
Optimal Exploration of Terrains with Obstacles

Jurek Czyzowicz1,?, David Ilcinkas2,??,
Arnaud Labourel2,??,? ? ?, and Andrzej Pelc1,†

1 Département d’informatique, Université du Québec en Outaouais, Gatineau,
Québec J8X 3X7, Canada. E-mails: jurek@uqo.ca, pelc@uqo.ca

2 LaBRI, CNRS & Université de Bordeaux, 33405 Talence, France. E-mails:
david.ilcinkas@labri.fr, labourel.arnaud@gmail.com,

Abstract. A mobile robot represented by a point moving in the plane
has to explore an unknown flat terrain with impassable obstacles. Both
the terrain and the obstacles are modeled as arbitrary polygons. We
consider two scenarios: the unlimited vision, when the robot situated
at a point p of the terrain explores (sees) all points q of the terrain
for which the segment pq belongs to the terrain, and the limited vision,
when we require additionally that the distance between p and q be at
most 1. All points of the terrain (except obstacles) have to be explored
and the performance of an exploration algorithm, called its complexity,
is measured by the length of the trajectory of the robot.

For unlimited vision we show an exploration algorithm with complexity
O(P + D

√
k), where P is the total perimeter of the terrain (including

perimeters of obstacles), D is the diameter of the convex hull of the
terrain, and k is the number of obstacles. We do not assume knowledge
of these parameters. We also prove a matching lower bound showing
that the above complexity is optimal, even if the terrain is known to the
robot. For limited vision we show exploration algorithms with complexity
O(P+A+

√
Ak), where A is the area of the terrain (excluding obstacles).

Our algorithms work either for arbitrary terrains, if one of the parameters
A or k is known, or for c-fat terrains, where c is any constant (unknown
to the robot) and no additional knowledge is assumed. (A terrain T with
obstacles is c-fat if R/r ≤ c, where R is the radius of the smallest disc
containing T and r is the radius of the largest disc contained in T .) We
also prove a matching lower bound Ω(P+A+

√
Ak) on the complexity of

exploration for limited vision, even if the terrain is known to the robot.

keywords: mobile robot, exploration, polygon, obstacle.

? Partially supported by NSERC discovery grant.
?? Partially supported by the ANR project ALADDIN, the INRIA project CEPAGE

and by a France-Israel cooperation grant (Multi-Computing project).
? ? ? This work was done during this author’s stay at the Université du Québec en

Outaouais as a postdoctoral fellow.
† Partially supported by NSERC discovery grant and by the Research Chair in Dis-

tributed Computing at the Université du Québec en Outaouais.

1 Introduction

The background and the problem. Exploring unknown terrains by mobile
robots has important applications when the environment is dangerous or of dif-
ficult access for humans. Such is the situation when operating in nuclear plants
or cleaning toxic wastes, as well as in the case of underwater or extra-terrestrial
operations. In many cases a robot must inspect an unknown terrain and come
back to its starting point. Due to energy and cost saving requirements, the length
of the robot’s trajectory should be minimized.

We model the exploration problem as follows. The terrain is represented
by an arbitrary polygon P0 with pairwise disjoint polygonal obstacles P1, ...,Pk,
included in P0, i.e., the terrain is T = P0\(P1∪· · ·∪Pk). We assume that borders
of all polygons Pi belong to the terrain. The robot is modeled as a point moving
along a polygonal line inside the terrain. It should be noted that the restriction
to polygons is only to simplify the description, and all our results hold in the
more general case where polygons are replaced by bounded subsets of the plane
homeotopic with a disc (i.e., connected and without holes) and regular enough to
have well-defined area and boundary length. Every point of the trajectory of the
robot is called visited. We consider two scenarios: the unlimited vision, when the
robot visiting a point p of the terrain T explores (sees) all points q for which the
segment pq is entirely contained in T , and the limited vision, when we require
additionally that the distance between p and q be at most 1. In both cases the
task is to explore all points of the terrain T . The cost of an exploration algorithm
is the length of the trajectory of the robot, which should be as small as possible.
The complexity of an algorithm is the order of magnitude of its cost. We assume
that the robot does not know the terrain before starting the exploration, but it
has unbounded memory and can record the portion of the terrain seen so far
and the already visited portion of its trajectory.

