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Abstract

We study the problem of exploration by a mobile entity (agent) of a class of
highly dynamic networks, namely the carrier graphs (the C-graphs, modeling
public transportation systems, among others). These are defined by a set of
carriers following infinitely their prescribed route along the stations of the
network. Flocchini, Mans, and Santoro [9] studied this problem in the case
when the agent must always travel on the carriers and thus cannot wait on
a station. They described the necessary and sufficient conditions for the
problem to be solvable and proved that the optimal worst-case number of
time units (and thus of moves) to explore a n-node C-graph of k carriers and
maximal period p is in Θ(kp2) in the general case.

In this paper, we study the impact of the ability to wait at the stations.
We exhibit the necessary and sufficient conditions for the problem to be
solvable in this context, and we prove that waiting at the stations allows the
agent to reduce the optimal worst-case number of moves by a multiplicative
factor of at least Θ(p), while the worst-case time complexity is reduced to
Θ(np). (In any connected carrier graph, we have n ≤ kp.) We also show some
complementary optimal results in specific cases (same period for all carriers,
highly connected C-graphs). Finally this new ability allows the agent to
completely map the C-graph, in addition to just exploring it.

IA preliminary version of this paper appeared in the Proceedings of the 15th Interna-
tional Conference On Principles Of Distributed Systems (OPODIS 2011) [10].
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1. Introduction1

1.1. The problem2

The problem of graph exploration consists, for a mobile entity, in explor-3

ing all nodes (or edges) of an a priori unknown graph. This problem being4

one of the most classical in the mobile agent computing framework, it has re-5

ceived a lot of attention so far. Time complexity, space complexity, or impact6

of a priori knowledge have extensively been studied in the last 40 years (see,7

e.g., [5, 13, 14]). However, the large majority of these works concern static8

graphs. Considering networks nowadays, it is now common to deal with dy-9

namic networks. In this paper, we study the graph exploration problem in10

a particular class of time-varying graphs namely the carrier graph (C-graph)11

model (the C-graphs were called PV-graphs in the first papers concerning12

them).13

Roughly speaking, a C-graph consists of a set of carriers, each following14

periodically its respective route among the sites of the system. This models15

in particular various types of public transportation systems like bus systems16

or subway systems for example. It also models low earth orbiting satellite17

systems, or security systems composed of security guards making tours in the18

place to be secured. Performing exploration in such systems may be useful19

for maintenance operations for example. Indeed, an agent can check that20

everything is in order during the exploration. This agent may be a piece of21

software, or a human being.22

The exploration problem in the C-graph model was already considered23

by Flocchini, Mans, and Santoro in [9]. They considered that the agent24

cannot leave the carrier to stay on a site. Not being able to stay on a site25

is particularly legitimate in low earth orbiting satellite systems for example,26

where the sites do not correspond to any physical station. However, in most27

public transportation systems, it is possible for the agent (human or not)28

to stay on a site in order to wait for a (possibly different) carrier. In this29

paper, we consider the same problem but in the case when the agent can30

leave carriers to wait on a site. We study the impact of this new ability31

on the worst-case complexity (time and number of moves) of the C-graph32

exploration problem.33
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1.2. Related work34

Motivated by the automatic exploration of the Web, Cooper and Frieze [4]35

studied the question of the minimum cover time of a graph that evolves over36

time. They considered a particular model of so-called web graphs and showed37

that if after every constant number of steps of the walk a new node appears38

and is connected to the graph, a random walk does not visit a constant39

fraction of nodes. Avin, Koucky and Lotker [1] showed that a random walk40

may have an exponential cover time in some dynamic graphs. They also41

show that a variant, the lazy random walk, has however a polynomial cover42

time in any dynamic graph.43

To investigate distributed computations in dynamic networks, Kuhn,44

Lynch and Oshman [12] introduced a new stability property called T -interval-45

connectivity, for a given positive integer T . This property ensures that for46

any T consecutive rounds, there is a stable and connected common subgraph.47

Considering this stability property, Ilcinkas and Wade studied the complex-48

ity of the exploration of dynamic rings by a mobile agent [11]. The same49

stability property, with T = 1, is also considered by Di Luna, Dobrev, Floc-50

chini, and Santoro in [6] to study the decentralized (or live) exploration of a51

dynamic ring by a team of agents.52

Casteigts, Flocchini, Santoro and Quattrociocchi [3] integrated a large53

collection of concepts, formalisms and results in the literature about dynamic54

graphs in an unified space called time-varying graphs. Flocchini, Mans and55

Santoro [9] introduced a specific class of time-varying graphs, the C-graph56

model. They first show that if the nodes of the C-graph are labeled, the57

knowledge of an upper bound on the longest period or the exact knowledge58

of the number n of nodes is necessary and sufficient for an agent to explore59

the C-graph. If the nodes of the C-graph are anonymous, then the knowledge60

of an upper bound on the longest period is necessary and sufficient. In both61

settings, the worst-case time and move complexity of the agent is proved to62

be in Θ(kp2), where k is the number of carriers and p the maximum period63

of the carriers. In the particular case of homogeneous C-graphs (C-graphs64

for which all carriers have the same period), the worst-case time and move65

complexity drops to Θ(kp).66

Using a C-graph to model an urban subway system with black holes (sites67

destroying agents), Flocchini, Kellett, Mason, and Santoro [7, 8] examined68

the problem of constructing a map of such a subway. They considered that69

several agents are operating in the C-graph, and that they can leave messages70

on the sites. The goal of the agents is to construct the map of the C-graph71
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without losing too many agents. The class of C-graphs is also used in [2],72

