
Beachcombing on strips and islands?

Evangelos Bampas1, Jurek Czyzowicz2, David Ilcinkas3, and Ralf Klasing3

1 LIS, Aix-Marseille University and CNRS, Marseille, France
evangelos.bampas@gmail.com

2 Département d’informatique, Université du Québec en Outaouais, Canada
Jurek.Czyzowicz@uqo.ca

3 LaBRI, CNRS & Univ. Bordeaux, France
{david.ilcinkas,ralf.klasing}@labri.fr

Abstract. A group of mobile robots (beachcombers) have to search col-
lectively every point of a given domain. At any given moment, each robot
can be in walking mode or in searching mode. It is assumed that each
robot’s maximum allowed searching speed is strictly smaller than its
maximum allowed walking speed. A point of the domain is searched if at
least one of the robots visits it in searching mode. The Beachcombers’
Problem consists in developing efficient schedules (algorithms) for the
robots which collectively search all the points of the given domain as
fast as possible. We consider searching schedules in the following one-
dimensional geometric domains: the cycle of a known circumference L,
the finite straight line segment of a known length L, and the semi-infinite
line [0,+∞).

We first consider the online Beachcombers’ Problem (i.e. the scenario
when the robots do not know in advance the length of the segment to be
searched), where the robots are initially collocated at the origin of a semi-
infinite line. It is sought to design a schedule A with maximum speed S,
defined as S = inf`

`
tA(`)

, where tA(`) denotes the time when the search
of the segment [0, `] is completed under A. We consider a discrete and
a continuous version of the problem, depending on whether the infimum
is taken over ` ∈ N∗ or ` ≥ 1. We prove that the LeapFrog algorithm,
which was proposed in [Czyzowicz et al., SIROCCO 2014, LNCS 8576,
pp. 23–36 (2014)], is in fact optimal in the discrete case. This settles
in the affirmative a conjecture from that paper. We also show how to
extend this result to the more general continuous online setting.

For the offline version of the Beachcombers’ Problem (i.e. the sce-
nario when the robots know in advance the length of the segment to
be searched), we consider the t-source Beachcombers’ Problem (i.e. all
robots start from a fixed number t ≥ 1 of starting positions) on the
cycle and on the finite segment. For the t-source Beachcombers’ Prob-
lem on the cycle, we show that the structure of the optimal solutions is
identical to the structure of the optimal solutions to the 2t-source Beach-
combers’ Problem on a finite segment. In consequence, by using results

? This work appears in preliminary form in the Proceedings of the 11th International
Symposium on Algorithms and Experiments for Wireless Sensor Networks, LNCS
vol. 9536, pp. 155–168, Springer (2015).

1

from [Czyzowicz et al., ALGOSENSORS 2014, LNCS 8847, pp. 3–21
(2014)], we prove that the 1-source Beachcombers’ Problem on the cycle
is NP-hard, and we derive approximation algorithms for the problem.
For the t-source variant of the Beachcombers’ Problem on the cycle and
on the finite segment, we also derive efficient approximation algorithms.

One important contribution of our work is that, in all variants of
the offline Beachcombers’ Problem that we discuss, we allow the robots
to change direction of movement and search points of the domain on
both sides of their respective starting positions. This represents a signif-
icant generalization compared to the model considered in [Czyzowicz et
al., ALGOSENSORS 2014, LNCS 8847, pp. 3–21 (2014)], in which each
robot had a fixed direction of movement that was specified as part of the
solution to the problem. We manage to prove that changes of direction
do not help the robots achieve optimality.

1 Introduction

A group of n mobile robots have to explore collectively a given one-dimensional
domain. The robots may be initially collocated or dispersed in the domain. At
every moment of time, a robot can be either in walking mode or in searching
mode. A robot in walking mode traverses the domain with a speed not exceeding
its maximal walking speed. A robot in searching mode can travel using at most
its maximal searching speed, which is strictly smaller than its walking speed,
reflecting the fact that a searching activity is more time-consuming. Different
robots may have distinct maximal walking and searching speeds. A robot can
change mode, speed, and direction of movement instantaneously. There is no
communication between the robots during the execution of the algorithm. In
the Beachcombers’ Problem, the goal is to design a schedule for the movement
of all robots so that the domain is searched as fast as possible. A domain is said
to be searched under a given schedule, if every point of the domain is visited by
at least one robot in searching mode.

As pointed out in [12], where the Beachcombers’ Problem was introduced,
there are numerous examples in quite diverse domains in which exploration us-
ing two-speed robots arises as a natural model for the underlying processes. For
example, foraging or harvesting a field may take longer than inadvertent walk-
ing. In computer science, web page indexing or code inspection require a more
involved investigation. A common feature of these examples is that the activity
of searching, or other action to be performed on the territory, takes more time
than casual territory traversal. The analogy to beachcombers has been introduced
in [12] to bring out that, e.g., a beachcomber looking for things of value per-
forms a meticulous search of the beach, which takes significantly more time than
simply walking from one point of the beach to another. Further motivation for
the two-speed model can be found in [12, 13].

Preliminaries and notation. We consider searching schedules using two-speed
robots in the following one-dimensional geometric domains: the cycle of a known

2

circumference L, the finite straight line segment of a known length L, and the
semi-infinite line [0,+∞).

A schedule S for the robots is defined by a strictly increasing sequence of
times t0, t1, . . . , as well as, for every robot i and every interval [tj , tj+1], for
j ≥ 0, a mode (walking or searching), a speed (respecting the maximum speed
of the chosen mode for robot i), and a direction of movement. For any fixed
robot r, we refer to the individual schedule of robot r under S as the trajectory
of robot r. A schedule is finite if the sequence of times t0, t1, . . . has a last
element tf . A schedule is correct if, for every point p of the domain, there exists
a time moment at which p is visited by a robot in searching mode. For a finite
schedule, its completion time (or finishing time) is tf .

The efficiency of the search in the first two domains (i.e., the cycle of a
known circumference L and the finite straight line segment of a known length L)
is measured in terms of the completion time tf (the smaller the better) or,
equivalently, in terms of the speed L/tf of the schedule (the larger the better).
We are only interested in finite schedules for those domains. In the third domain
(i.e., the semi-infinite line [0,+∞)), the efficiency is better expressed by the
speed of the search, represented by inf`

`
tS(`)

, where tS(`) denotes the time when
the search of the segment [0, `] is completed under schedule S. In the discrete
version of the problem, the infimum inf`

`
tS(`)

is taken over ` ∈ N∗. On the
other hand, in the continuous setting, the infimum inf`

`
tS(`)

is taken over ` ≥ 1.
Alternatively, the Beachcombers’ Problem on the semi-infinite line can be seen
as the Beachcombers’ Problem on the finite straight line segment of unknown
length `. Then, the term inf`

`
tS(`)

can be seen as the worst-case speed of the
search over the different possible segment lengths `.

In the sequel, we will use the term offline setting for instances of the problem
in which the size of the domain is known (segment of known length and cycle of
known circumference), and the term online setting for instances of the problem
in which the size of the domain is unknown (semi-infinite line or, equivalently,
segment of unknown length).

In all cases, a correct schedule S is optimal if there does not exist any other
correct schedule with speed larger than that of S. Equivalently, in the offline
setting, a correct schedule is optimal if it has minimum completion time.

Previous work. The Beachcombers’ Problem was introduced and studied in [12].
An optimal (offline) algorithm was presented for the problem in which all robots
are initially located on one endpoint of a finite segment of known length. Fur-
thermore, a 2-competitive (online) algorithm was presented for the case where
all robots are initially collocated on the origin of a semi-infinite line. In [13], the
Beachcombers’ Problem was studied for the case of more than one starting po-
sitions on a finite segment of known length. For a fixed number t ≥ 2 of starting
positions, the t-source Beachcombers’ Problem on a finite segment asks to find
t starting points on the segment, an assignment of the robots to the starting
points, and a search schedule which concludes the search of the finite segment as
quickly as possible. It was shown in [13] that this problem is NP-hard for t = 2,

3

even when all robots have the same walking speed, that the optimal solution
can be computed efficiently when all robots have the same searching speed, and
that there exist a deterministic approximation algorithm for t = 2 and a ran-
domized approximation algorithm for general t. In [11], the authors study the
single-source problem on a finite segment, when the starting point is given as
part of the input and can be anywhere on the segment.

Our contributions. In Section 2, we study the online Beachcombers’ Problem
on the semi-infinite line [0,+∞). We prove that the 2-competitive LeapFrog

algorithm, which was proposed in [12], is in fact optimal in the discrete case.
This settles in the affirmative a conjecture from [12]. We also show how to extend
this result to the more general continuous online setting.

As regards the offline Beachcombers’ Problem, we consider in Section 3 the
t-source Beachcombers’ Problem on the cycle with zigzags (t-SBPCz), where the
possibility for zigzags means that robots may change direction of movement
during their trajectories. We show that the structure of the optimal solutions
to t-SBPCz is identical to the structure of the optimal solutions to the 2t-source
Beachcombers’ Problem on a finite segment, as defined in [13]. This implies that
the results from [13] are carried over to the case of the cycle with zigzags, yielding
an NP-hardness result for 1-SBPCz as well as the existence of efficient exact and
approximation algorithms for certain special cases of the problem. In particular,
the NP-hardness of 1-SBPCz seems at first somewhat surprising, considering that
in [12] the authors presented an efficient algorithm generating optimal schedules
for the single-source problem on a finite segment without zigzags. Our results
for the cycle topology provide a partial answer to an open question posed in [12]
and [13], concerning the study of the problem in different domain topologies.

Furthermore, in Section 4, we provide additional arguments to show that our
results for t-SBPCz carry over to the t-source Beachcombers’ Problem on the line
with zigzags (t-SBPLz).

An important contribution of our work is that, in both variants of the offline
Beachcombers’ Problem that we discuss, we allow the robots to zigzag, i.e., to
change direction of movement and search points of the domain on both sides
of their respective starting positions. This represents a significant generalization
compared to the model considered in [13], in which each robot had a fixed direc-
tion of movement that was specified as part of the solution to the problem. On an
intuitive level, allowing the robots to zigzag should not result in a faster sched-
ule. However, no proof of this intuition had been found until now. We manage
to prove that changes of direction do not help the robots achieve optimality.

Related work. Searching and exploration have been studied in numerous papers
considering graphs or geometric environments (e.g. [1, 4, 5, 7, 8, 15, 17–19, 22]).
The performance of the searching or exploration is typically expressed by the
trajectory length or the time used by the mobile robot.