Our results. For unlimited vision we show an exploration algorithm with
complexity O(P+D

√
k), where P is the total perimeter of the terrain (including

perimeters of obstacles), D is the diameter of the convex hull of the terrain, and k
is the number of obstacles. We do not assume knowledge of these parameters. We
also prove a matching lower bound for exploration of some terrains (even if the
terrain is known to the robot), showing that the above complexity is worst-case
optimal.

For limited vision we show exploration algorithms with complexity O(P +
A +

√
Ak), where A is the area of the terrain1. Our algorithms work either for

arbitrary terrains, if one of the parameters A or k is known, or for c-fat terrains,
where c is any constant larger than 1 (unknown to the robot) and no additional
knowledge is assumed. (A terrain T is c-fat if R/r ≤ c, where R is the radius of

1 Since parameters D,P,A are positive reals that may be arbitrarily small, it is im-
portant to stress that complexity O(P +A+

√
Ak) means that the trajectory of the

robot is at most c(P +A+
√
Ak), for some constant c and sufficiently large values of

P and A. Similarly for O(P+D
√
k). This permits to include, e.g., additive constants

in the complexity, in spite of arbitrarily small parameter values.

the smallest disc containing T and r is the radius of the largest disc contained in
T .) We also prove a matching lower bound Ω(P +A+

√
Ak) on the complexity

of exploration, even if the terrain is known to the robot.
The main open problem resulting from our research is whether exploration

with asymptotically optimal cost O(P+A+
√
Ak) can be performed in arbitrary

terrains without any a priori knowledge. Another interesting open problem is
whether such worst-case performance can be obtained by an O(k)-competitive
algorithm. (Our algorithms are a priori not competitive.)

Related work. Exploration of unknown environments by mobile robots was
extensively studied both for the unlimited and for the limited vision. Most of
the research in this domain concerns the competitive framework, where the tra-
jectory of the robot not knowing the environment is compared to that of the
optimal exploration algorithm having full knowledge.

One of the most important works for unlimited vision is [8]. The authors gave
a 2-competitive algorithm for rectilinear polygon exploration without obstacles.
The case of non-rectilinear polygons (without obstacles) was also studied in [7,
15, 12] and competitive algorithms were given.

For polygonal environments with an arbitrary number of polygonal obstacles,
it was shown in [8] that no competitive strategy exists, even if all obstacles are
parallelograms. Later, this result was improved in [1] by giving a lower bound
in Ω(

√
k) for the competitive ratio of any on-line algorithm exploring a polygon

with k obstacles. This bound remains true even for rectangular obstacles. On
the other hand, there exists an algorithm with competitive ratio in O(k) [7, 15].
Moreover, for particular shapes of obstacles (convex and with bounded aspect
ratio) the optimal competitive ratio Θ(

√
k) has been proven in [15].

Exploration of polygons by a robot with limited vision has been studied,
e.g., in [9–11, 13, 14, 16]. In [9] the authors described an on-line algorithm with
competitive ratio 1+3(ΠS/A), whereΠ is a quantity depending on the perimeter
of the polygon, S is the area seen by the robot, and A is the area of the polygon.
The exploration in [9, 10] fails on a certain type of polygons, such as those with
narrow corridors. In [11], the authors consider exploration in discrete steps. The
robot can only explore the environment when it is motionless, and the cost of the
exploration algorithm is measured by the number of stops during the exploration.
In [13, 14], the complexity of exploration is measured by the trajectory length,
but only terrains composed of identical squares are considered. In [16] the author
studied off-line exploration of the boundary of a terrain with limited vision.

An experimental approach was used in [2] to show the performance of a
greedy heuristic for exploration in which the robot always moves to the frontier
between explored and unexplored area. Practical exploration of the environment
by an actual robot was studied, e.g., in [6, 19]. In [19], a technique is described
to deal with obstacles that are not in the plane of the sensor. In [6] landmarks
are used during exploration to construct the skeleton of the environment.