where the authors consider oblivious carriers and investigate the routing73

problem.74

1.3. Our results75

In this article, we extend the study of Flocchini, Mans and Santoro [9]76

to the case when the agent can leave a carrier to stay at a site. This new77

ability allows the agent to explore C-graphs that are less connected over78

time (formal definitions are given in Section 2). We prove that in the general79

case (so, even considering non highly-connected C-graphs) the worst-case80

move complexity is reduced to Θ(min{kp, np, n2}), while the worst-case time81

complexity decreases to Θ(np). (Note that in any connected C-graph, we82

have n ≤ kp.) If the C-graphs are restricted to be both homogeneous and83

highly-connected, then Flocchini, Mans and Santoro proved that the worst-84

case time complexity is in O(kp). In this paper, we prove that if the C-graphs85

satisfy only one of these restrictions, then the worst-case time complexity86

remains in Θ(np). Besides, it turns out that our algorithm not only performs87

exploration but also performs mapping, i.e., it can output an isomorphic88

copy of the C-graph. Finally, note that our algorithm does not use possible89

identifiers of the nodes, while all our lower bounds still hold when the agent90

has access to unique node identifiers.91

Results from [9]
Connected Highly-connected

Our results

Not necessarily
Impossible Θ(kp2) moves & time units

homogeneous
Θ(min{kp, np, n2}) moves Θ(min{kp, np, n2}) moves
Θ(np) time units Θ(np) time units

Homogeneous
Impossible Θ(kp) moves & time units
Θ(min{kp, np, n2}) moves Θ(min{kp, np, n2}) moves
Θ(np) time units O(np) time units

Table 1: Comparison of our results (bottom of each cell, in red color) with the results
obtained in [9] (top of each cell, in blue color). All mentioned complexities are asymptotic
worst-case complexities.

2. Model and definitions92

We consider a system S = {s1, · · · , sn} of n sites among which k carriers93

are moving. Each carrier c has an identifier Id(c) and follows a finite sequence94
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R(c) = (si1 , · · · , sip(c)) of sites, called its route, in a periodic manner. The95

positive integer p(c) is called the period of the carrier c. More precisely,96

the carrier c starts at node si1 at time 0 and then proceeds along its route,97

moving to the next site at each time unit, in a cyclic manner (that is, when98

c is at node sip(c) , it goes back to si1 and follows the route again and again).99

A C-graph (for carrier graph) is a pair (S,C), where S is a set of sites,100

and C is a set of carriers operating among these sites. We will usually denote101

by n, k and p, respectively, the number of sites, the number of carriers and102

the maximum over the periods of the carriers. A C-graph is said to be103

homogeneous if and only if all its carriers have the same period.104

For any C-graph G, we define two (classical) graphs H1(G) and H2(G) as105

follows. Both graphs have the set of carriers as the set of nodes. There is an106

edge in H1(G) between two carriers c and c′ if and only if there exists a site107

appearing in both the routes of c and c′. There is an edge in H2(G) between108

two carriers c and c′ if and only if there exists a site s and a time t ≥ 0 such109

that c and c′ are both in s at time t. A C-graph is said to be connected if110

and only if H1(G) is connected. A C-graph is said to be highly-connected111

if and only if H2(G) is connected. In this paper, we will always consider112

C-graphs that are at least connected. (Non-connected C-graphs cannot be113

explored by a single agent.) Furthermore note that, for any connected C-114

graph, its parameters n (number of sites), k (number of carriers), and p115

(maximal period) satisfy the inequality n ≤ p+ (k−1)(p−1). Indeed, if one116

adds the carriers one by one to the C-graph in such a way that the growing117

C-graph is always connected, the first carrier has at most p sites, and any118

subsequent carrier introduces at most p−1 new sites (because one of its sites119

must be common with the C-graph constructed so far). This leads to the120

claimed upper bound on the number n of sites.121

An entity, called agent, is operating on these C-graphs. It can see the122

carriers and their identifiers. It can ride on a carrier to go from a site to123

another. Contrary to the model in [9], the agent is allowed to leave a carrier,124

stay at the current site, and get back on a carrier (the same or another).125

We do not assume any restriction on the memory size of the agent or on its126

computational capabilities. We consider two models concerning the nodes’127

identities. In an anonymous C-graph, the nodes do not have any identities,128

or the agent is not able to see them. In a labeled C-graph, the nodes have129

distinct identities and the agent can see and memorize them.130

We say that an agent explores a C-graph if and only if, starting at time 0131

on the starting site of the first carrier (this can be assumed without loss of132
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generality), the agent eventually visits all sites of the C-graph and switches133

afterwards to a terminal state. This terminal state expresses the fact that134

the agent knows that exploration has been completed.135

3. Solvability136

Similarly as in the case when the agent cannot wait, an agent without137

information on the C-graphs it has to explore cannot explore all C-graphs138

(even if restricted to the labeled homogeneous highly-connected ones).139

Theorem 1. There exists a family of labeled homogeneous highly-connected140

C-graphs such that no agent can explore all the graphs of this family if it has141

no information on the C-graphs it has to explore.142

Sketch of proof. Intuitively, the family consists of a small C-graph G0 and143

an infinity of C-graphs “looking like” G0 for an arbitrarily large time. The144

agent must enter to a terminal state in a finite time t after completing the145

exploration of G0. It is possible to prove that there is a C-graph of the family146

that the agent will not be able to differentiate from G0 until time t + 1 and147

that has one more site, which will never be explored by the agent.148

Proof. Let S = {s1, s2, s3} be a set of three sites with distinct IDs. For149

t > 0, we define the C-graph Gt over the set S of sites composed of a single150

carrier. Its route is (s1, s2, . . . , s1, s2, s1, s2, s3), where (s1, s2) is repeated151

exactly t times. Moreover, let G0 be the C-graph over the set of sites {s1, s2}152

composed of a single carrier, whose route is (s1, s2). The family {G0, G1, . . . }153

is denoted G, see Figure 1.154

1

2

s1 s1s2 s2 s3

1, 3, . . . , 2t+ 1
2t+ 2

2t+ 3

2, 4, . . . , 2t

Figure 1: The C-graphs G0 and Gt of the family G.