Many searching and exploration algorithms are studied in the online setting,
i.e., the target position or sometimes other parameters of the environment are a

4

priori unknown (cf. [2, 3, 9, 15, 17, 20, 21]). Efficiency of such algorithms is typi-
cally measured by the competitive ratio, i.e., the ratio of the time spent by the
online algorithm with respect to the time of the optimal offline algorithm.

Most of the papers studying searching and exploration concern single robots.
Sets of collaborating mobile robots were studied, e.g., in [10, 16, 23, 24]. Tradeoffs
between the number of robots and the time of exploration were derived in [20].

The majority of the research on mobile robots concerns robots having the
same mobile speed. Robots with distinct speeds were considered in the context of
sensor energy efficiency [26], for designing fast converging population protocols
[6], and for patrolling the boundary of an environment [14, 25].

2 The online beachcombers’ problem on the semi-infinite
line

In this section, we consider two variants of the online beachcombers’ problem
on the semi-infinite line (given in Definitions 1 and 2). Definition 1 corresponds
to the online problem presented in [12]. Definition 2 is new, and generalizes
Definition 1.

Definition 1 (Discrete Online Beachcombers’ problem). Given n robots
with walking speeds wi and searching speeds si < wi, for 1 ≤ i ≤ n, initially
collocated at the origin of a semi-infinite line [0,+∞), the problem consists in
finding an optimal correct searching schedule for this semi-infinite line. The dis-
crete online speed of a schedule A is defined as

inf
`∈N∗

`

tA(`)

where tA(`) denotes the time when the search of the segment [0, `] is completed.1

Definition 2 (Continuous Online Beachcombers’ problem). Given n
robots with walking speeds wi and searching speeds si < wi, for 1 ≤ i ≤ n,
initially collocated at the origin of a semi-infinite line [0,+∞), the problem con-
sists in finding an optimal correct searching schedule for this semi-infinite line.
The continuous online speed of a schedule A is defined as

inf
`≥1

`

tA(`)

where tA(`) denotes the time when the search of the segment [0, `] is completed.

Note that the infimum is taken over ` ≥ 1 and not over ` > 0. Indeed,
our definition of a schedule excludes the possibility to perform infinitesimally
small steps at the origin of the semi-infinite line. Therefore, given any schedule,
1 Note that all points in the segment [0, `] have to be searched, not only certain discrete
points.

5

it is always possible to find a sufficiently small ` such that the whole segment
[0, `] is searched by a single robot. As a consequence, if the infimum was taken
over ` > 0, then the continuous online speed of any schedule would be at most
the maximum searching speed of any of the robots. This degeneration of the
problem when considering arbitrarily small segments is very similar to the case
of the linear search problem (a.k.a. the cow path problem). In this latter problem,
the online competitive ratio of any search strategy is unbounded if the strategy
cannot perform infinitesimally small moves and if the target can lie arbitrarily
close to the origin.

The main purpose of this section is to prove the optimality of the 2-
competitive online algorithm LeapFrog described in [12]. Our first step toward
this goal is to restrict ourselves to particular schedules, which are much simpler
to analyze but are nevertheless at least as efficient (in terms of online speeds) as
general ones. The following simple lemma, of a flavor similar to Proposition 1 in
Section 3 and some results in [12], holds both for the discrete and the continuous
cases.

Lemma 1. For every correct schedule S, there exists a correct schedule S ′ whose
discrete and continuous online speeds are not smaller than the respective ones
of S, and such that:

1. The interiors of the segments searched by the different robots do not overlap
(i.e., the searched segments may only intersect at their endpoints).

2. Every moving robot always moves in the initial direction at the full speed
permitted by its current mode.

Proof. First observe that any searching schedule may be converted to another
one, which has the property that all sub-segments which were being searched
(during some time intervals [tj , tj+1] by some robots) have pairwise disjoint
interiors. Indeed, if some sub-segment is being searched by two different robots
(or twice by the same robot), the second searching may be replaced by the
walk through it by the robot involved. Since the walking speed of any robot is
always larger than its searching speed, the speed of such converted schedule is
not smaller than the original one.

We can thus assume that the schedule S satisfies Condition 1.
Now in this schedule, each robot i searches a sequence of segments

([aik, b
i
k])k∈N with aik < bik and bik < aik+1, but the robot may not perform

the search in that particular order. We now define a schedule S ′ in which each
robot i always moves in the initial direction from the origin. Whenever i is in a
segment [0, ai0) or (bik, a

i
k+1), it walks at full speed, whereas whenever i is in a

segment [aik, b
i
k], it searches at full speed. If the sequence of segments ([aik, b

i
k])

is in fact finite, the robot i stops after searching the last segment.
We claim that this new schedule satisfies both conditions. Indeed, since the

regions searched by each robot are the same in S and S ′, S ′ is a correct schedule,
and since S satisfies Condition 1, then so does S ′. By construction, S ′ also
satisfies Condition 2. We thus just have to check that the discrete and continuous
online speeds of S ′ are not smaller than the respective ones of S.

6

Suppose that this is not the case. Then there exists a segment [0, `], with
` ≥ 1, that S searches faster that S ′. This further implies that one robot i
searches [0, `] ∩ (∪k∈N[aik, bik]) = (∪p−1k=0[a

i
k, b

i
k]) ∪ [aip, b

′i
p], with aip < b′ip ≤ bip,

faster in S than in S ′. But to search a segment of length d, i needs time at least
d/si, and to go from bik to aik+1, i needs time at least (aik+1 − bik)/wi. Thus S
needs at least (ai0+

∑p−1
k=0(a

i
k+1−bik))/wi+(

∑p−1
k=0(b

i
k−aik)+b′ip −aip)/si, which is

precisely the time required by i to search the same region in S ′, a contradiction.
The schedule S ′ thus satisfies the properties stated in the Lemma. ut

The idea of the LeapFrog algorithm is to make all sufficiently fast robots,
forming the so-called swarm of the algorithm, meet at some regular intervals,
every unit of distance in [12]. For this purpose, each robot of the swarm is
assigned a specific fraction of such unit segment that it has to search. The robot
walks the rest of the segment.

More precisely, if the k robots r1, . . . , rk are ordered such that w1 ≥ · · · ≥ wk,
the LeapFrog algorithm is defined as follows. First, let us define the speed Sj ,

for 1 ≤ j ≤ k, as Sj =
∑j
i=1

1
δi

1+
∑j
i=1

1
wiδi

, with δi = 1
si
− 1

wi
. The discrete online

speed of Algorithm LeapFrog, denoted LF, is defined as Sj∗ , where j∗ is either
the smallest j such that Sj ≥ wj+1, or j∗ = k if there is no such j. Then, all
robots ri with i > j∗ stop at the origin forever. The other robots constitute the
swarm of the algorithm and each such robot ri searches at speed si a proportion
ci =

1
LF·δi −

1
wiδi

of each unit segment (and walks at speed wi the rest of the
time).

The key properties of the algorithm that we will use are, first, that the
robots constituting the swarm are exactly those robots having a walking speed
larger than LF, second, that the algorithm satisfies the regularity properties from
Lemma 1, and third, that all robots of the swarm meet at the same time at the
end of each unit segment.

Before proving that Algorithm LeapFrog is optimal in terms of discrete online
speed, we prove the slightly weaker result that no correct schedule can have a
continuous online speed larger than LF.

Lemma 2. The continuous online speed of any correct schedule is at most LF.

Proof. For a contradiction, let us assume that there exists a correct schedule S
whose continuous online speed is larger than LF, say with speed s. Without
loss of generality, we assume that this schedule satisfies the regularity properties
from Lemma 1. Let Ri (resp. Rf), be the set of robots which search (resp.
do not search) infinitely often in S, i.e., arbitrarily far from the origin. If the
set Rf is non-empty, then let d be the maximum distance from the origin of a
point searched by any such robot. Otherwise, let d = 0. Now, let d′ be some
distance larger than 1 such that every robot from the set Ri has searched a
segment of positive length between distance 1 and distance d′ from the origin.
Finally, consider a sufficiently large distance d′′ > max(d′, d · s

s−LF), such that
the distance LF · (d′′/s) is an integer, and let t = d′′/s. Note that d′′− d > LF · t
by definition of d′′.

7

LF

s
> LF

d′′

d′

d

t

> d

0

Fig. 1. Time-space diagram representing the key elements of the proof of Lemma 2.
Beyond distance d from the origin, only robots from Ri, and thus from the LeapFrog’s
swarm, are searching. Moreover, beyond distance d′, the robots from Ri cannot be in
the hatched region of the diagram. Therefore, in time t, these robots have to traverse
and collectively search the segment [d, d′′], which is longer than what the LeapFrog’s
swarm is able to traverse and collectively search in the same time t, leading to a
contradiction.

In the remainder of the proof (see Figure 1), we will prove that every robot
from the set Ri belongs to the swarm of robots active in Algorithm LeapFrog.
We will also prove that the robots belonging to Ri will, in time t, traverse
and collectively search in S the segment [d, d′′], which is longer than what the
LeapFrog’s swarm is able to traverse and collectively search in the same time t,
leading to a contradiction.

Fix any robot j belonging to the set Ri, with walking speed wj and searching
speed sj < wj . Since robot j searches infinitely often in S, this robot must have
a walking speed larger than s (by regularity of S), and thus larger than LF, and
therefore it must also belong to the LeapFrog’s swarm (by the first key property
of Algorithm LeapFrog). By the second and third key properties of LeapFrog,
robot j in Algorithm LeapFrog is exactly at distance LF · t from the origin at
time t. On the other hand, consider the last segment [d1, d2] searched by robot j
in S before reaching distance d′′ from the origin (one may have d2 = d′′). By
definition of d′ and d′′, we have d2 > 1. By definition of s, robot j is at distance d2
from the origin at time at most d2/s. Since wj > s, robot j is at time t = d′′/s at
a distance larger than or equal to d′′ from the origin, and thus larger than LF · t.
Differently speaking, at time t, robot j is further from the origin in S than in
LeapFrog. By regularity of both schedules, it follows that, in the time interval

8

[0, t], robot j has searched less (i.e., has searched during a smaller proportion of
the time interval) in S than in Algorithm LeapFrog.

We can now summarize the situation as follows. The robots of the set Ri are
also in the LeapFrog’s swarm and, in the time interval [0, t], they collectively
search a smaller distance in S than in Algorithm LeapFrog. This contradicts
the fact that, until time t, they searched in S the whole segment [d, d′′], whose
length is larger than LF · t, without the help of the robots from Rf . ut

We are now ready to prove the main result of this section.

Theorem 1. The discrete online speed of any correct schedule is at most LF.

