r, the branch is said
to be illegal, otherwise, the branch is said to be legal.

The first lemma essentially claims that all nodes that are in illegal branches
progressively switch to status E within n rounds, in order of increasing depth.

Lemma 4. Fix any integer i ≥ 1, and any connected component H. Starting
from the beginning of round i in H, there does not exist any node of H both in
state C and at depth less than i− 1 in an illegal branch.

Proof. We prove this lemma by induction on i. The base case i = 1 is obvious
so assume that the lemma holds for some integer i ≥ 1. Consider any node u
of H both with status C and depth i − 1 in an illegal branch. If u = r, then
r executes Rr. Otherwise, by induction hypothesis, the parent of u is not in
state C. Therefore u is enabled at the beginning of round i. During round i, it
will either execute rule RE and thus switch to state E, or it will execute rule RC .

Note that, from the beginning of round i, no node can ever choose a parent
which is at depth smaller than i−1 in an illegal branch because those nodes will
never be in state C, by induction hypothesis. Therefore, no node can become in
state C at depth smaller than i. This is also true for node u if it applies rule RC

in round i. This concludes the proof of the lemma. �

Root node r does not belong to an illegal branch after the first round. There-
fore, after the first round, the number of nodes of an illegal branch cannot be
more than n− 1. We thus obtain the following corollary.

Corollary 2. For any connected component H, once round n − 1 in H has
terminated, no node in an illegal branch in H has status C.

The next lemma essentially claims that, within at most n − 1 subsequent
rounds, the maximal length of an illegal branch progressively decreases until no
illegal branches remain.

Lemma 5. Fix any integer i ≥ 0, any of the two algorithms, and any connected
component H. Starting from the beginning of round n + i in H, there does not
exist any node of H at depth larger or equal to n− i− 1 in an illegal branch.
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Proof. We prove the lemma by induction on i. The base case i = 0 is obvious so
assume that the lemma holds for some integer i ≥ 0. By induction hypothesis,
at the beginning of round n+ i, no node is at depth larger or equal to n− i− 1.
Therefore, the nodes at depth n − i − 2 in an illegal branch have no children
and are thus enabled at the beginning of round n+ i. These nodes will thus all
be executed within round n + i (they cannot be neutralized as no children can
connect to them). We conclude the proof by noticing that, from Corollary 2,
once round n− 1 has terminated, every node in an illegal tree is in state E, and
thus any node in an illegal branch that gets executed from this time will not be
anymore in any illegal branch. �

Corollary 3. For any connected component H, once round 2n − 2 in H has
terminated, there are no illegal branches in H.

Note that in a connected component that does not contain the root r, there are
no legal branches. Since the only way for a node to be in no branch is to have
status I, we obtain the following result.

Corollary 4. For any connected component H not containing r, after 2n − 2
rounds in H, every node v of H has status I.

After 2n− 2 rounds, the connected components not containing r are in a legiti-
mate state. In the connected component Vr containing r, Algorithm FDcD may
need additional rounds so that the correct distances to r are correctly propa-
gated.

In the following lemma, we use the notion of hop-distance to r defined below.

Definition 11 (Hop-distance to the root node r). A node v is said to be
at k hops from r if k is the minimum number of edges of a shortest path from v
to r.

Lemma 6. Consider any integer i ≥ 0. For any execution of Algorithm FDcD,
starting from the beginning of round 2n− 2 + i, every node in component Vr at
most i hops from r is in a correct state.

Proof. Let us prove the lemma by induction on i. Firstly, we need to remark
that after one single round, node r has necessary converged to the correct state.
So the base case i = 0 holds, as we can assume n to be at least 2. Secondly, at
round 2n−2, from Corollary 3, every node either belongs to a legal branch or have
status I, thus any node v ∈ Vr always stores a distance d such that d ≥ d(v, r),
its actual weighted distance to r. By induction hypothesis, every node at at most
i hops from r has converged to a correct state before round 2n+ i−1. Therefore,
at the beginning of round 2n+ i− 1, every node v at i+ 1 hops from r which is
not in a correct state has rule RC enabled. Thus, at the end of round 2n+ i− 1,
every node at at most i+ 1 hops from r is in a correct state (such nodes cannot
be neutralized during this round). Also, these nodes will never change their state
since there are no nodes other than their parent that can make them get closer
to r than their current parent. �
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Note that algorithm DcD eventually reach an identical configuration where every
node is either isolated or belongs to the tree rooted at r. But from this particular
configuration algorithm DcD takes more time to converge to a legitimate state.
We know from Lemma 1 that the convergence to a legitimate state can take at
least Ω(n2) additional rounds for some settings of graphs and configurations.