Assume, for the purpose of contradiction, that there exists an algorithm155

solving the exploration problem in all the C-graphs in G, provided that the156

6



agent A running this algorithm does not receive any additional information.157

In particular, A explores G0. Let t be the time at which A switches to the158

terminal state. Assume now that A is placed in Gt. For the first t time159

units, A cannot tell the difference between G0 and Gt, because A has no160

information about the C-graph it has to explore and in particular it does not161

know the number of sites or an upper bound on the system period. It will162

therefore act exactly the same in Gt as in G0. In particular, it will switch to163

the terminal state at time t although the site s3 has not yet been explored.164

This contradiction concludes the proof. �165

4. General case166

In this section, we make no assumption on the C-graphs (except the167

connectedness assumption of course). We basically show that the ability to168

wait allows the agent to explore, and even map, all connected C-graphs (not169

only the highly-connected ones), provided that the agent knows for each of170

them an upper bound on its maximal period. This can be done in only171

Θ(min{kp, np, n2}) moves in the worst case, that is, at least p times less172

than when the agent cannot wait. Besides, the worst-case time complexity173

is reduced from Θ(kp2) to Θ(np).174

4.1. Lower bound on the number of moves175

Flocchini, Mans and Santoro [9] proved a lower bound Ω(kp) on the num-176

ber of moves to explore the C-graphs with k carriers and maximum period p177

(even if restricted to the labeled homogeneous highly-connected ones). This178

lower bound does not apply directly in our setting because the agent, having179

the possibility to wait, could potentially be able to explore in significantly180

less moves. We will prove later that this is actually the case: the move com-181

plexity of our algorithm is bounded by O(min{kp, np, n2}). We prove here182

that this complexity is optimal.183

Lemma 1. For any integers n, k, p such that n ≤ p+ (k− 1)(p− 1) (neces-184

sary for connectedness), there exists a labeled homogeneous highly-connected185

C-graph Gn,k,p with n sites, k carriers and period p such that any algorithm186

needs at least min{kp− 1, bn
8
cp− 1, 7n

8
(bn

8
c − 1)} moves to explore it.187
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Sketch of proof. For any feasible choice of the parameters n, k, and p, we188

construct a C-graph in a way that forces some sites to be visited many times189

in order to visit the other sites. Different constructions are used according190

to the relative values of the different parameters, yielding the different terms191

of the minimum.192

Proof. Fix any integers n ≥ 16, k, and p such that n ≤ p + (k − 1)(p− 1).193

(If n < 16, then the third term of the minimum is obviously a lower bound.)194

We consider two cases.195

Case 1: p ≤ 3n2

16k
.196

Let us first assume that k ≤ n/8 and let q = b n
2k
c. Note that p/2 ≥ q ≥ 4.197

We denote by r the non-negative integer dp/qeq− p. Let S = {s1, s2, . . . , sn}198

be a set of n sites. We partition S into the sets S0 and Si,j, with 1 ≤ i ≤ k199

and 1 ≤ j ≤ q, such that:200

• S0 = {s1, s2, . . . , sdp/qe−1} and S1,1 = {sdp/qe};201

• For all 1 ≤ i ≤ k and 1 ≤ j ≤ q, we have Si,j 6= ∅;202

• For all 2 ≤ i ≤ k, we have |Si,1| ≤ dp/qe − 1;203

• For all 1 ≤ i ≤ k and 2 ≤ j ≤ q − r, we have |Si,j| ≤ dp/qe;204

• For all 1 ≤ i ≤ k and q − r < j ≤ q, we have |Si,j| ≤ dp/qe − 1;205

• While respecting the previous bounds on the size of the sets Si,j,206

we have that if some Si,j has not its maximum, resp. minimum, al-207

lowed size, then all sets Si′,j′ , with (i′, j′) lexicographically larger, resp.208

smaller, than (i, j), have their minimum, resp. maximum, allowed size.209

Such a partition is always possible, for the following reasons. First, p and210

k being fixed, the maximum number of sites permitting the construction is211

obtained when all sets Si,j have their maximum allowed size. This leads to212

the inequality213

n ≤ (dp/qe − 1) + 1 + (k− 1)(dp/qe − 1) + k(q− 1− r)dp/qe+ kr(dp/qe − 1)

which is equivalent to the connectivity condition n ≤ p + (k − 1)(p− 1), by214

definition of r. Second, still with p and k fixed, the minimum number of sites215

permitting the construction is obtained when all sets Si,j have size 1. This216

leads to the inequality217

n ≥ (dp/qe − 1) + kq
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which is implied by the condition p ≤ 3n2

16k
. Indeed, this condition implies that218

p ≤ n
4k

(n−2k) = n
2
( n
2k
−1), because k ≤ n/8. We thus have p ≤ n

2
b n
2k
c = n

2
q,219

by definition of q. Rearranging the inequality, we obtain n
2

+1 ≥ p
q

+1 ≥ dp
q
e.220

Finally, we obtain n ≥ (dp
q
e − 1) + k n

2k
≥ (dp

q
e − 1) + kq, as desired.221

The C-graph Gn,k,p is now defined as follows, see Fig. 2. Let S be its222

set of sites and C = {c1, c2, . . . , ck} be the set of its carriers. For every223

