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Abstract

In order to achieve routing in a graph, nodes need to store routing information.

In the case of shortest path routing, for a given destination, every node has

to store an advice that is an outgoing link toward a neighbor. If this neighbor

does not belong to a shortest path then the advice is considered as an error

and the node giving this advice will be qualified a liar. This article focuses on

the impact of graph dynamics on the advice set for a given destination. More

precisely we show that, for a weighted graph G of diameter D with n nodes

and m edges, the expected number of errors afterM edge deletions is bounded

by O
(
n · M · D/m

)
. We also show that this bound is tight when M = O(n).

Moreover, forM′ node deletions, the expected number of errors is O(M′ ·D).

Finally we show that after a single edge addition the expected number of liars

can be Θ(n) for some families of graphs.

Keywords: graph, network, dynamics, errors, routing information, distance

changes

1. Introduction

Everyone has already faced the problem of reaching a destination in an un-

certain network. This is typically the case whenever one is in an unknown city,
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without a map, and aims at reaching, let us say, the closest cash machine. The

only thing one can do is ask people in the street for some information on the

direction. Unfortunately, there is no evidence that all the information one gets

is reliable.

Nowadays, in a communication network, a corresponding situation can oc-

cur. Let us consider the routing task. Due to its dynamic (change of topology,

time required to update local information) and its large-scale size, current net-

works are not immune to faults and crashes. It is no more realistic to blindly

trust the data stored locally at each node. For instance, the Border Gate Pro-

tocol (BGP) used in Internet to route messages between autonomous systems

implicitly assumes that some paths are known to reach any target. Ideally, these

paths are as short as possible. Unfortunately, many messages do not reach their

destination because no paths are temporally known although some paths could

exist.

In the following, for a given target t, we informally refer to a liar as a node

containing bad information about the location of t. A series of papers [11, 10, 9]

tackles the problem of locating a target (node, resource, data, ...) in presence

of liars.

A first model was introduced by Kranakis and Krizanc [15]. They designed

algorithms for searching in distributed networks having the ring or the torus

topology, when a node has a constant probability of being a liar. A more realistic

model was proposed by Hanusse et al. [11]: the number of liars is a parameter k

and during a routing query, the information stored at every node is unchanged.

The main performance measure is the number of edge traversals during a re-

quest. Several algorithms, either generic or dedicated to some topologies, and

bounds are presented in [11, 10, 9] and are typically of the form O
(
d+ kO(1))

(for path, grids, expanders, . . . ) or O
(
k3 log3 n

)
for bounded degree graphs, d

being the distance between the source and the target.

In these papers, there is an implicit assumption: the number of liars is small.

Our goal is to evaluate whether this is realistic or not. Starting from a network

without any liar, we aim at estimating bounds on the number of liars obtained
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after few changes of topology. It turns out that this problem is related to the

problem of estimating the number of distance changes after few edge/node

deletions or insertions. We will show that the expected number of liars created

by random nodes/edges removals is proportional to the diameter of the graph

and its average degree. Sections 2 and 4 will respectively cover the related

works and the presentation of our results, while sections 5, 6 and 7 will show

the details of the proofs. Section 5 contains general results, Sections 6 and 7

respectively concern deletions and additions.”

2. Related Works

The influence of topology changes in graphs has been studied in several

works. In [4, 18], it has been proven that, in the worst case scenario, the

deletion of M edges within a graph of diameter D induces a multiplication of

the diameter by a factor O(M+ 1). A lower bound of (M+ 1)D− 2M+ 2 can

be obtained, for odd D using the very simple example given in [4] and showed

in Figure 1. In this example, the graph G has diameter D(G) = 6 and n = 25

nodes, the deletion of edges e1, e2, e3 and e4 induces a graph G′ of diameter

D(G′) = n − 1 = 24 = (M + 1) ·D(G) − 2M + 2. In other words, every edge

deletion adds roughly D(G) = 6 units to the diameter of the graph.

e1e2e4 e3

u0 u2 u7 u12 u17 u22 u24

Figure 1: Lower bound example on the impact of dynamics on the diameter from [4].

Our work is also related to the computation of the most vital node of a

shortest path [17], that is the node whose removal results in the largest increase

of the distance for a given pair of source/target, and the Vickrey pricing of

edges [12]. More precisely, the latter article shows a centralized algorithm that
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allows to find the most important node for a user that would like to send data

over a given graph. This algorithm runs in time O(m+ n logn) with a working

memory of O(m).