Navigation is a closely related task which consists in finding a path between
two given points in a terrain with unknown obstacles. Navigation in a n × n
square containing rectangular obstacles aligned with sides of the square was

considered in [3–5, 18]. It was shown in [3] that the navigation from a corner to
the center of a room can be performed with a competitive ratio O(log n), only
using tactile information (i.e., the robot modeled as a point sees an obstacle only
when it touches it). No deterministic algorithm can achieve better competitive
ratio, even with unlimited vision [3]. For navigation between any pair of points,
there is a deterministic algorithm achieving a competitive ratio of O(

√
n) [5].

No deterministic algorithm can achieve a better competitive ratio [18]. However,
there is a randomized approach performing navigation with a competitive ratio
of O(n

4
9 log n) [4]. Navigation with little information was considered in [20]. In

this model, the robot cannot perform localization nor measure any distances or
angles. Nevertheless, the robot is able to learn the critical information contained
in the classical shortest-path roadmap and perform locally optimal navigation.

2 Unlimited vision

Let S be a smallest square in which the terrain T is included. Our algorithm
constructs a quadtree decomposition of S. A quadtree is a rooted tree with each
non-terminal node having four children. Each node of the quadtree corresponds
to a square. The children of any non-terminal node v correspond to four identical
squares obtained by partitioning the square of v using its horizontal and vertical
symmetry axes. This implies that the squares of the terminal nodes form a
partition of the root2. More precisely,

1. {S} is a quadtree decomposition of S
2. If {S1, S2, . . . , Sj} is a quadtree decomposition of S, then
{S1, S2, . . . , Si−1, Si1 , Si2 , Si3 , Si4 , Si+1, . . . , Sj}, where Si1 , Si2 , Si3 , Si4 form
a partition of Si using its vertical and horizontal symmetry axes, is a quadtree
decomposition of S

The trajectory of the robot exploring T will be composed of parts which
will follow the boundaries of Pi, for 0 ≤ i ≤ k, and of straight-line segments,
called approaching segments, joining the boundaries of Pi, 0 ≤ i ≤ k. Obviously,
the end points of an approaching segment must be visible from each other. The
quadtree decomposition will be dynamically constructed in a top-down manner
during the exploration of T . At each moment of the exploration we consider the
set QS of all squares of the current quadtree and the set QT of squares being
the terminal nodes of the current quadtree. We will also construct dynamically
a bijection f : {P0,P1, . . . ,Pk} −→ QS \ QT .

When a robot moves along the boundary of some polygon Pi, it may be in
one of two possible modes: the recognition mode - when it goes around the en-
tire boundary of a polygon without any deviation, or in the exploration mode -
when, while moving around the boundary, it tries to detect (and approach) new
obstacles. When the decision to approach a new obstacle is made at some point

2 In order to have an exact partition we assume that each square of the quadtree
partition contains its East and South edges but not its West and North edges.

r of the boundary of Pi the robot moves along an approaching segment to reach
the obstacle, processes it by a recursive call, and (usually much later), return-
ing from the recursive call, it moves again along this segment in the opposite
direction in order to return to point r and to continue the exploration of Pi.
However, some newly detected obstacles may not be immediately approached.
We say that, when the robot is in position r, an obstacle Pj is approachable, if
there exists a point q ∈ Pj , belonging to a square St ∈ QT of diameter D(St)
such that |rq| ≤ 2D(St). It is important to state that if exactly one obstacle be-
comes approachable at moment t, then it is approached immediately and if more
than one obstacle become approachable at a moment t, then one of them (chosen
arbitrarily) is approached immediately and the others are approached later, pos-
sibly from different points of the trajectory. Each time a new obstacle is visited
by the robot (i.e., all the points of its boundary are visited in the recognition
mode) the terminal square of the current quadtree containing the first visited
point of the new obstacle is partitioned. This square is then associated to this
obstacle by function f . The trajectory of the robot is composed of three types
of sections: recognition sections, exploration sections and approaching sections.
The boundary of each polygon will be traversed twice: first time contiguously
during a recognition section and second time through exploration sections, which
may be interrupted several times in order to approach and visit newly detected
obstacles. We say that an obstacle is completely explored, if each point on the
boundary of this obstacle has been traversed by an exploration section. We will
prove that the sum of the lengths of the approaching sections is O(D

√
k).