1 ≤ i ≤ k, the route R(ci) is defined as follows. The route starts at s1 at224

time 0 and then visits s2, s3, · · · , sl, with l = dp/qe − |Si,1|, followed by each225

site of the set Si,1. (When l = 1, the route goes directly from s1 to the sites226

of Si,1.) The route continues by visiting, for successive values of j from 2227

to q, the sites s1, s2, · · · , sl, with l = dp/qe − |Si,j| (or l = dp/qe − 1 − |Si,j|228

if j > q − r), followed by each site of the set Si,j. (When l = 0, the route229

directly continues to Si,j, without going through any site in S0.) Note that230

Gn,k,p is both homogeneous (of period p) and highly-connected (because s1231

is the starting site of all routes).232

The C-graph Gn,k,p is constructed in such a way that the agent basically233

has to follow each carrier’s route entirely to visit all sites. More precisely, to234

visit the sites of any set Si,j and to come back to s1, the agent has to pay235

dp/qe moves (dp/qe − 1 if j > q − r). Hence the minimum number of moves236

an exploring agent has to perform in Gn,k,p is kp− 1.237

Now assume that k > n/8. In this case, we simply use the above con-238

struction for bn/8c carriers. All carriers ci, with i > bn/8c are given the239

same route as c1. This gives the lower bound bn/8cp− 1.240

Case 2: p > 3n2

16k
.241

First assume that k ≤ n/16. The C-graph Gn,k,p is defined in this case242

as follows, see Fig. 3. Let C = {c1, c2, . . . , ck} be the set of its carriers243

and let S = {s1, s2, . . . , sn} be the set of its sites, partitioned in S0 =244

{s1, s2, . . . , sn−bn/8c} and S1 = S \ S0. The set S1 is further partitioned245

into the sets S1,1 to S1,k of weakly increasing size such that the sizes of any246

two sets differs by at most one (differently speaking, the size of a set S1,i247

is either b|S1|/kc or d|S1|/ke). If S1,i = {si1 , si2 , . . . , sil} for some l, then248

the route R(ci) is the route starting at s1 at time 0, visiting the sequences249

(s1, s2, . . . , sn−bn/8c, si1), (s1, s2, . . . , sn−bn/8c, si2), up to (s1, s2, . . . , sn−bn/8c, sil).250

It finally stays in sil so that its period is exactly p. In order for the construc-251

tion to be possible, the maximum period p must satisfy252

p ≥ (n− bn/8c+ 1)dbn/8c/ke

which is implied by the condition p > 3n2

16k
when k ≤ n/16. Note that Gn,k,p253
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11

1

3

45

78

9

10

2

6

S0

S2,1

S2,2

S2,3

S2,4

S1,1

S1,2

S1,3

S1,4

2

3

4

6

7

8

10
5

9

11

Figure 2: The C-graph Gn,k,p used in Case 1 of the proof of Lemma 1, leading to the lower
bound Ω(min{kp, np}). Here n = 19, k = 2, and p = 11.

is both homogeneous (of period p) and highly-connected (because s1 is the254

starting site of all routes).255

By construction, all sites in S1 are only accessible through sn−bn/8c and256

the agent can only leave them by going to s1 with some carrier. Again by257

construction, any agent willing to go from s1 to sn−bn/8c has to go through258

all the sites s1, s2, . . . , sn−bn/8c. Therefore, for any i, j such that 1 ≤ i 6= j ≤259

bn/8c, going from sn−i+1 to sn−j+1 requires any agent to perform at least260

n−bn/8c+ 1 moves. Since any agent performing exploration of the C-graph261

must visit all its sites, any agent requires at least (n−bn/8c+ 1)(bn/8c− 1)262
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s1 s2 s3 s34 s35 s36

S1,1

S1,2

}
S0

s37

s38

s39

s40

s41 73

36

110

73

36

37

120

120

74

37

Figure 3: The C-graph Gn,k,p used in Case 2 of the proof of Lemma 1, leading to the lower
bound Ω(n2). Here n = 41, k = 2, and p = 120.

moves to explore Gn,k,p.263

Now assume that k > n/16. In this case, we simply use the above con-264

struction for bn/16c carriers. All carriers ci, with i > bn/16c are given the265

same route as c1. This gives the same lower bound 7n/8(bn/8c − 1). �266

Summarizing the previous lemma by considering the asymptotic behavior,267

we directly obtain the following theorem.268

Theorem 2. The worst-case move complexity of the C-graph exploration269

problem is in Ω(min{kp, np, n2}), where n, k, and p denote respectively the270

number of sites, the number of carriers, and the maximal period. This result271

holds even if the agent knows completely the C-graph, has unlimited memory,272

and even in the labeled homogeneous highly-connected case.273
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4.2. Lower bound on time274

We prove a larger lower bound for the worst-case time complexity than275

for the worst-case move complexity in the general case. More precisely, we276

have the following lemma.277

Lemma 2. Consider any n ≥ 2, k, and p such that n ≤ p + (k − 1)(p− 1)278

(necessary for connectedness). There exists a family Gn,p,k of labeled homoge-279

neous (connected) C-graphs with n sites, k carriers and period p such that, for280

any algorithm, there exists a C-graph in this family which cannot be explored281

by the algorithm using less than p(n− 1−
⌊

n−1
min(n−1,k)