Recently, some works on dynamic data structures for shortest paths/distance

computation problems have been proposed. By dynamic, we mean that the data

structures can tolerate some topology changes in a given network. A dynamic

network model defines how the underlying graph changes/evolves over time.

More precisely, the following types of models are usually considered:

• The most general model is the model of unconstrained Evolving graphs or

Time Varying Graphs, introduced by Ferreira in [8]: An evolving graph G

is based on a static graph G = (V,E) called underlying graph. The state

of the graph G at a given time t, Gt = (V,Et), is given by a presence

function which determines for every edge of E if it belongs to Et or not.

Thus, for every t, the graph Gt is a sub-graph of G. Let remark that for

any two given times t and t′ the state of the graphs Gt and Gt′ can be very

different, which means that the network can vary at any speed.

This type of unconstrained evolving graphs makes however most of the

static graph problems unsolvable. This is why weaker models are most

commonly considered. For example, in an unconstrained evolving graph,

it is impossible to broadcast a piece of information since the graph is not

necessary connected over time, i.e. the union of the Gt is not a connected

graph. Different variants of this model can be found in the survey made

by Santoro et al. in [2].

• However, in many studies the dynamic model studied is even more con-

strained. A very common model in the routing community is the failure

model. Intuitively, it is considered in this model that, starting from an

initial graph, afterM additions/deletions of nodes/edges the graph stays

stable for a sufficiently long period of time. This model is widely used in

self-stabilization and in routing or distance oracle problems (also referred

as forbidden-set problems).
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In the case of the failure model, the most naive solution to allow routing is to

recompute every routing tables after some dynamic events occur. Two dynamic

and centralized algorithms that perform a global re-computation are presented

by Demetrescu and Italiano [6] and Thorup [19]. These two algorithms are the

fastest known and allow to update every routing tables within amortized time

of O
(
n2 polylog (n)

)
per atomic topological modification.

However, in the failure model, it is not always necessary to recompute every

shortest path in order to guarantee that routing is possible. In fact, several other

works deal with this problem, and propose for example distributed structures

that allow to retrieve either shortest paths or distances within a network where

one or several edges/nodes have failed. This kind of distributed structures are of

two kinds, they either give exact values (shortest paths or exact distances)[7, 1],

or they give constant approximation [13, 3]. The factor of approximation is:

(i) a stretch factor of the induced route in the case of routing approximations

; (ii) the ratio between the proposed distance over actual distance within the

graph in the case of distance oracles.

The real challenge is to propose an algorithm that can tolerate an arbitrary

number of failures. The most general known result is theM-sensitivity distance

oracle proposed by Chechik et al. in [3]. This oracle uses a data structure of size

O
(
M · s · n1+1/s logn

)
and allows to approximate distances for every pair of

nodes up to a multiplicative factor O(s · M), with a query time in O
(
M log2 n

)
(s is a parameter of their oracle).

Throughout [3], all analyzes are made in the worst case, the one of a strong

adversary that decides the worst forbidden set of nodes/edges, more generally,

the worst possible dynamic scenario. This is sometimes a pessimistic vision of

dynamics. For example if dynamics in a given network is resulting from mate-

rial failures, then it is more likely that the adversary is making random choices.

Thus, as far as no attacks need to be modeled, it is interesting to have tools to

analyze this kind of algorithm in the average case. This is why we study here

a model of random failures: any sequence of M topological modifications has

the same probability of occurrence. An estimation of the expected number of

5



distance changes after M random modifications within a given network could

be used for example to give update times of algorithms such as the one pre-

sented in [14, section 2.1]. In this work, King shows an algorithm that allows

to maintain a shortest path tree up to date with a convergence time of O(D · κ)

with κ the number of distances to the root that have changed. The analysis we

present here would allow to give the update time of King’s algorithm within a

random fault model.

3. Model

We consider a weighted and connected graph G = (V,E). We will use two

different notions of distance, the classical one: dG(u, v), and the hop-distance

which is equal to the minimum number of edges traversal that are required to

travel from u to v via a shortest path. The hop-distance is denoted hdG(u, v),

finally, the hop-diameter is equal to the maximal hop-distance over every pair of

nodes.