Proof. For a contradiction, suppose that there exists a correct schedule S whose
discrete online speed is s = LF+ 2ε, for some ε > 0. For any positive integer N ,
we define the average online speed of schedule S in the segment [N,N + 1] as
sN = inf`∈[N,N+1]

`
tA(`) .

Note that, for any positive integer N , sN ≥ N
N+1 · s. Indeed, for any ` ∈

[N,N +1], we have `
tA(`) ≥

N
tA(N+1) ≥

N
N+1 · s, where the first inequality follows

from the fact that tA(·) is an increasing function and the second inequality
follows from the definition of s. Therefore, for a sufficiently large integer N0, we
have that sN ≥ s− ε for all integers N ≥ N0.

We are interested in the continuous online speed of S for distances larger
thanN0, which is given by inf`≥N0

`
tS(`)

. Since [N0,+∞) = ∪N∈N:N≥N0
[N,N+1],

we conclude that

inf
`≥N0

`

tS(`)
= inf
N∈N:N≥N0

sN ≥ s− ε > LF .

Therefore, the continuous online speed of S is strictly larger than LF for distances
larger than N0. Consequently, there exists a correct schedule S ′ with continuous
online speed strictly larger than LF, which is obtained from S by scaling the unit
of distance and the unit of time by a factor of N0. This contradicts Lemma 2. ut

Concerning the continuous online speed metrics, it is possible to obtain a
slightly more precise result than the one of Lemma 2.

Lemma 3. If there are at least two robots and Algorithm LeapFrog uses all the
robots, then the continuous online speed of any correct schedule is strictly smaller
than LF.

Proof. For a contradiction, let us assume that there exists a correct schedule S
whose continuous online speed is at least LF, and thus, by Lemma 2, exactly LF.
Without loss of generality, we assume that this schedule satisfies the regularity
properties from Lemma 1. Similarly as in the proof of Lemma 2, let d be a
distance larger than 1 such that every robot has searched a segment of positive
length between distance 1 and distance d from the origin. For the same reasons
as in Lemma 2, at time d/LF, every robot is at distance at least d from the
origin, and the whole segment [0, d] has been searched. The former property

9

implies that every robot searched a proportion of the segment not larger than in
the case of the original LeapFrog algorithm. Combined with the latter property,
this implies that every robot is in fact exactly at distance d from the origin at
time d/LF. Let [d, d′] be the next segment which is continuously searched by
one of the robots after that time d/LF. Since there are more than one robots
in the swarm, the searching speed of the robot searching [d, d′] must be smaller
than LF. This implies that d′/tS(d′) must be strictly smaller than LF for this
distance d′ ≥ 1, a contradiction. ut

It turns out that simple variations of Algorithm LeapFrog can match the
bounds given in Lemmas 2 and 3. More precisely, we have the following positive
result.

Lemma 4. For any ε > 0, there exists an algorithm whose continuous online
speed is at least LF − ε. Moreover, in the case when there is only one robot
or Algorithm LeapFrog does not use all of the robots, there exists an (optimal)
algorithm whose continuous online speed is exactly LF.

Proof. In Algorithm LeapFrog, all robots participating in the swarm are syn-
chronized at every integer distance from the origin, that is, they all arrive at
the same time at the end of each unit segment. For any positive integer N , we
denote by LeapFrogN the variant of LeapFrog in which the robots participat-
ing in the swarm synchronize every 1/N units of distance, instead of every unit
as in the original Algorithm LeapFrog. It is easy to check that the continuous
online speed of Algorithm LeapFrogN tends to LF as N tends toward infinity.
The family of algorithms {LeapFrogN}N∈N∗ is thus optimal in the case when
there are at least two robots and Algorithm LeapFrog uses all the robots (cf.
Lemma 3).

If there is only one robot, then the only reasonable algorithm is the one in
which the single robot always searches at its maximal speed. This algorithm
is in fact Algorithm LeapFrog, and its continuous online speed is equal, in this
special case, to its discrete online speed LF. Lemma 2 thus shows that Algorithm
LeapFrog is optimal also in this case.

The remaining case is when there are at least two robots, but the swarm
of Algorithm LeapFrog does not use all the robots. In this particular case, we
consider the following adaptation LeapFrog′ of Algorithm LeapFrog. Let r, with
searching speed s, be some robot not participating in the swarm in Algorithm
LeapFrog. In our adaptation LeapFrog′, this robot r searches the semi-infinite
line from its beginning at its maximum searching speed s during 1/LF time units
before stopping forever. Let p be the point at which r stops. (Note that p is at
distance s/LF ≤ 1 from the origin.) All the robots of the swarm walk at the
walking speed of the slowest walker among them until reaching point p. Since
this walking speed is strictly larger than LF, by definition of the swarm, the
robots reach point p at time p/LF − ε/LF, for some positive ε. At this point,
all swarm robots execute Algorithm LeapFrogN as if p was the origin of the
semi-infinite line, with N = d1/εe. The integer N is chosen sufficiently large so
that, at any time at least 1/LF, the swarm has always searched one segment

10

of length 1/N ahead of the normal Algorithm LeapFrogN . If S is the schedule
obtained by LeapFrog′, this implies that `

tS(`)
≥ LF for any ` ≥ 1, and thus

that the continuous online speed of Algorithm LeapFrog′ is equal to LF, which
is optimal by Lemma 2. ut

3 Multi-source beachcombers on the cycle

In this section we show that the structure of the optimal solutions to the offline
multi-source Beachcombers’ Problem on the cycle with zigzags is identical to the
structure of the optimal solutions to the multi-source Beachcombers’ Problem
on a finite segment, as defined in [13]. This implies that the results from [13]
are carried over to the case of the cycle, even if the robots are allowed to zigzag
(i.e., to change direction of movement and search points of the domain on both
sides of their respective starting positions). The (offline) t-source Beachcombers’
Problem on the cycle with zigzags is defined as follows.

Definition 3 (t-SBPCz – t-Source Beachcombers’ Problem on the Cy-
cle with zigzags). Consider a cycle CL of circumference L > 0 2 and n
robots r1, . . . , rn, each robot ri having searching speed si and walking speed wi >
si. For an integer t ≥ 1, t-SBPCz consists in (a) dividing the robots into at most t
groups, (b) choosing a particular starting point on the cycle for each group (the
source of that group), and (c) finding an optimal correct finite searching schedule
for CL.

We will refer to the source point of a group of robots in a particular solution
as the origin or the origin point of the robots in that group. Also, note that
it is not immediately obvious that every instance of t-SBPCz has an optimal
solution, because the number of feasible solutions is infinite. We will prove that
an optimal solution always exists in Subsection 3.2.

The (offline) t-source Beachcombers’ Problem on the segment was defined
in [13] as follows.

Definition 4 (t-SBP – t-Source Beachcombers’ Problem [13]). Consider
a line segment IL = [0, L] and n robots r1, . . . , rn, each robot ri having searching
speed si and walking speed wi > si. For an integer t ≥ 1, the t-Source Beach-
combers’ Problem consists in (a) dividing the robots into at most t groups, (b)
choosing, for each group, a particular starting point on the segment (the source
of that group) and a fixed direction of movement, and (c) finding an optimal
correct finite searching schedule for IL respecting these directions of movement.

Note that the model of [13] precludes by definition any change of direction of
movement for the robots, and in fact each group of robots has a fixed direction
of movement which is specified as part of the solution to the t-SBP problem. On
2 Note that one could normalize the parameter L = 1. However, we prefer to keep
the parameter L > 0 general for the sake of consistency with the definition of the
t-Source Beachcombers’ Problem in [13].

11

the other hand, in our model for t-SBPCz, there is no fixed direction associated
with each robot group (i.e., robots from the same group may go in different
directions) and, in fact, we allow solutions in which robots can actually change
direction of movement.

In this section, we prove that optimal solutions for t-SBPCz do not involve
robots changing their direction of movement (cf. Lemma 11 in Subsection 3.3).
This implies that, in an optimal solution for t-SBPCz, robots from the same
source are divided into robots that move only clockwise and robots that move
only counterclockwise. Intuitively, one robot source in an optimal t-SBPCz solu-
tion serves as two robot sources that obey the t-SBP restriction of each group of
robots having a fixed direction of movement specified as part of the solution. In
Subsection 3.4, we formalize this tight connection between the optimal solutions
of t-SBPCz and 2t-SBP in Lemmas 12 and 13, and we use it to show that the
results from [13] are carried over to the t-SBPCz problem.

In the rest of this section, we will mainly refer to schedules for t-SBPCz, un-
less it is explicitly stated otherwise. In Subsection 3.1, we introduce the notion
of normal schedule (cf. Definition 6), and show how to transform any correct
schedule into a normal schedule with at most the same completion time. In Sub-
section 3.2, we show that every t-SBPCz instance admits an optimal and normal
schedule. Then, in Subsection 3.3, we show a specific structure of optimal normal
schedules, which we use in Subsection 3.4 in order to derive hardness and approx-
imability results for t-SBPCz from the corresponding results for t-SBP. Finally,
in Subsection 3.5, we show a stronger structural property of optimal t-SBPCz

schedules.

3.1 Normalization of t-SBPCz schedules

Proposition 1. For every correct schedule S, there exists a correct schedule S ′,
with the same robot partition, whose completion time is not greater than that
of S and which additionally satisfies the following properties:

1. Every pair of arcs searched by the robots under S ′ have disjoint interiors.
2. During every time interval of S ′, every robot i is either stopped (i.e., “walk-

ing” or “searching” at a speed of 0) or it moves at the maximum speed wi
or si, according to its chosen mode during that interval.

Proof. 1. If two robots search overlapping arcs under S, we alter the trajectory
of one of the robots so that it walks over the part that was searched by
both robots. Since the maximum walking speed of a robot is always greater
than its maximum searching speed, this results in a correct schedule with
completion time at most equal to that of S.

2. If a robot moves, either walking or searching, at a speed that is lower than
the maximum allowed speed for its chosen mode, we alter its trajectory so
that it concludes the corresponding arc at the maximum allowed speed. This
modification can only reduce the completion time of the new schedule. ut

12

p

Fig. 2. An example of the trajectory of a single robot, starting from its origin point p.
Dotted lines correspond to walking at maximum walking speed and solid lines cor-
respond to searching at maximum searching speed. Changes of direction, speed, and
mode are instantaneous.

Observation 1. If S does not satisfy the properties of Proposition 1, then, in the
new schedule S ′ that we obtain by applying Proposition 1, the completion time
of at least one robot is strictly smaller than the completion time of the same
robot under S. Indeed, in both kinds of modifications that we have in the proof
of Proposition 1, a part of the trajectory of some robot is performed at strictly
higher speed, resulting in strictly smaller completion time.