⌋
) time units.282

Sketch of proof. The C-graphs used to prove this theorem are constructed as283

follows. Carriers are numbered from 1 to k. The carriers all have period p. A284

carrier i has only common sites with carriers i− 1 and i+ 1. More precisely,285

carrier i shares exactly one site with carrier i − 1 and visits it exactly once286

per period. The proof is then based on the fact that the agent does not know287

precisely in which C-graph it is. In particular, the agent does not know when288

and on which site of carrier i− 1 the next carrier (number i) will pass. It is289

possible to prove, roughly, that the agent must wait at least p time units on290

each site to be sure to find the next carrier, leading to the claimed bound.291

Proof. Fix any n ≥ 2, k, and p such that n ≤ p+(k−1)(p−1). We further292

assume that k ≤ n−1 (otherwise the exceeding carriers are fixed to have the293

same route as the first carrier).294

Let S = {s1, s2, . . . , sn} be the set of sites and let C = {c1, c2, . . . , ck} be295

the set of carriers. Let us partition S into k + 1 subsets S0, S1, . . . , Sk−1, Sk296

such that S0 = {s1}, |Sk| = bn−1k
c, and for 1 ≤ i ≤ k − 1, Si has size bn−1

k
c297

or dn−1
k
e.298

Fix any u1, . . . , uk−1 and t2, . . . , tk such that, for every 1 ≤ i ≤ k − 1, we299

have ui ∈ Si and 1 ≤ ti+1 ≤ p. The C-graph G((u1, t2), (u2, t3), . . . , (uk−1, tk))300

is defined as follows.301

Let u0 = s1 and t1 = 0. Consider any i such that 1 ≤ i ≤ k. The route302

R(ci) is any route of period p going through (and only through) all the sites303

in Si∪{ui−1} satisfying the following two conditions. First, ci visits ui−1 only304

once per period, at all times equal to ti modulo p. Second, the route R(ci)305

does not depend on the values ul and tl+1, for l 6= i− 1. Such a construction306

is possible thanks to the connectivity condition n ≤ p + (k − 1)(p− 1).307

We denote Gn,p,k the family of all C-graphs G((u1, t2), . . . , (uk−1, tk)) with,308

for every 1 ≤ i ≤ k − 1, ui ∈ Si and 1 ≤ ti+1 ≤ p. All these C-graphs309
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are labeled homogeneous connected C-graphs with n sites, k carriers and310

period p.311

Let A be any exploring agent (i.e. executing any exploration algorithm).312

Given 1 ≤ i ≤ k and a C-graph G of Gn,p,k, let Ti(G) be the first time at313

which the agent A, starting at s1 at time 0 in G, sees the carrier ci. Given q,314

1 ≤ q ≤ k, and u1, u2, . . . , uq−1 and t2, t3, . . . , tq in the usual ranges, we define315

Gn,p,k((u1, t2), (u2, t3), . . . , (uq−1, tq)) as the set of all the C-graphs G((u1, t2),316

(u2, t3), . . . , (uk−1, tk)) with, for every q ≤ i ≤ k−1, ui ∈ Si and 1 ≤ ti+1 ≤ p.317

Claim 1. For every q, 1 ≤ q ≤ k, there exist ui and ti+1 satisfying ui ∈ Si318

and 1 ≤ ti+1 ≤ p for every i, 1 ≤ i ≤ q − 1, such that for every graph319

G ∈ Gn,p,k((u1, t2), (u2, t3), . . . , (uq−1, tq)) we have Tq(G) ≥ p
∑q−1

i=1 |Si|.320

Proof of the Claim: We prove the claim by induction on q. The base case321

q = 1 is trivially true. Fix any q such that 1 ≤ q ≤ k − 1, and assume, by322

induction hypothesis, that the claim holds for the value q.323

Let Gq be the family Gn,p,k((u1, t2), (u2, t3), . . . , (uq−1, tq)) whose existence324

is guaranteed by the induction hypothesis. Note that all C-graphs in Gq have325

exactly the same routes R(ci), for 1 ≤ i ≤ q. We can thus define Hq to be326

the C-graph consisting only of the carriers c1 to cq of any C-graph in Gq. Let327

us consider now the agent A starting at s1 at time 0 in Hq. By induction328

hypothesis and by construction of Hq, the agent A sees cq for the first time329

at time t with t ≥ p
∑q−1

i=1 |Si| time units. Thus there exists uq and tq+1330

satisfying uq ∈ Sq and 1 ≤ tq+1 ≤ p such that A is never at uq at a time331

equal to tq+1 modulo p before time t+p|Sq|, and thus before time p
∑q

i=1 |Si|.332

Consider now the agent A starting at s1 at time 0 in any C-graph G in333

Gn,p,k((u1, t2), (u2, t3), . . . , (uq−1, tq), (uq, tq+1)). Before time p
∑q

i=1 |Si|, the334

agent will behave exactly the same as in Hq and will not see the carrier cq+1.335

This concludes the proof of the claim. ♦336

The lemma follows by considering the claim for the last value q = k, and337

removing the assumption k ≤ n− 1. �338

Again, summarizing the previous lemma by considering the asymptotic339

behavior, we directly obtain the following theorem.340

Theorem 3. The worst-case time complexity of the C-graph exploration prob-341

lem is in Ω(np) in the general case (for k ≥ 2). This result holds even if342

the agent knows n, k, and p, has unlimited memory, and even in the labeled343

homogeneous (connected) case.344

13



4.3. Our algorithm345

In the above part of the paper, we exhibited some necessary conditions on346

the existence of a solution. We then provided lower bounds on the worst-case347

move and time complexities. We now essentially prove that all these results348

are optimal by describing and proving a C-graph exploration algorithm with349

matching upper bounds on the move and time complexities, provided that350

the agent knows a linear upper bound B on the maximum period p. As a351

consequence, we show that the ability to wait allows to decrease both the352

worst-case move and time complexities, the former by a multiplicative factor353

at least Θ(p).354

4.3.1. Principle355

356

As previously specified, our algorithm uses an upper bound B on the357

largest period p of the C-graph (cf. Theorem 3). The main idea of the358

algorithm consists of getting off on each site and, during Θ(B) time units, to359

note each visit of the carriers at the site. Properly managed, this information360

allows to map the C-graph (i.e., to list the routes and times of passage of all361