3.1. Advice-Liar model

A particular node t of V is called destination, and every other node u ∈ V \{t}

has an advice Adv(u) that points toward a neighbor node:

Adv(u) ∈ (Γ(u) ∪ {u})

with Γ(u) the set of neighbors of node u. If the node Adv(u) is on a shortest

path from u to t then node u is said to be truthful, otherwise it is called a liar.

The set of all pieces of advice (a set of arcs) A of cardinality n − 1, called a

configuration, induces an oriented sub-graph of G, noted GA = (V,A). If the

configuration of advice does not contain any liar, then it is said to be a truthful

configuration. For any two nodes u and v in V , there exists an arc (u, v) in GA

((u, v) ∈ A) if and only if Adv(u) = v. Whenever A is truthful, the graph GA is

a shortest path tree rooted at node t that covers V .
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3.2. Dynamic Model

In this study, we will consider separately the case of deletions and addi-

tions. The number of edges, respectively nodes, added or deleted from G isM

(respectively M’). We will consider that the number of deletions/additions is

dominated by the number of elements in G,M = O(m) andM′ = O(n). More-

over, since the reasoning for nodes and edges cases are very similar we will only

present the problem for edges in detail.

For a given graph G = (V,E), the set of graphs G−G,M is defined has the set

of graphs that can be obtained afterM edge deletions in graph G:

∀G− = (V,E−) :
[
G− ∈ G−G,M

]
⇐⇒ [(E− ⊂ E) ∧ (|E−| = |E| −M)]

Similarly we define G+
G,M to be the set of graphs that can be obtained afterM

edge additions:

∀G+ = (V,E+) :
[
G+ ∈ G+

G,M

]
⇐⇒ [(E+ ⊃ E) ∧ (|E+| = |E|+M)]

Given the graphs G, and G′ ∈
(
G−G,M ∪ G

+
G,M

)
, together with a truthful config-

uration A, we define the following sets:

• S(G,G′) as the set of nodes whose distance to t is different in G and G′.

This will be denoted S if there is no ambiguity;

• K(G′,A) as the set of liars in G′. This will be denoted K if there is no

ambiguity. The size of this set will often be denoted k.

The purpose of this paper is to analyze these sets, and in particular their size.

Remark. It is possible that some pieces of advice from A had to be changed af-

ter edge deletions. Indeed, for two nodes u and v, if (u, v) ∈ A and edge {u, v}

is deleted, then within G− node u has a piece of advice that points toward a

non-neighbor node. Therefore, since we consider that every node has to point

toward a neighbor in its current graph, then u will have to pick a new advice

among its neighbors. This new choice will depend on the model of adversary
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we will consider (adversary models will be discussed next). Also, if its neigh-

borhood is empty then its advice will be a self loop Adv(u) = u whatever the

model is.

It is also possible that graph G− is disconnected. In this case, every node

that does not belong to the same component as t is considered a liar.

Adversary model.. We will study the number of liars and distance changes under

two models of adversary:

• Strong adversary model. This adversary models the worst case scenario,

which can be seen as an attack on the network by an omniscient entity.

For a given graph G = (V,E), the strong adversary coordinates the choice

of a truthful set of advice A among all possible sets of advice, together

with the choice of theM edges to remove from/add to G with the objec-

tive of maximizing the number of liars k(G−,A) (respectively k(G+,A)).

Moreover, for any node u ∈ V , if Adv(u) = v and {u, v} /∈ E−, then this

adversary can redirect the advice of node u to any node in the neighbor-

hood of u in E−.

• Random adversary. This model can be used to analyze the expected

number of errors created by a set of random faults that happened in the

network. For a given graph G = (V,E) and a given target node t, the

random adversary chooses uniformly at random a set of advice A among

all possible truthful sets of advice. It also chooses uniformly at random

a set of M distinct edges within E for deletions or within V 2 \ E for

additions. In other words it chooses a graph G′ uniformly at random

within G−G,M for deletions (within G+
G,M for additions). Moreover, for any

node u ∈ V , if Adv(u) = v and {u, v} /∈ E−, then this adversary redirects

the advice of node u to a node chose uniformly at random within the

neighborhood of u in graph the G− .
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4. Contributions

4.1. Under the strong adversary

Under the strong adversary model the number of liars created is very high

even for one single edge or node deletion and without graph disconnection:

Theorem 4.1. Under the strong adversary, for one node or edge deletion (or addi-

tion), the numbers of liars and distance changes can be at least n−D−O(1) even

if the graph remains connected.