We will use this observation in the proof of Lemma 14 in Subsection 3.5.

In view of Proposition 1, we will assume in the following that the trajectory
of each robot i is characterized by a sequence of arcs and, for each arc, a mode
(searching or walking) and a direction (clockwise or counterclockwise), such that
in each arc the robot is moving at the maximum allowed speed (Figure 2).

Note that an arc may correspond to one or more consecutive time intervals
of the schedule.

Before we can state and prove the next lemma, we need to introduce the
notion of a journey of a robot and some related terminology.

Definition 5. Given a schedule, a clockwise (resp. counterclockwise) journey
of a robot r with origin p is a partial trajectory of r, either between two succes-
sive visits to p or after its last visit to p and until the time it definitively stops,
that starts with r leaving p in the clockwise (resp. counterclockwise) direction. A
journey is simple if it traverses each point of the cycle at most twice. A clock-
wise (resp. counterclockwise) journey is a loop if it returns to p while moving in
the clockwise (resp. counterclockwise) direction. An excursion is a journey that

13

is not a loop. A clockwise (resp. counterclockwise) excursion is quasi-regular if
it is simple and, in addition, r does not walk past the clockwise (resp. counter-
clockwise) farthest searched arc. A clockwise (resp. counterclockwise) excursion
is regular if it is quasi-regular and, in addition, r does not search any arcs while
moving in the counterclockwise (resp. clockwise) direction.

Note that Definition 5 implies that a simple loop traverses each point of the
domain (except p itself) exactly once.

Lemma 5. For every correct schedule S, there exists a correct schedule S ′, with
the same robot partition, whose completion time is not greater than that of S
and in which every robot r with origin p satisfies all of the following:

1. The trajectory of r consists either of a single simple loop, or of at most
one clockwise regular excursion and at most one counterclockwise regular
excursion that do not overlap.

2. Robot r only and definitively stops just after it searches a non-empty arc for
the last time.

Proof. Wemake the following modifications to the trajectory of each robot r with
origin p, independently of the other robots. Let d+ (resp. d−) be the farthest
clockwise (resp. counterclockwise) distance from p that r reaches during a clock-
wise (resp. counterclockwise) journey. We have 0 ≤ d− ≤ L and 0 ≤ d+ ≤ L,
where L is the circumference of the cycle.

If d− + d+ ≥ L, then the whole trajectory of r can be replaced by a single
simple loop (clockwise or counterclockwise), during which r searches all of the
arcs which are searched by r under S, in order of increasing distance from p in
the chosen direction for the loop, stopping immediately after traversing the last
such arc. Note that some of the searched arcs may be traversed in the reverse
direction with respect to S. The direction of the loop is clockwise if r searches
an arc immediately clockwise adjacent to p, otherwise the loop is performed in
the counterclockwise direction.

If d− + d+ < L, then S ′ will consist of two regular excursions in opposite
directions. We assume for the moment that the last journey of r under S is a
counterclockwise journey and we modify the trajectory of r as follows (Figure 3
contains an illustration):

– We replace all of the clockwise journeys of r by a single clockwise regular
excursion that goes at most up to clockwise distance d+, searching on the
way all of the arcs that were searched by r in clockwise journeys under S,
in order of increasing clockwise distance from p, and then returns to p by
walking counterclockwise immediately after searching the last such arc.

– We also replace all of the counterclockwise journeys of r by a single coun-
terclockwise regular excursion that goes at most up to counterclockwise dis-
tance d−, searching on the way all of the arcs that were searched by r in
counterclockwise journeys under S, in order of increasing counterclockwise
distance from p, and then stops immediately after searching the last such
arc.

14

p

p
−

p
+

p

p
−

p
+

Fig. 3. An illustration of the proof of Lemma 5, when d−+d+ < L. Left: The trajectory
of a single robot that consists of a counterclockwise journey up to point p−, followed by
a clockwise journey up to point p+, followed by a counterclockwise journey up to the
robot’s stopping point. Right: The robot’s trajectory is replaced by a single clockwise
journey up to p+ followed by a single counterclockwise journey up to p−. Note that,
in the new schedule, the robot searches the same arcs but it walks less.

– Robot r executes first the above clockwise regular excursion and, subse-
quently, it executes the above counterclockwise regular excursion.

On the other hand, if the last journey of r under S is a clockwise journey, then
we perform the same modifications as above, except that r returns to p during
the counterclockwise regular excursion (which is now executed first) and stops
after searching the farthest searched arc during the clockwise regular excursion.

In both cases, the new trajectory of r satisfies the two required properties,
and the new overall schedule S ′ remains correct because r searches the same
arcs as under S, whereas the trajectories of all other robots remain unchanged.
Moreover, the time required for r may clearly only decrease as a result of the
modifications, therefore the completion time of S ′ is not greater than that of S.

ut

Observation 2. Given a schedule S, let r be a robot with origin p whose trajectory
does not satisfy the properties of Lemma 5 and let S ′ be the new schedule that
we obtain by applying the modifications described in the proof of Lemma 5 for
robot r. Furthermore, assume that the trajectory of r in S does not consist of a
simple loop starting and ending with a searched arc, or a (possibly empty) quasi-
regular excursion followed by a regular excursion in the opposite direction. We
claim that the completion time of r is strictly smaller than its completion time
under S.

Indeed, if d− + d+ ≥ L, then, by construction of the trajectory of r in S ′,
the total distance traversed by r in walking mode is strictly smaller in S ′ than
under S, whereas the total length of the searched arcs remains the same.

If d− + d+ < L, then r does not perform a loop under S and we can as-
sume that the trajectory of r in S satisfies the second property, and contains at
most one clockwise simple excursion and at most one counterclockwise simple

15

excursion. Otherwise, r clearly walks strictly less under S ′ than under S and
searches the same total distance as under S. We can also assume that, of these
two simple excursions, the one that is executed last is regular, otherwise r clearly
walks strictly less in S ′. Therefore, the excursion that is executed first must not
be quasi-regular, which implies that r walks past the farthest searched arc during
that excursion. By construction of S ′ this extra useless walking is eliminated,
therefore r walks strictly less under S ′.

We will use this observation in the proof of Lemma 14 in Subsection 3.5.

Lemma 6. For every correct schedule S, there exists a correct schedule S ′, with
the same robot partition (but not necessarily the same sources), whose completion
time is not greater than that of S and in which the following properties are
satisfied:

1. The given cycle CL is covered by at most t arcs with non-overlapping interi-
ors, such that the robots originating from each robot source only move within
its associated arc. If t = 1, the arc simply encompasses the whole cycle.

2. For each robot source p, a clockwise traversal of CL starting from p first
encounters all the arcs that are searched in clockwise journeys by robots
originating from p, and then it encounters all the arcs that are searched
in counterclockwise journeys by robots originating from p.

Proof. Without loss of generality, we assume that the schedule S satisfies the
properties of Lemma 5. We will show how to modify S so as to obtain S ′ with
the required properties.

Fix a source p under S such that not all of its robots have empty trajectories.
By Lemma 5, every robot originating from p performs either a single simple loop,
or at most one clockwise regular excursion and at most one counterclockwise
regular excursion that do not overlap. Let R(p) (resp. L(p)) denote the sum of
the lengths of all arcs that are searched in clockwise (resp. counterclockwise)
journeys by robots originating from p. Consider a new arc of length L(p)+R(p).
This new arc can be searched completely by the group of robots that originate
from p under S, as follows: The source is a point p′ at distance L(p) from
one endpoint of the new arc. Each robot follows exactly the same trajectory
as under S, except that during its clockwise (resp. counterclockwise) journey,
the parts of its trajectory that are searched by robots not originating from p
under S, or that are searched during counterclockwise (resp. clockwise) journeys
of robots originating from p, are reduced to zero-length segments (or “chopped
off,” see Figure 4 for an illustration). Note that, under this schedule for the new
arc of length L(p) +R(p), the completion time of each robot is not greater than
its completion time under S.

Let p1, . . . , pt′ , where t′ ≤ t, be an arbitrary enumeration of the robot
sources that contain robots with nonempty trajectories under S. Note that∑t′

i=1 (L(pi) +R(pi)) = L. We construct a new schedule S ′ as follows. We parti-
tion CL into t′ arcs, where the i-th arc has length L(pi) +R(pi). The i-th arc is

16

p

Fig. 4. An illustration of the proof of Lemma 6. Top: Schedule S. A group of robots
originating from point p search collectively a non-continuous subset of the arcs. The
gaps are searched by robots originating from different robot sources (not shown in the
figure). Bottom: Schedule S ′. The same group of robots follow the same trajectories
(with the gaps having been eliminated) and they search collectively a continuous region
of the same length as the non-continuous region that they searched under S. The
distance walked by each robot is clearly not increased compared to the distance walked
by the same robot under S, and there exists at least one robot that walks strictly less
than under S.

searched completely by the robots that originated from pi under S, as explained
in the previous paragraph.

The new schedule clearly satisfies property 1. If t′ ≥ 2, then property 1
implies property 2 in view of Lemma 5. If t′ = 1, property 2 is guaranteed by
construction of the new trajectories of the robots. ut

Observation 3. If S satisfies the properties of Lemma 5 but it does not sat-
isfy those of Lemma 6, then in the new schedule S ′ that we obtain by applying
Lemma 6, the completion time of at least one robot is strictly smaller than the
completion time of the same robot under S.

Indeed, if the trajectories of robots from two different sources overlap, then
at least one of them will have part of its trajectory that is searched by a robot
from a different source. That part of its trajectory will be reduced to a zero-length
segment (chopped off) in S ′, therefore its completion time will be strictly reduced.

On the other hand, if there is only one robot source p under S whose robots
have nonempty trajectories, and a clockwise traversal from p encounters an arc
searched in a counterclockwise journey (say by robot r1) before an arc searched
in a clockwise journey (say by robot r2), then both of r1, r2 will have parts of
their trajectories reduced to zero-length segments.

We will use this observation in the proof of Lemma 14 in Subsection 3.5.

Lemma 7. For every correct schedule S, there exists a correct schedule S ′, with
the same robot partition, whose completion time is not greater than that of S,
and in which each journey of the trajectory of each robot contains exactly one
searched arc.

Proof. Without loss of generality, we assume that the schedule S satisfies the
properties of Lemmas 5 and 6. We will show how to modify S so as to obtain S ′
with the required property.