Algorithm ExpTrav (polygon R, starting point r∗ on the boundary of R)
1 Make a recognition traversal of the boundary of R
2 Partition square St ∈ QT containing r∗ into four identical squares
3 f(R) := St

4 repeat
5 Traverse the boundary of R until, for the current position r, there exists

a visible point q of a new obstacle Q belonging to square St ∈ QT ,
such that |rq| ≤ 2D(St)

6 Traverse the segment rq
7 ExpTrav(Q, q)
8 Traverse the segment qr
9 until R is completely explored

Before the initial call of ExpTrav, the robot reaches a position r0 at the boundary
of the polygon P0. This is done as follows. At its initial position v, the robot
chooses an arbitrary half-line α which it follows as far as possible. When it hits
the boundary of a polygon P, it traverses the entire boundary of P. Then, it
computes the point u which is the farthest point from v in P ∩α. It goes around
P until reaching u again and progresses on α, if possible. If this is impossible,
the robot recognizes that it went around the boundary of P0 and it is positioned
on this boundary. It initialises the quadtree decomposition to a smallest square
S containing P0. This square is of size O(D(P0)). The length of the above walk
is less than 3P .

Lemma 1. Algorithm ExpTrav visits all boundary points of all obstacles of the
terrain T .

Lemma 2. Function f is a bijection from {P0,P1, . . . ,Pk} to QS \ QT , where
QS and QT correspond to the final quadtree decomposition produced by Algorithm
ExpTrav.

Lemma 3. For any quadtree T , rooted at a square of diameter D and having x
non-terminal nodes, the sum σ(T) of diameters of these nodes is at most 2D

√
x.

Theorem 1. Algorithm ExpTrav explores the terrain T of perimeter P and
convex hull diameter D with k obstacles in time O(P +D

√
k).

Proof. Take an arbitrary point p inside T and a ray outgoing from p in an
arbitrary direction. This ray reaches the boundary of T at some point q. Since,
by Lemma 1 point q was visited by the robot, p was visible from q during the
robot’s traversal, and hence p was explored.

To prove the complexity of the algorithm, observe that the robot traverses
twice the boundary of each polygon of T , once during its recognition in step 1
and the second time during the iterations of step 5. Hence the sum of lengths of
the recognition and exploration sections is 2P . The only other portions of the
trajectory are produced in steps 6 and 8, when the obstacles are approached and
returned from. According to the condition from step 5, an approaching segment
is traversed in step 6 only if its length is shorter than twice the diameter of the
associated square. If k = 0 then the sum of lengths of all approaching segments is
0, due to the fact that exploration starts at the external boundary of the terrain.
In this case the length of the trajectory is at most 5P (since the length of at
most 3P was traversed before the initial call). Hence we may assume that k > 0.
By Lemma 2 each obstacle is associated with a different non-terminal node of
the quadtree and the number x of non-terminal nodes of the quadtree equals
k + 1. Hence the sum of lengths of all approaching segments is at most 2σ(T).
By Lemma 3 we have σ(T) ≤ 2D

√
x = 2D

√
k + 1, hence the sum of lengths of

approaching segments is at most 2σ(T) ≤ 4D
√
k + 1 ≤ 4D

√
2k ≤ 6D

√
k. Each

segment is traversed twice, so the total length of this part of the trajectory is
at most 12D

√
k. It follows that the total length of the trajectory is at most

5P + 12D
√
k. �

Theorem 2. Any algorithm for a robot with unlimited visibility, exploring polyg-
onal terrains with k obstacles, having total perimeter P and the convex hull di-
ameter D, produces trajectories in Ω(P + D

√
k) in some terrains, even if the

terrain is known to the robot.

Proof. In order to prove the lower bound, we show two families of terrains: one
for which P ∈ Θ(D) (P cannot be smaller), D and k are unbounded and still
the exploration cost is Ω(D

√
k), and the other in which P is unbounded, D

is arbitrarily small, k = 0 and still the exploration cost is Ω(P). Consider the
terrain from Figure 1(a) where k identical tiny obstacles are distributed evenly at
the
√
k×
√
k grid positions inside a square of diameter D. The distance between

(a) (b)

Fig. 1. Lower bound for unlimited visiblity

obstacles is at least D
√

2
2(
√

k+1)
− ε where ε > 0 may be as small as necessary by

choosing obstacles sufficiently small. The obstacles are such that to explore the
small area inside the convex hull of the obstacle the robot must enter this convex
hull. Since each such area must be explored, the trajectory of the robot must be
of size at least (k− 1)