Since the proof of this theorem is quite simple and short we will use it as a

warm-up. This can be useful to better understand the model of dynamics and

what is measured.

Proof. The proof is based on Figures 2 and 3 that show lower bounds for the

deletion and addition cases respectively. The proof is split in two parts:

Deletion case:. Take any unweighted graph G = (V,E), of diameter D, and

connect every node of this graph to the extremities a and b of two paths that

both end in a new node t, one path A of length D and the other, B, of length

D − 1. In this graph H, every node v ∈ V is at distance D from t and has its

shortest path to t going through path B. Therefore, every such node v has its

advice pointing to the first node of path B, node b. Let us now consider the

graph H− which is graph H minus the closest edge from t on path B, edge

{x, t}. This graph has diameter D + 1, the advice of every node v ∈ V is

necessary a lie since it goes to a dead-end. Moreover, every node from path

B, except x, turns into a liar. Therefore the number of liars in this graph is

n− |A| − | {x} | = n−D − 1).

Addition case:. Consider the graph H− described in the deletion case. In this

graph H−, every node v ∈ V is at distance D + 1 from t and has its shortest

path to t going through path A. Therefore, every such node v has its advice

pointing to the first node of path A, node a and every node from B has its

advice pointing toward G (the sub-graph used to construct H− earlier). Let us
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now consider the graph H which is graph H− plus one edge connecting path

B back to t, adding back the edge {x, t} (this graph is the same H as tho one

from the deletion case). It has diameter D, the advice of every node v ∈ V

is a lie since the path from v to t via path A is one unit longer than the one

going through B. Moreover, every node from path B turned to a liar for the

same reason. In other words every node except nodes from A turn into a liar.

Therefore the number of liars in this graph can be up to n− |A| = n−D.

length D

a

b

G

t

B
x

length D − 1

A

Figure 2: An example of an edge deletion (edge {x, t}) that creates n− (D + 1) liars and distance

changes.

A

a

G

t
b x

B

length D

length D − 1

Figure 3: Example of a single edge addition (edge {x, t}) that creates n − D liars and distance

changes.
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This means that in the general case, many liars can appear after an attacker

removes (adds) a single communication link. That is why the rest of the paper

focuses on random deletions (additions), that can be seen as a model of failure,

where the probability for any node or link to fail is the same.

4.2. Under the random adversary

We will first present an upper bound on the expected number of liars after

M edge deletions, then we will show that this upper bound is tight for some

family of graphs, even if the graph stays connected after the deletions.

Theorem 4.2. For any weighted graph G = (V,E) of hop-diameter D with n

nodes and m edges, for a randomly located target, after M 6 m
2 random edge

deletions, the expected number of liars is E (k) 6M · nDm . Moreover, the expected

number of distance changes is also upper-bounded byM· nDm . Finally the number

of liars and distance changes afterM′ node deletions is at mostM′D.

As we said before, this kind of upper bound allows one to know, for example,

the average update time of King’s algorithm, which would be O
(
D2M · n/m

)
af-

terM random edge deletions and O
(
D2M′

)
afterM′ random node deletions.

More generally we can compute the number of errors for certain graphs or fam-

ily of graphs. If we look at the internet autonomous system network in 2007,

which had, according to DIMES maps [21], 17144 nodes, 46621 links and di-

ameter 8, the expected number of liars created for every falling link is about

2.95 (' 8 × 17/47). More generally, many natural and artificial complex net-

works have scale-free properties. These networks are often modeled by random

graphs that have constant average degree and logarithmic diameter[16] while

some of them even have a smaller diameter[5]. Thus, in most common scale-

free networks[20] (transportation, world-wide web, AS relationships, Math. co-

authorship, . . . ) every random edge deletion creates Θ(logn) liars are created

on average.

Theorem 4.3. For every unweighted M-edge-connected graph G = (V,E) of di-

ameter D and such thatM 6 n
2 , there exists a unweightedM-edge-connected H

11



of diameter D + Θ(1) with n = Θ(|V |) nodes, m = Θ(|E|) edges and having G

as a sub-graph, in which the expected number of liars afterM deletions under the

random adversary model is Ω
(
M · (n−M)Dm

)
.

Remark that the bounds from Theorem 4.2 and Theorem 4.3 are tight for

M 6 n
2 .

Secondly, we have considered the case of random edge additions and ac-

tually found that considering a single edge addition can already have a huge

impact on distances and information stored at nodes.