17

p

(r)
a

p

b

(r)

x

x

Fig. 5. An illustration of the proof of Lemma 7 (the clockwise direction is to the right
in the figure). Top: Schedule S. Robot r performs a clockwise journey that contains
at least two searched arcs a and b. Two other robots search the part of the cycle
between a and b. Bottom: Schedule S ′. Robot r searches and walks the same total
lengths as under S, but a and b are merged into a single searched arc. The searched
arcs of the two other robots that lie between a and b have been shifted by x toward
the robot source p.

Let p be a robot source in S and let r be any robot starting from p that
performs a clockwise (without loss of generality) journey that contains at least
two searched arcs. Let a and b be two such arcs that are searched successively
by r, of which a is closest to p. Finally, let x be the length of a. We modify
the trajectory of r so that it no longer searches a, but it starts searching at
distance x before reaching the beginning of b. Furthermore, for every robot r′
that searches in S one or more arcs between a and b, we displace all such arcs
by a distance of x counterclockwise. Figure 5 contains an illustration. As a
result of this modification, we obtain a schedule in which r finishes at the same
time because it walks and searches over the same distances as before, whereas
every other robot whose trajectory was modified finishes at the same time or
possibly earlier, because some of its searched arcs were moved closer to its origin.
Therefore, the completion time of the new schedule is not greater than that of
the original schedule.

Successive applications, for all robot sources p, of this modification (or its
symmetric one for counterclockwise journeys) reduce by at least one the total
number of searched arcs in every new schedule, up to the point where this process
terminates with the desired schedule S ′ in which each journey of each robot
contains one searched arc. ut

Observation 4. If S satisfies the properties of Lemmas 5 and 6 but it does not
satisfy that of Lemma 7, then in the new schedule S ′ that we obtain by applying
Lemma 7, the completion time of at least one robot is strictly smaller than the
completion time of the same robot under S.

Indeed, fix a robot source p and consider the last time that the modification
described in the proof of Lemma 7 is applied to a robot starting from p. Then,
there must exist at least one searched arc c between a and b, which is the only
arc searched by some robot r′, and which is displaced, in the new schedule, by

18

a distance of x closer to the origin p of r′. Therefore, r′ walks less in S ′ before
reaching c and its completion time is strictly decreased.

We will use this observation in the proof of Lemma 14 in Subsection 3.5.

We call a schedule that satisfies the properties guaranteed by Proposition 1
and Lemmas 5, 6, and 7 normal :

Definition 6 (Normal schedule). A schedule S is called normal if it satisfies
the following properties:

1. Every pair of searched arcs (not necessarily by the same robot) have disjoint
interiors.

2. During every time interval, every robot is either stopped or it moves at the
maximum walking or searching speed, according to its chosen mode during
that interval.

3. The trajectory of every robot consists either of a single simple loop, or of
at most one clockwise regular excursion and at most one counterclockwise
regular excursion that do not overlap.

4. Every robot only and definitively stops just after it searches a non-empty arc
for the last time.

5. The given cycle CL can be covered by at most t arcs with non-overlapping
interiors, such that the robots originating from each robot source only move
within its associated arc.

6. For each robot source p, a clockwise traversal of CL starting from p first
encounters all the arcs that are searched in clockwise journeys by robots
originating from p, and then it encounters all the arcs that are searched
in counterclockwise journeys by robots originating from p.

7. Each journey of the trajectory of each robot contains exactly one searched
arc.

It follows from the proofs of Proposition 1 and Lemmas 5, 6, and 7 that,
for every correct schedule S that is not normal, there exists a correct normal
schedule S ′ that has smaller or equal completion time. In other words, we can
guarantee all of the properties ensured by Proposition 1 and Lemmas 5, 6, and 7
simultaneously. Moreover, in all cases, the new schedule S ′ can be computed in
polynomial time.

We thus have the following:

Lemma 8. For every non-normal correct schedule S, there exists a normal cor-
rect schedule S ′, with the same robot partition, whose completion time is not
greater than that of S. The normal schedule S ′ can be computed from S in poly-
nomial time.

3.2 Existence of optimal and normal t-SBPCz schedules

Given the statement of the t-SBPCz problem in Definition 3, it is not immediately
obvious that there exists an optimal solution. Indeed, since the set of feasible

19

solutions in a given instance is clearly infinite, it might be the case that there
exist infinite sequences of solutions with strictly decreasing completion times,
converging to the infimum completion time over all feasible solutions, without
there being a solution that actually attains that infimum. In this subsection, we
prove that there exists, in fact, an optimal solution, which is also normal in the
sense of Definition 6.

Note that, in view of Lemma 8, for every infinite sequence of solutions with
strictly decreasing completion times that converge to some limit c, there exists an
infinite sequence of normal solutions with strictly decreasing completion times,
which converge to some limit c′ ≤ c. It suffices, therefore, to restrict our attention
to the set of normal solutions N to a given instance and prove that it contains
one that is optimal.

In view of Definition 6, a normal solution for t-SBPCz can be specified (up
to the actual cyclic order of the robot group starting points) by choosing the
following parameters:

1. The number of robot groups t′ ≤ t.
2. The partition of robots into t′ groups.
3. For each robot, the number of journeys in its trajectory (one or two).
4. For each robot, the direction of its first journey (clockwise or counterclock-

wise).
5. For each robot group, two orders of the robots of the group. A robot r pre-

cedes a robot r′ in the first (resp. second) order if the arc searched by r dur-
ing its clockwise (resp. counterclockwise) journey is closer to p than the arc
searched by r′ during its clockwise (resp. counterclockwise) journey, where
p is the yet unspecified origin of the group.

6. For each robot r, the length of the arc that it searches during its clockwise
journey and the length of the arc that it searches during its counterclockwise
journey.

Fixing the above parameters also fixes the length of the arc that is associated to
each group (cf. Definition 6, item 5), as well as the starting point of the group
within its associated arc. Different cyclic orders of the robot group origins yield
different solutions, but we will consider these as equivalent for our purposes.

We next observe that, once parameters 1-5 above are fixed, the completion
time of the trajectory of each robot is a linear function of the lengths of the
searched arcs of all robots during their clockwise and counterclockwise journeys
(parameter 6). One can then formulate a linear program that seeks the lengths
of the searched arcs of the robots so as to minimize the maximum completion
time over all robot trajectories, subject to the constraint that the lengths of all
searched arcs are nonnegative and their sum is equal to L.

Let P denote the set of all possible (joint) choices for parameters 1-5, and
let T (y) be the optimal value of the linear program that corresponds to the
choice of parameters y ∈ P. Note that the size of P is finite, since it is bounded
by a function of n and t. Therefore, miny∈P T (y) is well defined and it is the
completion time of the optimal schedule in N . We thus proved the following:

Theorem 2. Every instance of t-SBPCz has an optimal and normal solution.

20

3.3 Properties of optimal and normal t-SBPCz schedules

Definition 7. Given a normal schedule, we use the term clockwise (resp. coun-
terclockwise) leg of a robot to refer to the clockwise (resp. counterclockwise) part
of a clockwise (resp. counterclockwise) journey of that robot.

The leg of a journey is, in a sense, the “interesting” part of the journey, i.e.,
the part of the trajectory from the origin of the robot to the farthest point
reached in that journey, during which the robot searches at least one arc.

In this subsection, we show that in every optimal and normal schedule, the
following assertions hold:

1. All robots terminate their trajectories simultaneously (Corollary 1).
2. The trajectory of each robot contains exactly one leg (Lemma 11).

Lemma 11 establishes that, in an optimal solution, robots do not change direction
of movement.

With every fixed normal schedule S, we associate the corresponding partition
of the circle into pairwise interior-disjoint arcs, each of which is searched by a
single robot that is moving in the same direction over a continuous time interval.
In view of Lemma 5, we may assume that no robot source is in the interior of
any of the arcs.

Definition 8. Let S be a normal schedule for t-SBPCz. We denote by A+
S (resp.

A−S) the set of searched arcs that belong to clockwise (resp. counterclockwise)
legs of robots. If p is a source under S, then A+

S (p) (resp. A−S (p)) denotes the
set of arcs searched in the clockwise (resp. counterclockwise) direction by robots
originating from p. For a, b ∈ A+

S ∪A
−
S and p a point on CL, we write a ≺p b if

a clockwise traversal from p encounters first a and then b.

For the purpose of stating the next lemma, given a normal schedule S with
completion time T , we will denote by I(S) the inclusion-maximal set of searched
arcs that satisfies the property that each arc in I(S) is searched by a robot that
stops strictly earlier than T and, for each robot source p, the union of all arcs
in I(S) ∩ (A+

S (p) ∪ A
−
S (p)) is a continuous arc that contains p. We will denote

by R(S) the number of distinct robots that search the arcs in I(S).

Lemma 9. Let S be a normal correct schedule for t-SBPCz with completion
time T , such that at least one robot stops at time T − ε, for some ε > 0. Then,
there exists a normal correct schedule S ′ such that, either its completion time is
strictly smaller than T , or its completion time is equal to T but R(S ′) > R(S).

Proof. By assumption, there exist not necessarily distinct robot sources p and q
such that some robot originating from p terminates strictly earlier than T and
some robot originating from q terminates at time T , under S. We distinguish
two cases:

Case 1: All robots originating from p terminate strictly earlier than T un-
der S.

21

If all robots originating from p terminate strictly earlier than T under S,
then there must exist robot sources p′ and q′ such that all robots originating
from p′ terminate strictly earlier than T , at least one robot originating from q′

terminates at time T , and the arcs associated to p′ and q′ (cf. Definition 6,
item 5) are adjacent.

Observation 5. Let α be a positive real. For a given set of robots, if there ex-
ists a correct single-source schedule with completion time T for a line segment
of length L, then there exists a correct single-source schedule with completion
time αT for a line segment of length αL.

Now, the idea is to slightly extend the arc searched collectively by robots
originating from p′ (while making sure that all of these robots still terminate
strictly earlier than T) and correspondingly contract the arc searched by robots
originating from q′, which results in all of these robots terminating strictly earlier
than T . The extension and contraction of the arcs searched by robots originating
from p′ and q′, respectively, are possible due to Observation 5.

The new schedule S ′ has completion time at most T . If the completion time
of S ′ remains T , then all robots that were contributing to R(S) still contribute
to R(S ′), and there is at least one robot (namely, the one originating from q′ that
terminates at time T under S) that contributes to R(S ′) but does not contribute
to R(S). Therefore, R(S ′) > R(S).

Case 2: There exists a robot originating from p that terminates at time T
under S.