(
D
√

2
2(
√

k+1)
− ε
)

, which is clearly in Ω(D
√
k). Note that the

perimeter P is in Θ(D).
The terrain from Fig. 1(b) is a polygon of arbitrarily small diameter (with-

out obstacles), whose exploration requires a trajectory of size Ω(P), where P
is unbounded (as the number of “corridors” can be unbounded). Indeed, each
”corridor” must be traversed almost completely to explore points at its end. The
two families of polygons from Fig. 1 lead to the Ω(P +D

√
k) lower bound. �

3 Limited vision

In this section we assume that the vision of the robot has range 1. The following
algorithm is at the root of all our positive results on exploration with limited
vision. The idea of the algorithm is to partition the environment into small parts
called cells (of diameter at most 1) and to visit them using a depth-first traversal.
The local exploration of cells can be performed using Algorithm ExpTrav, since
the vision inside each cell is not limited by the range 1 of the vision of the robot.
The main novelty of our exploration algorithm is that the robot completely
explores any terrain. This should be contrasted with previous algorithms with
limited visibility, e.g. [9, 10, 13, 14] in which only a particular class of terrains
with obstacles is explored, e.g., terrains without narrow corridors or terrains
composed of complete identical squares. This can be done at cost O(A). Our
lower bound shows that exploration complexity of arbitrary terrains depends on
the perimeter and the number of obstacles as well. The complete exploration of
arbitrary terrains achieved by our algorithm significantly complicates both the
exploration process and its analysis.

Our algorithms LETA and LETk, and the tourist algorithm described in [15]
share a similar approach to exploration, i.e., using several square decompositions

of the terrain with different side lengths to figure out the characteristics of the
terrain and achieve efficient exploration. However, our algorithms differ from
the tourist algorithm in two important ways : (1) the exploration of the inside
of each square is done with an optimal algorithm (See section 2) instead of
a greedy one and (2) the limited visibility forces an upper bound on the side
of the square (significantly complicating LETk). More importantly, due to the
numerous differences between our model and the one of [15], the analyses of the
complexities of the algorithms are unrelated.
Algorithm LimExpTrav (LET , for short)
INPUT: A point s inside the terrain T and a positive real F ≤

√
2/2.

OUTPUT: An exploration trajectory of T , starting and ending at s.
Tile the area with squares of side F , such that s is on the boundary of a square.
The connected regions obtained as intersections of T with each tile are called
cells. For each tile S, maintain a quadtree decomposition QS initially set to {S}.
Then, arbitrarily choose one of the cells containing s to be the starting cell C
and call ExpCell(C, s).

Procedure ExpCell(current cell C, starting point r∗ ∈ C)
1 Record C as visited
2 ExpTrav(C,r∗) using the quadtree decomposition QS ; S is the tile s.t. C ⊆ S
3 repeat
4 Traverse the boundary of C until the current position r belongs to

an unvisited cell U
5 ExpCell(U , r)

(if r is in several unvisited cells, choose arbitrarily one to be processed)
6 until the boundary of C is completely traversed

It is worth to note that, at the beginning of the exploration of the first cell
belonging to a tile S, the quadtree of this tile is set to a single node. However, at
the beginning of explorations of subsequent cells belonging to S, the quadtree of
S may be different. So the top-down construction of this quadtree may be spread
over the exploration of many cells which will be visited at different points in time.

Consider a tile T and a cell C ⊆ T . Let AC be the area of C and BC the
length of its boundary. Let PC be the length of the part of the boundary of
C included in the boundary of the terrain T , and let RC be the length of the
remaining part of the boundary of C, i.e., RC = BC − PC .

Lemma 4. There is a positive constant c, such that RC ≤ c(AC/F + PC), for
any cell C.

The following is the key lemma for all upper bounds proved in this section. Let
S = {T1, T2, . . . , Tn} be the set of tiles with non-empty intersection with T and
C = {C1, C2, · · · , Cm} be the set of cells that are intersections of tiles from S
with T . For each T ∈ S, let kT be the number of obstacles of T entirely contained
in T .

Lemma 5. For any F ≤
√

2/2, Algorithm LET explores the terrain T of area
A and perimeter P , using a trajectory of length O(P +A/F + F

∑n
i=1

√
kTi

).