Putting together all the results of this section, we obtain, for algorithm FDcD,
the following theorem.

Theorem 1. Under a fair daemon, Algorithm FDcD always converges to a le-
gitimate state within 2n + D − 2 rounds, where D is the hop-diameter of the
connected component Vr containing node r.

4 Convergence under an unfair daemon

In this section, we will prove that algorithm FDcD always converges to a le-
gitimate state, even under an unfair daemon. The proof, by contradiction, will
go as follows. After noticing that a node activated infinitely often must execute
rule RC infinitely many times, we will prove that nodes activated infinitely of-
ten must have globally increasing distance values. This means that these nodes
will eventually behave as if the nodes activated a finite number of times do not
exist. This will lead to a contradiction, as we proved before that a connected
component has to become silent after a finite number of rounds. Note that all
the lemmas in this section also hold for Algorithm DcD.

Lemma 7. If at some time a node has been executed k times, then it must have
executed rule RC at least

⌊
k−2

3
⌋
many times.

Proof. When a node with status E is enabled, it can either execute rule RC or
rule RI . Moreover, a node with status I can only execute rule RC . Thus between
two consecutive executions of rule RC by a node, only two other rule executions
can happen. �

Let us now introduce a useful notation for the next lemmas.

Definition 12. A node u is said to execute a rule with (distance) value dist if
the distance value du is equal to dist immediately after this rule execution.

Lemma 8. rule RC cannot be executed infinitely often with the same distance
value.

Proof. For the purpose of contradiction, consider any (infinite) execution e of
algorithm FDcD in which rule RC is applied infinitely often with the same dis-
tance value. Let dmin be the minimum such infinitely often used value. Let v
be some node applying infinitely often rule RC with distance value dmin. Now
consider some suffix e′ of e in which no node with a distance value smaller than
dmin will ever apply any rule. Note that such a suffix e′ must exist, by definition
of dmin.
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Let consider the maximal suffix e′′ of e′ starting when node v has a parent
u such that du = dmin − ω{u, v}. By definition of e′, node u will remain in state
C and be the better possible parent within e′′, therefore node v will not apply
any rule in e′′, contradicting the assumption that node v applies infinitely often
rule RC . �

We are now ready to conclude about the convergence under an unfair daemon.

Lemma 9. Every execution is finite.

Proof. For the purpose of contradiction, let us assume that there exists an infinite
execution e. Let F , resp. F , be the set of nodes executed finitely, resp. infinitely,
many times in this execution, and let F ′ be the set of nodes in F that are
neighbors of at least one node in F . Note that the set F is necessarily non-
empty as it contains at least node r.

Let execution e1 be a suffix of e in which every node v ∈ F is never executed.
In e1, only the nodes from F will be executed. Let dmax be the maximum distance
stored in dv for any node v ∈ F within e1. From Lemma 8, if a node executes
an infinite number of steps during an execution of algorithm FDcD, then it will
necessary change its distance an infinite number of times. Moreover, distances
stored at a given node cannot be negative. Thus, there exists a suffix e2 of e1
such that for any node v in F , dv > dmax +ωv, where ωv is the maximum weight
of an edge incident to v.

Within e2, a node v′ ∈ F ′ cannot have status C, otherwise any node v that
belongs to Γ (v′)∩F would apply RC with distance value at most dmax +ω{v, v′}
which would be in contradiction with the definition of e2. Moreover, we have
dv > dv′ , and thus v′ does not belong to childrenv.

Looking at the algorithm, one can observe that, if a rule can be applied for a
node v ∈ F during e2, then it can still be applied after removing the nodes in F ′
from the graph. In other words, the nodes in F can have the same execution in
the graph obtained after removing the nodes in F . Now consider any connected
component H of F . Since all nodes in H are activated infinitely many times,
it means that there are an infinite number of rounds in H, without the nodes
reaching a terminal configuration in H. This is in contradiction with Corollary 4,
and this concludes the proof of this lemma. �

Summarizing the results proved so far, we obtain the following main theorem.

Theorem 2. Under an unfair daemon, Algorithm FDcD always converges to a
legitimate state within a finite number of steps and in at most 2n+D−2 rounds,
where D is the hop-diameter of the connected component Vr containing node r.
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