In this case, let a be the minimum element of (A+
S (p)∪A

−
S (p))\I(S) under ≺p

and let b be the maximum element of (A+
S (p)∪A

−
S (p))\I(S) under ≺p (each of a

and b is adjacent to some arc in I(S) or to the origin p). Since S is normal, we
have a ∈ A+

S (p) or b ∈ A
−
S (p). We assume without loss of generality that a ∈ A+

S
and that a is searched by some robot j. Moreover, robot j must be terminating
its trajectory at time T , otherwise arc a would be in I(S). Furthermore, by
minimality of a, there exists some robot i 6= j that terminates at time T − ε, for
some ε > 0, and that visits the clockwise starting extremity u of a. Note that if
this point u is not the same as p, then robot i must visit u during its clockwise
leg.

We distinguish three subcases, which are illustrated in Figure 6. If the tra-
jectory of robot i is such that the robot goes clockwise after its first visit of u
(therefore it walks over the entire length of arc a), then we modify it so that it
searches a sub-arc c of a of length min(ε2 ·

wisi
wi−si ,

|a|
2), instead of walking over c.

If the trajectory of robot i is such that the robot goes counterclockwise after
its first visit of u, then we modify it so that it searches a sub-arc c of a of
length min(ε2 ·

wisi
wi+si

, |a|2), then walks counterclockwise over c, and then resumes
its previous trajectory. Finally, if robot i never moves after its first visit of u
(this includes the case when u is the same as p and robot i stops immediately
at the source), then we extend its trajectory so that it searches a sub-arc c of a
of length min(ε2 · si,

|a|
2) and then stops.

22

p

(j)

(i)

p

(j)

(i)

a

c

u u

p

(j)

(i)

p

(j)

(i)

a

c

u u

p

(j)

(i)

p

(j)

(i)

a

c

u u

Fig. 6. An illustration of the modifications to schedule S in Case 2 of the proof of
Lemma 9 (the clockwise direction is to the right in the figure). Assuming that j is
not the only robot that terminates at time T under S, the shaded part around p in
the figures on the left represents I(S) ∩ (A+

S (p) ∪ A
−
S (p)) and the shaded part in the

figures on the right represents I(S ′) ∩ (A+
S′(p) ∪ A

−
S′(p)). In all three cases, robot j

contributes to R(S ′) but not to R(S), therefore R(S ′) > R(S). Top: Subcase 1: i
continues clockwise after its first visit of u. Middle: Subcase 2: i goes counterclockwise
after its first visit of u. Bottom: Subcase 3: i stops upon its first visit of u.

In all cases, we alter the trajectory of robot j so that it walks over c and then
continues with searching the remaining part of arc a and then with the rest of
its previous trajectory. In the new schedule S ′, both i and j terminate strictly
before time T , while the trajectories of other robots remain the same.

If j is the only robot to finish at time T under S, then the completion time
of S ′ is strictly smaller than T . Otherwise, S ′ finishes at time T and R(S ′) >
R(S). ut

From Lemma 9, we obtain the following important corollaries:

Corollary 1. In every optimal and normal schedule for t-SBPCz, all robots ter-
minate their trajectories simultaneously.

Proof. For the purpose of contradiction, let S be an optimal and normal schedule
for a given set of n robots with completion time T , in which at least one robot
terminates earlier than T , and which maximizes R(S) (which is at most n − 1
by definition). Lemma 9 should apply, but the completion time cannot decrease
because of S being optimal, and R(S) cannot increase because of its maximality,
which leads to the desired contradiction. ut

Corollary 2. In every optimal and normal schedule for t-SBPCz, the trajectory
of each robot contains at least one leg.

We are now ready to further restrict the structure of optimal and normal
schedules. We first show that there are no crossing robots (Lemma 10, cf. Defi-
nition 9), and then that each robot performs only one leg (Lemma 11).

23

Definition 9 (Crossing robots). Let S be a normal schedule. We say that a
pair of robots i, j originating from the same robot source p cross under S if robot i
searches arcs a+i ∈ A

+
S (p) and a−i ∈ A

−
S (p) (in any order), robot j searches

arcs a+j ∈ A
+
S (p) and a−j ∈ A

−
S (p) (in any order), and a+i ≺p a

+
j ≺p a

−
i ≺p a

−
j

or a+j ≺p a
+
i ≺p a

−
j ≺p a

−
i .

An example of crossing robots is shown in Figure 7 (left).

Lemma 10. No optimal and normal schedule contains a pair of crossing robots.

Proof. Let S be an optimal and normal schedule in which robot i, originating
from robot source p, searches arcs a+i ∈ A

+
S (p) and a

−
i ∈ A

−
S (p) (in any order)

and robot j, originating from the same robot source p, searches arcs a+j ∈ A
+
S (p)

and a−j ∈ A
−
S (p) (in any order). By item 7 of Definition 6, these are the only

arcs searched by robots i and j. By Corollary 1, all robots terminate their
trajectories simultaneously. For a contradiction, suppose that robots i and j
cross under S, i.e., a+i ≺p a

+
j ≺p a

−
i ≺p a

−
j (Figure 7, left). Fix an ε in the

range 0 < ε < min(|a+i |, |a
−
j |). Let b be the sub-arc of length ε of a−j that lies at

its counterclockwise end and let c be the sub-arc of length ε of a+i that lies at its
clockwise end. By assumption, under S, robot i walks over b on its way to a−i
and robot j walks over c on its way to a+j .

We modify the trajectory of robot i so that it searches b and a−i in its counter-
clockwise leg, and a+i \ c in its clockwise leg. Similarly, we modify the trajectory
of robot j so that it searches c and a+j in its clockwise leg, and a−j \ b in its
counterclockwise leg. Figure 7 illustrates the modifications. These modifications
result in a correct and normal schedule S ′, in which the distances walked by
robot i and by robot j are shortened by at least ε with respect to S, whereas the
distance searched by each robot remains the same. Therefore, under S ′, both
robots conclude their trajectory strictly earlier than under S. Since no robot
increases the completion time of its own trajectory, either S ′ takes less time
than S, which contradicts the optimality of S, or S ′ is also optimal and some
robots terminate their trajectories earlier than others. This contradicts Corol-
lary 1. ut

Lemma 11. In every optimal and normal schedule, the trajectory of each robot
contains exactly one leg.

Proof. Let S be an optimal and normal schedule in which at least one robot
has a trajectory with a clockwise leg and a counterclockwise leg. By Lemma 10,
there exists a robot i? with a two-leg trajectory that originates from some robot
source p and searches arcs a+i? ∈ A

+
S (p) and a

−
i? ∈ A

−
S (p), such that a+i? is greater

under ≺p than every other arc in A+
S (p) that is searched by a robot that origi-

nates from p and whose trajectory has two legs, and a−i?(p) is smaller under ≺p
than every other arc in A−S (p) that is searched by a robot that originates from p
and whose trajectory has two legs. In particular, for every arc z ∈ A+

S (p)∪A
−
S (p)

such that a+i? ≺p z ≺p a
−
i? , z is searched by a robot whose trajectory has only

24

p

(i)

(j)

a
+

i

a
+

j

a
−

i

a
−

j

ǫ

ǫ

p

ǫ

ǫ

(i)

(j)

Fig. 7. An illustration of the proof of Lemma 10. Left: Schedule S. Robots i and j
form a pair of crossing robots. Right: Schedule S ′. Both robots search the same total
lengths as under S. Robot i walks a distance of 2ε less and robot j walks a distance
of ε less than under S.

one leg. Without loss of generality, we assume that robot i? first performs its
clockwise leg and then walks back to the origin and performs its counterclock-
wise leg, the other case being handled by a completely symmetric argument.
Let r1, . . . , rρ− be the robots that search the arcs in {z : a+i? ≺p z ≺p a

−
i?}∩A

−
S (p),

ordered so that arρ− ≺p · · · ≺p ar1 ≺ a−i? , where arj is the arc searched
by robot rj . Similarly, let q1, . . . , qρ+ be the robots that search the arcs in
{z : a+i? ≺p z ≺p a

−
i?} ∩ A

+
S (p), ordered so that a+i? ≺p aq1 ≺p · · · ≺p aqρ+ ,

where aqj is the arc searched by robot qj (Figure 8, bottom).
Our goal is to modify the lengths of the segments a+i? , a

−
i? , arj for 1 ≤ j ≤ ρ−,

and aqj for 1 ≤ j ≤ ρ+, without changing their relative order, their assignment to
robots, or their total length, so that the time required for robot i? to conclude its
trajectory is reduced, whereas the time required for all other robots remains the
same. Note that the robot source p may need to be shifted to a new point p′, in
order to ensure that the completion times of the robots that search the segments
{z : z ≺p a+i? ∨ a

−
i? ≺p z} remain the same as under S (Figure 8, top). Although

the robot source p is displaced in the new schedule, the arc associated to the
robot source p′ under the new schedule is at the same position on the cycle and
has the same length as the arc associated to p under S. In this way, we obtain
a schedule for the group of robots originating from p′ in which: (a) the robots
originating from p′ cover collectively the same sub-segment as under S in at most
the same time and (b) one robot terminates strictly earlier than the others. This
contradicts Corollary 1.

To this end, we introduce the following variables:

– δ+: the amount by which a+i? is lengthened.
– δ−: the amount by which a−i? is lengthened.
– εqj , for 1 ≤ j ≤ ρ+: the amount by which aqj is lengthened.
– εrj , for 1 ≤ j ≤ ρ−: the amount by which arj is lengthened.

25

pa
−

i? a
+

i? aq1 aq
ρ+

. . .

. . .

. . .

. . . ar1ar
ρ−

.

p
0

Fig. 8. An illustration of the modifications to schedule S in the proof of Lemma 11 (the
clockwise direction is to the right in the figure). Bottom: The cycle arc corresponding
to robot source p under S. The shaded part around p is covered by robots whose
trajectories are not modified in S ′. Top: Under S ′, the robot source p is displaced
to p′. The trajectories of the robots that covered the shaded part under S are not
modified, and therefore they cover the corresponding shaded part under S ′.

All of these variables may be associated with positive or negative values. The
modified searched arcs of robots rj (1 ≤ j ≤ ρ−) and qj (1 ≤ j ≤ ρ+) must still
cover the same total length of the cycle as they did under S. This yields the
following constraint:

ρ−∑
λ=1

εrλ +

ρ+∑
λ=1

εqλ + δ− + δ+ = 0 (1)

We demand that, in the new schedule, robot i? complete its trajectory strictly
earlier than in S. Given the modifications to a+i? and a−i? , robot i

? walks δ+
more than in S and searches δ+ + δ− more than in S. Therefore, we must have
δ+

wi?
+ δ++δ−

si?
< 0 or, slightly rearranged:

δ− < −δ+ ·
(
1 +

si?

wi?