Proof. First, we show that Algorithm LET explores the terrain T . Consider
the graph G whose vertex set is C and edges are the pairs {C,C ′} such that C
and C ′ have a common point at their boundaries. The graph G is connected,
since T is connected. Note that for any cell C and point r on the boundary of
C, ExpTrav on C and r and thus ExpCell on C and r starts and ends on r.
Therefore, Algorithm LET performs a depth first traversal of graph G, since
during the execution of ExpCell(C, . . .), procedure ExpCell(U, · · ·) is called for
each unvisited cell U adjacent to C. Hence, ExpCell(C, . . .) is called for each
cell C ∈ C, since G is connected. During the execution of ExpCell(C, r), C is
completely explored by ExpTrav(C,r) by the same argument as in the proof of
Lemma 1, since the convex hull diameter of C is less than one.

It remains to show that the length of the LET trajectory is O(P + A/F +
F
∑n

i=1

√
kTi

). For each j = 1, . . . ,m, the part of the LET trajectory in-
side the cell Cj is produced by the execution of ExpCell(Cj , . . .). In step 2
of ExpCell(Cj , . . .), the robot executes ExpTrav with D =

√
2F and P =

PCj
+ RCj

. The sum of lengths of recognition and exploration sections of the
trajectory in Cj is at most 2(PCj + RCj). The sum of lengths of approaching
sections of the trajectory in Ti is at most 6

√
2F
√
kTi

and each approaching sec-
tion is traversed twice (cf. proof of Theorem 1). In step 3 of ExpCell(Cj , . . .),
the robot only makes the tour of the cell Cj , hence the distance traveled by the
robot is at most PCj

+RCj
. It follows that:

|LET | ≤ 3
m∑

j=1

(PCj +RCj) + 12
√

2F
n∑

i=1

√
kTi

≤ 3
m∑

j=1

((1 + c)PCj + cACj/F) + 12
√

2F
n∑

i=1

√
kTi by Lemma 4

≤ 3(c+ 1)P + 3cA/F + 12
√

2F
n∑

i=1

√
kTi .

�

In view of Lemma 5, exploration of a particular class of terrains can be done
at a cost which will be later proved optimal.

Theorem 3. Let c > 1 be any constant. Exploration of a c-fat terrain of area A,
perimeter P and with k obstacles can be performed using a trajectory of length
O(P +A+

√
Ak) (without any a priori knowledge).

Proof. The robot executes Algorithm LET with F =
√

2/2. By Lemma 5, the
total cost is O(P+A+

∑n
i=1

√
kTi

). Recall that n is the number of tiles that have

non-empty intersection with the terrain. We have
∑n

i=1

√
kTi
≤
∑n

i=1

√
k
n =

√
nk. Hence, it remains to show that n = O(A) to prove that the cost is O(P +

A+
√
Ak). By definition of a c-fat terrain, there is a disk D1 of radius r included

in the terrain and a disk D2 of radius R that contains the terrain, such that

R
r ≤ c. There are Θ(r2) tiles entirely included in D1 and hence in the terrain.
So, we have A = Ω(r2). Θ(R2) tiles are sufficient to cover D2 and hence the
terrain. So n = O(R2). Hence, we obtain n = O(A) in view of R ≤ cr. �

Consider any terrain T of area A, perimeter P and with k obstacles. We now
turn attention to the exploration problem if some knowledge about the terrain
is available a priori. Notice that if A and k are known before the exploration,
Lemma 5 implies that Algorithm LET executed for F = min{