carriers).362

Several precautions must be taken into account in order not to miss any363

site and to optimize the number of moves. For example, after each study of a364

site (during Θ(B) time units), the algorithm computes the smallest possible365

period of each seen carrier by using the already collected information. This366

allows to know all the future passing times of the carriers on the studied367

sites. In order to avoid unnecessary moves, the algorithm uses the concept368

of current carrier. The agent studies all the sites of the current carrier before369

moving on to the next. The algorithm also maintains a tree of carriers,370

where a carrier c is a child of a carrier c′ if c was discovered for the first371

time while visiting c′. Carriers are treated in a depth-first-search manner for372

performance reasons.373

4.3.2. Description374

375

In addition to the upper bound B on the largest period p of the C-graph,376

our algorithm uses the variables described below.377

The algorithm uses its own numbering to identify the sites. This way, it378

will work even if the C-graph is anonymous.379
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• currentNumber : number of the currently studied site.380

If the C-graph is labeled, the agent maintains a correspondence table381

between the numbers given by the algorithm and the real identifiers of the382

sites.383

• numberToID : numberToID[j] is the identifier of the site number j.384

The agent maintains an ordered rooted tree whose different vertices cor-385

respond to the different encountered carriers.386

• tree : the carrier tree.387

• currentCarrier : identifier of the currently studied carrier.388

For each carrier i present in tree, we have the following variables:389

• route[i] is an array of length 3B (indexed from 0 to 3B− 1); it is used390

to memorize the sequence of sites visited by the carrier i.391

• position[i] is an integer between 0 and 3B− 1 (included); it indicates392

the current position of the carrier i regarding to route[i].393

• period[i] is an integer between 1 and B (included); it indicates the394

minimum period of the carrier i given the current knowledge.395

4.3.3. Correctness396

Theorem 4. Algorithm Explore-With-Wait correctly explores and maps397

in finite time any C-graph, even anonymous, but provided that an upper398

bound B on the maximum period is known.399

Proof. First observe that when an agent stays at a site for 2B time units,400

where B is the known upper bound on the maximum period, it sees all the401

carriers visiting that site. Moreover, after filling in the matrix with that402

information, it is able to predict at any point in the future which carrier403

will be at that site. Since the C-graph is connected, the agent will miss no404

carriers and thus no sites either. At the end of the algorithm, the matrix will405

be completely filled in and it will be equivalent to a map of the C-graph. �406
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Algorithm Explore-With-Wait – Our C-graph exploration algorithm

1: bFinite← false
2: currentNumber← 1
3: currentCarrier← 1
4: tree ← tree reduced to a single vertex (the root) corresponding to the

carrier 1
5: while (bFinite = false) do
6: studyCurrentSite()
7: cleaning()
8: if no value 0 in any array route[.] then
9: bFinite← true

10: else
11: findAndReachNextSite()
12: end if
13: end while
14: Finish by providing the C-graph map (variables route[.], position[.] and

eventually numberToID if the C-graph is labeled)

Procedure studyCurrentSite() – collect all possible information on the cur-
rent site

1: Stay on the current site for 2B time units
2: for each time unit do
3: for each carrier i present on the current site at the current time do
4: if i absent in tree then
5: Add i as the last child of currentCarrier in tree

6: route[i]← array of length 3B filled with 0
7: position[i]← 0
8: end if
9: route[i]

[
position[i]

]
← currentNumber

10: end for
11: end for

After each time unit:

1: for each carrier i present in tree do
2: position[i]← position[i] + 1
3: end for
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Procedure cleaning() – uses the acquired knowledge to update the variables

1: for each carrier i present in tree do
2: period[i]← minimum period of route[i] between position[i]−2B+1

and position[i]
3: Make the whole array route[i] periodic of period period[i], using the

values of route[i] between position[i]− 2B + 1 and position[i]
4: position[i]← position[i] mod period[i]
5: end for

Procedure findAndReachNextSite() – find the next site to study and go
there

1: if route[currentCarrier] still contains the value 0 then
2: Compute from the array route[currentCarrier] the foremost journey

using only currentCarrier that goes to the next site marked 0 on
currentCarrier’s route

3: else
4: oldCarrier← currentCarrier

5: currentCarrier ← identifier i of the first carrier following the DFS
order in tree such that the value 0 appears in route[i]

6: Let (ci1 , ci2 , . . . , cil) be the path of carriers in tree from oldCarrier =
ci1 to currentCarrier = cil .

7: Compute from the arrays route[.] a foremost journey using only those
carriers and such that, if the journey uses the carrier cij and later the
carrier cij′ , then j ≤ j′.

8: end if
9: Transform the journey so that it leaves each site at most once (by waiting

on the site)
10: Follow this journey
11: currentNumber← currentNumber + 1
12: numberToID[currentNumber]← identifier of the current site (if applica-

ble)

After each time step along the journey:

1: for each carrier i present in tree do
2: position[i]← position[i] + 1 mod period[i]
3: end for
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4.3.4. Move and time complexities407

Lemma 3. When executing algorithm Explore-With-Wait, the agent408

makes at most O(min{kp, np, n2}) moves and uses at most O(min{kp, np})409

time units in total in the different calls to procedure findAndReachNextSite().410