)
(2)

We also demand that, in the new schedule, each robot rj and each robot qj
conclude its trajectory at the same time as in the original schedule. Robot rj
walks

∑j−1
λ=1 εrλ + δ

− more than in S and searches εrj more than in S. Similarly,
robot qj walks

∑j−1
λ=1 εqλ + δ+ more than in S and searches εqj more than in S.

We have, therefore, the following sets of constraints:∑j−1
λ=1 εrλ + δ−

wrj
+
εrj
srj

= 0 , for j = 1, . . . , ρ− (3)

∑j−1
λ=1 εqλ + δ+

wqj
+
εqj
sqj

= 0 , for j = 1, . . . , ρ+ (4)

By Eq. 3 and 4, we determine the values of εrj (1 ≤ j ≤ ρ−) and εqj (1 ≤
j ≤ ρ+) in terms of δ+ and δ− as follows:

εrj = −δ− ·
srj
wrj
·
j−1∏
λ=1

(
1− srλ

wrλ

)
, for j = 1, . . . , ρ− (5)

26

εqj = −δ+ ·
sqj
wqj
·
j−1∏
λ=1

(
1− sqλ

wqλ

)
, for j = 1, . . . , ρ+ (6)

If we plug Eq. 5 and 6 into Eq. 1, we obtain:

δ− · (1−R) + δ+ · (1−Q) = 0 (7)

where R and Q are defined as follows:

R =

ρ−∑
j=1

(
srj
wrj
·
j−1∏
λ=1

(
1− srλ

wrλ

))
, Q =

ρ+∑
j=1

(
sqj
wqj
·
j−1∏
λ=1

(
1− sqλ

wqλ

))
(8)

These equations can be transformed into the following ones:

R = 1−
ρ−∏
λ=1

(
1− srλ

wrλ

)
, Q = 1−

ρ+∏
λ=1

(
1− sqλ

wqλ

)
(9)

Due to the fact that, for every robot i, 0 < si < wi, we conclude from Eq. 9 that
0 ≤ R < 1 and 0 ≤ Q < 1, and, in particular, R = 0 (resp. Q = 0) if and only if
ρ− = 0 (resp. ρ+ = 0).

In order to choose appropriate values for δ− and δ+, we argue as follows.
Case 1 : 1−Q

1−R > 1+ si?
wi?

. By Eq. 7, we have δ− = −δ+ · 1−Q1−R . We choose, then,

a positive value for δ+ and we obtain δ− = −δ+ · 1−Q1−R < −δ+ ·
(
1 + si?

wi?

)
, thus

Eq. 2 is satisfied. The exact value of δ+ should be small enough that none of
the shortened arcs (a−i? and aqj , j = 1, . . . , ρ+) is shortened to a negative length,
i.e.:

0 < δ+ ≤ min

∣∣a−i? ∣∣ · 1−R1−Q
, min
1≤j≤ρ+

∣∣aqj ∣∣
sqj
wqj
·
∏j−1
λ=1

(
1− sqλ

wqλ

)
 (10)

The new schedule contradicts Corollary 1.
Case 2 : 1−Q

1−R < 1 + si?
wi?

. By Eq. 7, we have δ− = −δ+ · 1−Q1−R . We choose,

then, a negative value for δ+ and we obtain δ− = −δ+ · 1−Q1−R < −δ+ ·
(
1 + si?

wi?

)
,

thus Eq. 2 is satisfied. Again, the exact value of δ+ should be small enough (in
absolute value) that none of the shortened arcs (a+i? and arj , j = 1, . . . , ρ−) is
shortened to a negative length, i.e.:

0 > δ+ ≥ −min

∣∣a+i? ∣∣ , min
1≤j≤ρ−

∣∣arj ∣∣
srj
wrj
·
∏j−1
λ=1

(
1− srλ

wrλ

)
 (11)

The new schedule contradicts Corollary 1.
Case 3 : 1−Q

1−R = 1+ si?
wi?

. In this case, for all values of δ− and δ+ that satisfy
Eq. 7, Eq. 2 holds with equality and thus the completion time of the trajectory
of robot i? remains the same as in the original schedule S. However, if we set δ+

27

to the maximum value allowed by Eq. 10, we are guaranteed that either a−i? or
some arc aqj is reduced to length 0. Then, we can replace this schedule by a
schedule in which the corresponding robot does not execute at all the leg that
contains the searched arc whose length is reduced to zero. If that robot is i?, then
it will execute only its clockwise leg, whereas if that robot is some robot qj , then
it will stop at its origin at time 0. In both cases, the new schedule contradicts
Corollary 1. ut

3.4 Hardness and approximability of t-SBPCz

With Lemmas 8 and 11, we have the necessary tools in order to connect the
solutions for t-SBPCz instances to those for 2t-SBP instances:

Lemma 12. For a fixed t ≥ 1, let I be an instance of 2t-SBP on a finite segment
of length L and let I ′ be the corresponding instance of t-SBPCz with the same set
of robots on a cycle of circumference L. Every solution for I can be transformed
in polynomial time to a solution for I ′ with smaller or equal cost.

Proof. Let S be a schedule for I, with t′ ≤ 2t robot sources. The same schedule S
can also be seen as a 2t-SBPCz schedule for CL (the cycle of circumference L), if
we imagine that the finite segment of length L is bent into a cycle by identifying
its two endpoints. By Lemma 8, we can compute in polynomial time a normal
schedule S ′ for CL, with the same number t′ of robot sources, and with smaller
or equal cost.

By inspection of the proofs of Proposition 1 and Lemmas 5, 6, and 7, the
schedule S ′ retains the property of S that robots do not change direction of
movement and, additionally, all robots that belong to the same robot group move
in the same direction. Moreover, in view of this property, the arc associated to
each robot source p (cf. Definition 6, item 5) has p at one of its extremities.
We show now how to convert S ′ into a t-SBPCz schedule, and therefore into a
schedule for I ′.

We call flipping a group of robots that start from a source p and search
collectively an arc s the operation whereby the source of the group is moved to
the other endpoint of s and the trajectories of the robots are executed in the
inverse direction with respect to the original schedule. Note that successive flips
of groups of robots starting from schedule S ′ do not affect the correctness or the
completion time of the schedule. Our goal is to flip certain groups of robots, so
as to end up with a schedule S ′′ in which at most d t

′

2 e ≤ t distinct points serve
as robot sources. Then, the desired t-SBPCz schedule for I ′ is a schedule which
is identical to S ′′, except that, for each of those distinct points, all robots that
start from that point are merged into a single group of robots.

Let p1, . . . , pt′ be an enumeration of the robot sources in S ′, starting from
an arbitrary robot source p1 and proceeding clockwise, breaking ties arbitrarily.
For i = 1, . . . , b t

′

2 c, we look at p2i−1 and p2i. If, for both of these robot sources,
the direction of movement of the robots is the same, then we flip one of the two
groups so that their sources coincide. On the other hand, if the two groups of

28

robots move toward each other, then we flip both groups, which also results in
both groups having the same point as source. Note that, if the two groups move
away from each other, then the two robot sources must already be identical,
or the interior of the clockwise arc p2i−1 p2i would not be searched by any
robot. The resulting schedule S ′′ has d t

′

2 e ≤ t distinct points that serve as robot
sources, as desired. ut

Lemma 13. For a fixed t ≥ 1, let I be an instance of t-SBPCz on a cycle of
circumference L and let I ′ be the corresponding instance of 2t-SBP with the same
set of robots on a finite segment of length L. Every optimal solution for I can
be transformed in polynomial time to a solution for I ′ with equal cost.

Proof. Let S be an optimal schedule for I with t′ ≤ t robot sources. By Lemma 8,
we can compute from S in polynomial time an optimal and normal schedule S ′
for I with t′ robot sources.

By Lemma 11, for each of the t′ robot sources in S ′, some of the robots
assigned to that point move clockwise without changing direction and the rest
move counterclockwise without changing direction. Now, we choose an arbitrary
robot source and we cut the cycle at one of the extremities of its associated
arc (cf. Definition 6, item 5), thus obtaining a segment of length L. For each
robot source, we divide its robots into two groups moving in opposite directions.
These robot groups are now separate, but they happen to have the same source
point. Since each group from S ′ is now split into at most two new groups, and
all the robots from each new group move in the same direction, we obtain a
valid solution with the same completion time for I ′, with at most 2t′ ≤ 2t robot
groups. ut

Corollary 3. For a fixed t ≥ 1, let I be an instance of t-SBPCz on a cycle
of circumference L and let I ′ be the corresponding instance of 2t-SBP with the
same set of robots on a finite segment of length L. The optimal solutions for I
and I ′ have the same cost.

In view of Lemmas 12 and 13 and Corollary 3, the results in [13] for 2t-SBP
carry over to t-SBPCz. In particular, it is shown in [13] that 2-SBP is NP-hard
even when all robots have the same walking speed ([13, Theorem 5]), and that
2-SBP admits a 0.5569-approximation algorithm that runs in polynomial time
([13, Lemma 4]). We thus obtain the following for 1-SBPCz:

Theorem 3. 1-SBPCz is NP-hard, even when all robots have the same walking
speed.

Theorem 4. 1-SBPCz admits a 0.5569-approximation algorithm that runs in
polynomial time.

Moreover, it is shown in [13] that t-SBP can be solved optimally in polynomial
time if all robots have the same search speed ([13, Theorem 2]) and that t-SBP
admits a randomized algorithm which achieves an expected approximation ratio
of 1−

(
1− 1

t

)t, needs O(n log t) random bits, and runs in polynomial time ([13,
Theorem 3]). We thus obtain the following for t-SBPCz:

29

Theorem 5. t-SBPCz instances in which all robots have the same search speed
can be solved optimally in polynomial time.

Theorem 6. t-SBPCz admits a randomized algorithm which achieves an ex-
pected approximation ratio of 1 −

(
1− 1

2t

)2t, needs O(n log t) random bits, and
runs in polynomial time.

3.5 A stronger structural property of optimal t-SBPCz schedules

Although not necessary for the purposes of this work, we can actually prove
the stronger property that every optimal schedule is, in fact, a normal schedule
in which the trajectory of every robot contains exactly one leg. In view of Ob-
servations 1, 2, 3, and 4, in almost all cases, the modification of a non-normal
schedule S to a normal schedule S ′ strictly decreases the completion time of at
least one robot.

The only exception is in Lemma 5, when the trajectory of the robot consists
of a quasi-regular excursion which is not regular, followed by a regular excursion
in the opposite direction. Let us call a trajectory of this kind unusual and let us
call a schedule quasi-normal if it satisfies Definition 6, except that robots may
also have unusual trajectories.