√
A/k,

√
2/2}

explores any terrain at cost O(A + P +
√
Ak). (Indeed, if F =

√
A/k then

A/F =
√
Ak and kF =

√
Ak, while F =

√
2/2 implies A/F = Θ(A) and

kF = O(A).) This cost will be later proved optimal. It turns out that a much
more subtle use of Algorithm LET can guarantee the same complexity assuming
only knowledge of A or k. We present two different algorithms depending on
which value, A or k, is known to the robot. Both algorithms rely on the same
idea. The robot executes Algorithm LET with some initial value of F until either
the terrain is completely explored, or a certain stopping condition, depending on
the algorithm, is satisfied. This execution constitutes the first stage of the two
algorithms. If exploration was interrupted because of the stopping condition,
then the robot proceeds to a new stage by executing Algorithm LET with a
new value of F . Values of F decrease in the first algorithm and increase in the
second one. The exploration terminates at the stage when the terrain becomes
completely explored, while the stopping condition is never satisfied. In each stage
the robot is oblivious of the previous stages, except for the computation of the
new value of F that depends on the previous stage. This means that in each
stage exploration is done “from scratch”, without recording what was explored
in previous stages. In order to test the stopping condition in a given stage, the
robot maintains the following three values: the sum A∗ of areas of explored
cells, updated after the execution of ExpTrav in each cell; the length P ∗ of the
boundary traversed by the robot, continuously updated when the robot moves
along a boundary for the first time (i.e., in the recognition mode); and the
number k∗ of obstacles approached by the robot, updated when an obstacle is
approached. The values of A∗, P ∗ and k∗ at the end of the i-th stage are denoted
by Ai, Pi and ki, respectively. Let Fi be the value of F used by Algorithm LET
in the i-th stage. Now, we are ready to describe the stopping conditions and the
values Fi in both algorithms.

Algorithm LETA, for A known before exploration
The value of F used in Algorithm LET for the first stage is F1 =

√
2/2.

The value of F for subsequent stages is given by Fi+1 = A
kiFi

. The stopping
condition is {k∗Fi ≥ 2A/Fi and k∗Fi ≥ P ∗ + 1}.

Algorithm LETk, for k known before exploration
The value of F used in Algorithm LET for the first stage is F1 = 1

k+
√

2
.

The value of F for subsequent stages is given by Fi+1 = min
{

Ai

kFi
,
√

2
2

}
. The

stopping condition is {A∗/Fi ≥ 2kFi and A∗/Fi ≥ P ∗ + 1 and Fi <
√

2/2}.

Consider a moment t during the execution of Algorithm LET . Let Ct be the
set of cells recorded as visited by Algorithm LET at moment t, and let Ot be
the set of obstacles approached by the robot until time t. For each C ∈ Ct, let
BC be the length of the intersection of the exterior boundary of cell C with the
boundary of the terrain. For each O ∈ Ot, let |O| be the perimeter of obstacle
O and let kt = |Ot|. The following proposition is proved similarly as Lemma 5.

Proposition 1. There is a positive constant d such that the length of the tra-
jectory of the robot until any time t, during the execution of Algorithm LET , is
at most d(

∑
C∈Ct

(BC +AC/F) + (kt + 1) · F +
∑

O∈Ot
|O|).

The following lemma establishes the complexity of exploration if either the area
of the terrain or the number of obstacles is known a priori.

Lemma 6. Algorithm LETA (resp. LETk) explores a terrain T of area A, perime-
ter P and with k obstacles, using a trajectory of length O(P + A +

√
Ak), if A

(resp. k) is known before exploration.

The following theorem shows that the lengths of trajectories in Lemma 6 and in
Theorem 3 are asymptotically optimal.

Theorem 4. Any algorithm for a robot with limited visibility, exploring polyg-
onal terrains of area A, perimeter P and with k obstacles, produces trajectories
of length Ω(P +A+

√
Ak) in some terrains, even if the terrain is known to the

robot.

Lemma 6 and Theorem 4 imply

Theorem 5. Consider terrains of area A, perimeter P and with k obstacles. If
either A or k is known before the exploration, then the exploration of any such
terrain can be performed using a trajectory of length Θ(P +A+

√
Ak), which is

asymptotically optimal.

Notice that in order to explore a terrain at cost O(P +A+
√
Ak), it is enough to

know the parameter A or k up to a multiplicative constant, rather than the exact
value. This can be proved by a carefull modification of the proof of Lemma 6.
For the sake of clarity, we stated and proved the weaker version of Lemma 6,
with knowledge of the exact value.

Suppose now that no a priori knowledge of any parameters of the terrain is
available. We iterate Algorithm LETA or LETk for A (resp. k) equal 1, 2, 4, 8, . . .
interrupting the iteration and doubling the parameter as soon as the explored
area (resp. the number of obstacles seen) exceeds the current parameter value.
The algorithm stops when the entire terrain is explored (which happens at the
first probe exceeding the actual unknown value of A, resp. k). We get an ex-
ploration algorithm using a trajectory of length O((P + A+

√
Ak) logA), resp.