Proof. The procedure findAndReachNextSite() is executed between two411

executions of Procedure studyCurrentSite(). This is done at most n times412

because a site is studied only once.413

Let us first prove that the agent makes at most O(n2) moves in total414

in the different calls to the procedure findAndReachNextSite(). From the415

previous remark, it is sufficient to prove that the agent performs at most416

n moves for each execution of Procedure findAndReachNextSite(). This is417

obviously the case as the path from the current site to the next unvisited site418

is such that it leaves each site at most once.419

We now prove that the number of moves and time units is in O(kp).420

Note that an agent finishes studying the sites of the current carrier’s route421

before going on another carrier’s route. Therefore, given a carrier c, the calls422

to procedure findAndReachNextSite() that stay on carrier c (line 2) are423

consecutive. Since the agent follows the foremost journey computed from the424

array route[currentCarrier] that only uses currentCarrier to go from the425

current site to the next unvisited site, the different journeys corresponding to426

these calls are consecutive and thus disjoint portions of c’s route. Therefore427

the total number of moves and time units performed by the agent during428

these calls concerning carrier c are bounded by p.429

Let us now focus on the calls to procedure findAndReachNextSite() that430

do not stay on the same carrier (lines 4–7). Note that the concatenation of the431

paths computed line 6 in these calls consists of at most a DFS traversal of the432

tree of carriers. Since a given carrier is at most once the end of such a path,433

a carrier is at most its degree plus one times in a path. Each time, at most434

p moves and time units are used. Hence these calls use at most 3kp moves435

and time units. In total, all the calls to procedure findAndReachNextSite()436

(whether using line 2 or lines 4–7) use at most 4kp moves and time units.437

We finally prove that the number of moves and time units is in O(np).438

This is done by refining the previous argument. A carrier is always added439

as a leaf to the tree of carriers. Moreover, a carrier is used only if the agent440

goes to visit an unvisited site of the carrier. Since the agent has to visit at441

most n sites, it means that at most n carriers of the tree are used. Hence442

the number of moves and time units is bounded by 4np. �443
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With the algorithm Explore-With-Wait, the agent actually moves444

only when executing Procedure findAndReachNextSite(). This gives the445

following corollary.446

Corollary 1. With the algorithm Explore-With-Wait, the agent makes447

at most O(min{kp, np, n2}) moves to explore any n-site k-carrier C-graph of448

maximum period p.449

On the other hand, time is also spent when studying a site, in the calls450

to procedure studyCurrentSite().451

Lemma 4. When executing algorithm Explore-With-Wait, the agent452

uses at most O(nB) time units in total in the different calls to the proce-453

dure studyCurrentSite(), where B is a known upper bound on p.454

Proof. The procedure studyCurrentSite() is executed when the agent studies455

a site. This is done at most n times because a site is studied only once. During456

the study of a site, the agent stays O(B) time units on the site to note all457

passing carriers. This gives the bound claimed in the lemma. �458

The obtained results from Lemma 3 and Lemma 4 give the following corol-459

lary, noticing that time is only spent in the two procedures studyCurrentSite()460

and findAndReachNextSite().461

Corollary 2. The algorithm Explore-With-Wait allows to explore any462

n-node C-graph in O(nB) time units, where B is a known upper bound on p.463

Combining the previous results, we obtain the following corollary.464

Corollary 3. Given the a priori knowledge of an upper bound B = O(p) on465

the maximum period p, Algorithm Explore-With-Wait is asymptotically466

optimal in the general case with respect to both the move and the time com-467

plexities. The optimal worst-case move complexity is in Θ(min{kp, np, n2})468

while the optimal worst-case time complexity is in Θ(np).469
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5. Specific cases470

We showed in the previous section the optimal worst-case move and time471

complexities for the C-graph exploration problem in the general case. This472

section is devoted to the specific cases of homogeneous or highly-connected C-473

graphs. In both cases, we prove that the worst-case move and time complex-474

ities remain the same as in the general case. Note, however, that when con-475

sidering C-graphs being both homogeneous and highly-connected, we know476

from [9] that the optimal worst-case time complexity is at most O(kp), even477

when n is large.478

5.1. The homogeneous case479

If we consider the homogeneous C-graphs (but not necessarily highly-480

connected), the worst-case time and move complexities remain the same as481

in the general case.482

Theorem 5. Given the a priori knowledge of an upper bound B = O(p) on483

the maximum period p, Algorithm Explore-With-Wait is asymptotically484

optimal in the homogeneous case with respect to both the move and the time485

complexities. The optimal worst-case move complexity is in Θ(min{kp, np, n2})486

while the optimal worst-case time complexity is in Θ(np).487

Proof. The result directly follows from Theorem 2, Theorem 3 and Corol-488

lary 3. �489

5.2. The highly-connected case490

If we consider the highly-connected C-graphs (but possibly not homoge-491

neous), the worst-case time and move complexities remain the same as in the492

general case.493

Lemma 5. Consider any n ≥ 2, k, and p such that n ≤ p + (k − 1)(p− 1)494

(necessary for connectedness). There exists a family G ′n,p,k of labeled highly-495

connected C-graphs with n sites, k carriers and maximum period p such that,496

for any algorithm, there exists a C-graph in this family which cannot be ex-497

plored by the algorithm using less than (p − 1)(n − 1 −
⌊

n−1
min(n−1,k)

⌋
) time498

units.499
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Sketch of proof. The C-graphs used to prove this theorem are constructed as500

follows. Carriers are numbered from 1 to k. The carriers of odd identifier,501

respectively even, are of period p, respectively p − 1. A carrier i has only502

common sites with carriers i− 1 and i + 1. (The alternation of periods thus503

ensures high connectivity.) More precisely, carrier i shares exactly one site504

with carrier i − 1 and visits it exactly once per period. The proof is then505

based on the fact that the agent does not know precisely in which C-graph it506

is. In particular, the agent does not know when and on which site of carrier507

i − 1 the next carrier (number i) will pass. It is possible to prove, roughly,508

that the agent must wait at least p time units on each site to be sure to find509

the next carrier, leading to the claimed bound.510

Proof. Fix any n ≥ 2, k, and p such that n ≤ p+(k−1)(p−1). We further511

assume that k ≤ n−1 (otherwise the exceeding carriers are fixed to have the512

same route as the first carrier).513

Let S = {s1, s2, . . . , sn} be the set of sites and let C = {c1, c2, . . . , ck} be514