If a schedule S is optimal and not quasi-normal, then, by the above observa-
tions, there is an optimal and normal schedule S ′ in which not all robots finish
their trajectories simultaneously. This contradicts Corollary 1. Therefore, every
optimal schedule is quasi-normal.

Furthermore, a quasi-normal schedule S that is not normal must have at least
one robot with an unusual trajectory. The quasi-regular excursion of each such
robot can be trivially transformed into a regular excursion, simply by having
the robot search its assigned arcs on its way from its origin p to the farthest
point of the excursion, instead of on its way back to p. Note that the resulting
schedule S ′ has the same completion time as S, and it has at least one robot
whose trajectory contains two legs, since an unusual trajectory consists of two
journeys.

We conclude that, if an optimal schedule is quasi-normal and not normal,
then it can be transformed into an optimal and normal schedule in which at least
one robot performs two legs. This contradicts Lemma 11. We have, therefore,
the following more precise result:

Lemma 14. Every optimal schedule is a normal schedule in which the trajectory
of each robot contains exactly one leg.

4 Multi-source beachcombers on the line

We now show that our results from the previous section also hold for the multi-
source version of the beachcombers’ problem on the line, in which robots are
allowed to change direction as in t-SBPCz (cf. Definition 3). Note that, in con-
trast to t-SBP (cf. Definition 4), the robots are allowed to change direction of

30

movement and, in particular, to search segments on both sides of their respective
starting points. We define the problem t-SBPLz:

Definition 10 (t-SBPLz – t-Source Beachcombers’ Problem on the Line
with zigzags). Consider a line segment IL = [0, L] and n robots r1, . . . , rn,
each robot ri having searching speed si and walking speed wi > si. For an integer
t ≥ 1, t-SBPLz consists in (a) dividing the robots into at most t groups, (b)
choosing a particular starting point on the segment for each group (the source of
that group), and (c) finding an optimal correct searching schedule for IL.

Given a t-SBPLz instance, it is convenient to imagine that the given segment
of length L is bent into a loop so that its endpoints coincide, and additionally
that an impassable barrier is placed at the point where the endpoints coincide.
With this transformation, every correct t-SBPLz schedule can be regarded as
a correct t-SBPCz schedule with the same completion time. We thus have the
following analogue of Lemma 12:

Proposition 2. For a fixed t ≥ 1, let I be an instance of t-SBPLz on a finite
segment of length L and let I ′ be the corresponding instance of t-SBPCz with the
same set of robots on a cycle of circumference L. Every solution for I is also a
solution for I ′ with equal cost.

We say that a t-SBPLz schedule is normal if its corresponding t-SBPCz sched-
ule for the cycle-with-barrier instance is normal according to Definition 6. In view
of the following proposition, we can regard normal correct t-SBPCz schedules as
normal correct t-SBPLz schedules with the same completion time:

Proposition 3. Every normal correct t-SBPCz schedule can be regarded as a
normal correct t-SBPLz schedule with the same completion time.

Proof. It suffices to place the barrier on the cycle so that it does not affect the
correctness of the given normal t-SBPCz schedule S. If t ≥ 2, we place the barrier
at one of the endpoints of the arc associated with one of the robot sources (cf.
Definition 6, item 5). If t = 1, we place the barrier at the point where, during
a clockwise traversal from the origin, we reach the end of the last arc that is
searched in the clockwise direction (cf. Definition 6, item 6). With the barrier in
place, S is a normal correct t-SBPLz schedule. ut

The existence of optimal and normal solutions for t-SBPLz follows immedi-
ately from Theorem 2 and Propositions 2 and 3. Moreover, with Proposition 3,
we can prove the following analogue of Lemma 13:

Proposition 4. For a fixed t ≥ 1, let I be an instance of t-SBPCz on a cycle
of circumference L and let I ′ be the corresponding instance of t-SBPLz with the
same set of robots on a finite segment of length L. Every optimal solution for I
can be transformed in polynomial time to a solution for I ′ with equal cost.

31

Proof. Let S be an optimal schedule for I. By Lemma 8, there exists an optimal
and normal schedule S ′ for I (which can be computed in polynomial time). By
Proposition 3, S ′ can be regarded as a normal correct schedule for I ′, with the
same completion time. ut

Corollary 4. For a fixed t ≥ 1, let I be an instance of t-SBPCz on a cycle of
circumference L and let I ′ be the corresponding instance of t-SBPLz with the
same set of robots on a finite segment of length L. The optimal solutions for I
and I ′ have the same cost.

In view of Proposition 2 and 4 and Corollary 4, the results we obtained
for t-SBPCz in Section 3.4 hold also for t-SBPLz:

Theorem 7. 1-SBPLz is NP-hard, even when all robots have the same walking
speed.

Theorem 8. 1-SBPLz admits a 0.5569-approximation algorithm that runs in
polynomial time.

Theorem 9. t-SBPLz instances in which all robots have the same search speed
can be solved optimally in polynomial time.

Theorem 10. t-SBPLz admits a randomized algorithm which achieves an ex-
pected approximation ratio of 1 −

(
1− 1

2t

)2t, needs O(n log t) random bits, and
runs in polynomial time.

Finally, note that the equivalent of Lemma 14 holds for t-SBPLz as well.

Lemma 15. Every optimal t-SBPLz schedule is a normal schedule in which the
trajectory of each robot contains exactly one leg.

Proof. Let S be an optimal t-SBPLz schedule. By Proposition 2 and Corollary 4,
S is also an optimal t-SBPCz schedule. By Lemma 14, S is a normal t-SBPCz

schedule in which the trajectory of each robot contains exactly one leg. By
Proposition 3, S can be regarded as a normal t-SBPLz schedule. ut

5 Concluding remarks

There are several directions in which the study of the search and exploration
using two-speed robots may continue. An obvious one is to improve the approxi-
mation ratio for the versions of the problem that are NP-hard. In this respect, we
should investigate whether zigzags may help to obtain approximate solutions, at
least for particular combinations of searching and walking speeds of the robots
(note that we know from the present paper that zigzags never help to obtain
optimal solutions). Another direction is to study the configurations of robots’
speeds and/or environments for which optimal solutions can be computed effi-
ciently. Finally, it is worthwhile to consider different and more general search
domains, such as non-simple closed or open curves.

32

Acknowledgements. We thank the anonymous referees for their careful reading
and valuable comments, which have induced a significant improvement to the
presentation of the paper.

Part of this work was done while Jurek Czyzowicz was visiting the LaBRI as
a guest professor of the University of Bordeaux. This work was partially funded
by the ANR project DISPLEXITY (ANR-11-BS02-014). This study has been
carried out in the frame of “the Investments for the future” Programme IdEx
Bordeaux – CPU (ANR-10-IDEX-03-02).

References

1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput.
29(4): 1164–1188 (2000)

2. Albers, S.: Online algorithms: a survey. Math. Program. 97(1-2): 3–26 (2003)
3. Albers, S., Schmelzer, S.: Online algorithms - what is it worth to know the future?

In: Algorithms Unplugged, pp. 361–366. Springer (2011)
4. Alpern, S., Gal, S.: The theory of search games and rendezvous. Kluwer Academic

Publishers (2003)
5. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. In-

formation and Computation 106: 234–234 (1993)
6. Beauquier, J., Burman, J., Clement, J., Kutten, S.: On utilizing speed in networks

of mobile agents. In: ACM SIGACT-SIGOPS 2010, pp. 305–314. ACM (2010)
7. Beck, A.: On the linear search problem. Israel Journal of Mathematics 2(4): 221–

228 (1964)
8. Bellman, R.: An optimal search problem. Bull. Am. Math. Soc. p. 270 (1963)
9. Berman, P.: On-line searching and navigation. In: Fiat, A., Woeginger, G. (eds.)

Online Algorithms The State of the Art, pp. 232–241. Springer (1998)
10. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent

and oblivious robots. In: Graph-Theoretic Concepts in Computer Science, WG
2010, LNCS 6410, pp. 208–219. Springer (2010)

11. Chen, Y., Deng, X., Ji, Z., Liao, C.: The beachcombers’ problem: Walking and
searching from an inner point of a line. In: Language and Automata Theory and
Applications, LATA 2016, LNCS 9618, pp. 270–282. Springer (2016)

12. Czyzowicz, J., Gasieniec, L., Georgiou, K., Kranakis, E., MacQuarrie, F.: The
beachcombers’ problem: Walking and searching with mobile robots. Theor. Com-
put. Sci. 608: 201-218 (2015)

13. Czyzowicz, J., Gasieniec, L., Georgiou, K., Kranakis, E., MacQuarrie, F.: The
multi-source beachcombers’ problem. In: Algorithms for Sensor Systems, ALGO-
SENSORS 2014, Revised Selected Papers, LNCS 8847, pp. 3–21. Springer (2014)

14. Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by
mobile agents with distinct maximal speeds. In: Algorithms, ESA 2011, LNCS
6942, pp. 701–712. Springer (2011)

15. Czyzowicz, J., Ilcinkas, D., Labourel, A., Pelc, A.: Worst-case optimal exploration
of terrains with obstacles. Inf. Comput. 225: 16–28 (2013)

16. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of
unknown graphs by multiple agents. Theor. Comput. Sci. 385(1-3): 34–48 (2007)

17. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theoretical
Computer Science 361(2): 342–355 (2006)

33

18. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. In: Foundations of
Computer Science, FOCS 1990, pp. 355–361. IEEE (1990)

19. Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environ-
ment (extended abstract). In: Foundations of Computer Science, FOCS 1991, pp.
298–303. IEEE (1991)

20. Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznanski, P.: Fast collabo-
rative graph exploration. Inf. Comput. 243: 37-49 (2015)

21. Fleischer, R., Kamphans, T., Klein, R., Langetepe, E., Trippen, G.: Competitive
online approximation of the optimal search ratio. SIAM J. Comput. 38(3): 881–898
(2008)

22. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theor. Comput. Sci. 399(3): 236–245 (2008)

23. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration.
Networks 48(3): 166–177 (2006)

24. Higashikawa, Y., Katoh, N., Langerman, S., Tanigawa, S.: Online graph exploration
algorithms for cycles and trees by multiple searchers. J. Comb. Optim. 28(2): 480-
495 (2014)

25. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct
speeds. Distributed Computing 28(2): 147-154 (2015)

26. Wang, G., Irwin, M.J., Fu, H., Berman, P., Zhang, W., Porta, T.L.: Optimizing
sensor movement planning for energy efficiency. ACM Transactions on Sensor Net-
works 7(4): 33 (2011)

34