O((P+A+
√
Ak) log k). By interleaving the two procedures we get the minimum

of the two costs. Thus we have the following corollary.

Corollary 1. Consider terrains of area A, perimeter P and with k obstacles.
Exploration of any such terrain can be performed without any a priori knowledge
at cost differing from the worst-case optimal cost with full knowledge only by a
factor O(min{logA, log k}).

References

1. S. Albers and K. Kursawe and S. Schuierer, Exploring unknown environments with
obstacles, Algorithmica 32 (2002), 123–143.

2. T. Bandyopadhyay, Z. Liu, M.H Ang, M.H, W.K.G Seah, Visibility-based ex-
ploration in unknown environment containing structured obstacles, Advanced
Robotics (2005), 484-491.

3. E. Bar-Eli, P. Berman, A. Fiat and R. Yan, On-line navigation in a room, Journal
of Algorithms 17 (1994), 319-341.

4. P. Berman, A. Blum, A. Fiat, H. Karloff, A. Rosen and M. Saks, Randomized
robot navigation algorithms, Proc. 7th ACM-SIAM Symp. on Discrete Algorithms
(1996), 74-84.

5. A. Blum, P. Raghavan and B. Schieber, Navigating in unfamiliar geometric terrain,
SIAM Journal on Computing 26 (1997), 110-137.

6. N. Cuperlier, M. Quoy, C. Giovanangelli, Navigation and planning in an unknown
environment using vision and a cognitive map, Proc. Workshop: Reasoning with
Uncertainty in Robotics (2005), 48-53.

7. X. Deng, T. Kameda and C. H. Papadimitriou, How to learn an unknown environ-
ment, Proc. 32nd Symp. on Foundations of Comp. Sci. (FOCS 1991), 298–303.

8. X. Deng, T. Kameda and C. H. Papadimitriou, How to learn an unknown environ-
ment I: the rectilinear case, Journal of the ACM 45 (1998), 215-245.

9. Y. Gabriely, E. Rimon, Spanning-tree based coverage of continuous areas by a
mobile robot, Proc. Int. Conf. of Robotics and Automaton (ICRA 2001), 1927-
1933.

10. Y. Gabriely and E. Rimon, Competitive on-line coverage of grid environments
by a mobile robot, Computational Geometry: Theory and Applications (2003),
24(3):197-224.

11. S.K. Ghosh, J.W. Burdick, A. Bhattacharya and S. Sarkar, Online algorithms
with discrete visibility - exploring unknown polygonal environments, Robotics &
Automation Magazine 15 (2008), 67-76.

12. F. Hoffmann. C. Icking, R. Klein and K. Kriegel, The polygon exploration problem,
SIAM J. Comput. 31 (2001), 577–600.

13. C. Icking, T. Kamphans, R. Klein and E. Langetepe. Exploring an unknown cellu-
lar environment. In Abstracts of the 16th European Workshop on Computational
Geometry, pages 140-143, 2000.

14. A. Kolenderska, A. Kosowski, M. Ma lafiejski and P. Żyliński. An Improved Strategy
for Exploring a Grid Polygon, SIROCCO 2009, 222–236.

15. B. Kalyanasundaram and K. Pruhs, A Competitive Analysis of Algorithms for
Searching Unknown Scenes, Comput. Geom. 3 (1993), 139-155.

16. S. Ntafos, Watchman routes under limited visibility, Comput. Geom. Theory Appl.
1 (1992), 149–170.

17. R. Osserman. The isoperimetric inequality. Bull. Amer. Math. Soc., 84:1182–1238,
1978.

18. C. H. Papadimitriou, M. Yannakakis, Shortest paths without a map, Theor. Com-
put. Sci. 84 (1991), 127–150.

19. R. Sim, J.J. Little, Autonomous vision-based exploration and mapping using hy-
brid maps and Rao-Blackwellised particle filters, Intelligent Robots and Systems
(2006), 2082-2089.

20. B. Tovar, R. Murrieta-Cid, S. M. Lavalle, Distance-optimal navigation in an un-
known environment without sensing distances, IEEE Transactions on Robotics 23
(2007), 506-518.