the set of carriers. Let us partition S into k + 1 subsets S0, S1, . . . , Sk−1, Sk515

such that S0 = {s1}, |Sk| = bn−1k
c, and for 1 ≤ i ≤ k − 1, Si has size bn−1

k
c516

or dn−1
k
e.517

Fix any u1, u2, . . . , uk−1 and t2, t3, . . . , tk such that, for every 1 ≤ i ≤ k−1,518

we have ui ∈ Si and 1 ≤ ti+1 ≤ p if i is odd, 1 ≤ ti+1 ≤ p − 1, if i is even.519

The C-graph G((u1, t2), (u2, t3), . . . , (uk−1, tk)) is defined as follows.520

Let u0 = s1 and t1 = 0. Consider any i such that 1 ≤ i ≤ k. The route521

R(ci) is any route going through (and only through) all the sites in Si∪{ui−1}522

satisfying the following three conditions. First, ci is of period p if i is odd,523

and of period p − 1 if i is even. Second, ci visits ui−1 only once per period,524

at all times equal to ti modulo its period. Third, the route R(ci) does not525

depend on the values ul and tl+1, for l 6= i− 1.526

The family G ′n,p,k is defined as the set of all C-graphs G((u1, t2), (u2, t3), . . . ,527

(uk−1, tk)) with, for every 1 ≤ i ≤ k− 1, ui ∈ Si and 1 ≤ ti+1 ≤ p, if i is odd,528

1 ≤ ti+1 ≤ p−1, if i is even. All these C-graphs are labeled highly-connected529

C-graphs with n sites, k carriers and maximum period p. (Indeed, note that,530

for every 1 ≤ i ≤ k − 1, ci and ci+1 meet at ui at least every p(p − 1) time531

units.)532

Let A be any exploring agent (i.e. executing any exploration algorithm).533

Given 1 ≤ i ≤ k and G a C-graph of G ′n,p,k, let Ti(G) be the first time at534

which the agent A, starting at s1 at time 0 in G, sees the carrier ci. Given q,535

1 ≤ q ≤ k, and u1, u2, . . . , uq−1 and t2, t3, . . . , tq in the usual ranges, we define536
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G ′n,p,k((u1, t2), (u2, t3), . . . , (uq−1, tq)) as the set of all the C-graphs G((u1, t2),537

(u2, t3), . . . , (uk−1, tk)) with, for every q ≤ i ≤ k−1, ui ∈ Si and 1 ≤ ti+1 ≤ p,538

if i is odd, 1 ≤ ti+1 ≤ p− 1, if i is even.539

Claim 2. For every q, 1 ≤ q ≤ k, there exist ui and ti+1 satisfying ui ∈ Si540

and 1 ≤ ti+1 ≤ p (ti+1 ≤ p − 1 when i is even) for every i, 1 ≤ i ≤ q − 1,541

such that for every graph G ∈ G ′n,p,k((u1, t2), (u2, t3), . . . , (uq−1, tq)) we have542

Tq(G) ≥ (p− 1)
∑b q−1

2
c

i=1 |S2i|+ p
∑d q−1

2
e

i=1 |S2i−1|.543

Proof of the Claim: We prove the claim by induction on q. The base case544

q = 1 is trivially true. Fix any q such that 1 ≤ q ≤ k − 1, and assume, by545

induction hypothesis, that the claim holds for the value q.546

Let G ′q be the family G ′n,p,k((u1, t2), (u2, t3), . . . , (uq−1, tq)) whose existence547

is guaranteed by the induction hypothesis. Note that all C-graphs in G ′q have548

exactly the same routes R(ci), for 1 ≤ i ≤ q. We can thus define H ′q to be549

the C-graph consisting only of the carriers c1 to cq of any C-graph in G ′q. Let550

us consider now the agent A starting at s1 at time 0 in H ′q. By induction551

hypothesis and by construction of H ′q, the agent A sees cq for the first time552

at time t with t ≥ (p − 1)
∑b q−1

2
c

i=1 |S2i| + p
∑d q−1

2
e

i=1 |S2i−1| time units. Thus553

there exists uq and tq+1 satisfying uq ∈ Sq and 1 ≤ tq+1 ≤ p, if q is even,554

1 ≤ tq+1 ≤ p − 1, if q is odd, such that A is never at uq at a time equal to555

tq+1 modulo the period p′ of cq+1 before time t+ p′|Sq|, and thus before time556

(p− 1)
∑b q

2
c

i=1 |S2i|+ p
∑d q

2
e

i=1 |S2i−1|.557

Consider now the agent A starting at s1 at time 0 in any C-graph G in558

G ′n,p,k((u1, t2), (u2, t3), . . . , (uq−1, tq), (uq, tq+1)). Before time (p−1)
∑b q

2
c

i=1 |S2i|+559

p
∑d q

2
e

i=1 |S2i−1|, the agent will behave exactly the same as in H ′q and will not560

see the carrier cq+1. This concludes the proof of the claim. ♦561

The lemma follows by considering the claim for the last value q = k, and562

removing the assumption k ≤ n− 1. �563

Again, summarizing the previous lemma, using Corollary 3, and consid-564

ering the asymptotic behavior, we obtain the following theorem.565

Theorem 6. Given the a priori knowledge of an upper bound B = O(p)566

on the maximum period p, Algorithm Explore-With-Wait is asymptot-567

ically optimal in the highly-connected case with respect to both the move568

and the time complexities. The optimal worst-case move complexity is in569

Θ(min{kp, np, n2}) while the optimal worst-case time complexity is in Θ(np).570
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