Theorem 4.4. There exists a family of n-node unweighted graphs in which the

expected number of liars and distance change created by a single edge addition is

Θ(n).

This looks as bad news, but liars created by edge addition(s) do not create

any cycle of advice, but simply miss new shortcuts. This means that routing

would still be guaranteed whereas in the case of edge or node deletions routing

can be compromised.

5. First Observations

5.1. Useful tool

The estimation of the number of distance changes and the number of liars

is correlated with the probability of disconnecting a given path within a graph

as we will see later on. The following Lemma and Corollaries concern path

disconnections and will be used to prove both the lower and the upper bounds

given in Section 4.2.

Lemma 5.1 (Probability of disconnecting a given path). For any path P com-

posed of ` edges, within a graph G = (V,E) such that |V | = n and |E| = m, the
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probability of disconnecting P by deletingM random edges from E is equal to2:

M−1∑
i=0

 `

m− i

i−1∏
j=0

m− j − `
m− j

 (1)

Proof. In the following, the eventEi is ”the i-th edge deletion is the first deletion

that disconnects the path P ”. Also, the event Ci is ”the i-th deleted edge belongs

to P ”. The probability p of disconnecting path P is equal to:

p =
M∑
i=1

Pr(Ei)

=
M∑
i=1

Pr
(
C1 ∧ C2 ∧ . . . ∧ Ci−1 ∧ Ci

)
=
M−1∑
i=0

 `

m− i

i−1∏
j=0

m− j − `
m− j



Corollary 5.1 (General upper bound). For any path P composed of ` edges,

within a graph G = (V,E) such that |V | = n and |E| = m, the probability of

disconnecting P by deleting M 6 m
2 random edges from E is upper-bounded by

2`
m · M.

Proof. From Lemma 5.1 this probability is equal to equation (1):

M−1∑
i=0

 `

m− i

i−1∏
j=0

m− j − `
m− j

 .

Since M 6 m
2 , we have `

m−i 6
2`
m for any i ∈ [0,M− 1]. The product from

equation (1) is always smaller than 1, therefore we immediately obtain the

upper bound 2`
m · M.

Corollary 5.2 (Tightness of the bound). For any path P composed of ` 6 m
4

edges, within a graph G = (V,E) such that |V | = n and |E| = m, the probability

of disconnecting P by deleting M 6 m
2 random edges from E is in Θ

(
`
m · M

)
when `

m · M ∈ O(1).

2Notice that when i=0 the value of the product is equal to 1.
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Proof. From Lemma 5.1 and the inequalityM 6 m
2 we have:

p =
M−1∑
i=0

 `

m− i
·
i−1∏
j=0

1− `

m− j


>
M−1∑
i=0

 `

m
·
i−1∏
j=0

1− 2`
m


>

`

m
·
M−1∑
i=0

(
1− 2`

m

)i
since by hypothesisM 6 m

` · c for some constant c > 0, we have:

p >
`

m
·
M−1∑
i=0

(
1− 2`

m

)m
2` ·c

The function
(
1− 1

x

)x
is non-decreasing on the interval [2,+∞) and has a value

of 1/4 for x = 2. Therefore, in this interval, for c′ = 1/4, we have (1 − 1
x )x >

c′. In our case x actually belongs to the given interval since ` 6 m
4 . As a

consequence, we have:

p >
`

m
·
M−1∑
i=0

c′
c

This implies that p is in Ω
(
`
m · M

)
. Combining this with Corollary 5.1, we

obtain the claimed result.

Before using these corollaries to analyze the number of errors we will char-

acterize what makes truthful nodes turn into liars.

5.2. How truthful nodes turn into liars

First, notice that edge deletions do not necessary imply the creation of liars,

even if these deletions have an impact on the distances in the graph. For exam-

ple, in an unweighted complete graph with n > 2, no liar can be created by a

single edge deletion (u, v):

• if v = t, then Adv(u) in G is v and the distance from u to v in G− is 2,

thus every neighbor is closer to v than u and is therefore a truthful advice

for u in G−;
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• if v 6= t, then Adv(u) = t in both graphs and u is not a liar.

Nevertheless there exists a relationship between distance changes and the

creation of liars. To define this relationship, let us consider two graphs G =

(V,E) and G− = (V,E−) ∈ G−G,M together with the truthful set of advice on G,

A.

Lemma 5.2. If a node u ∈ V is a liar in G− ∈ G−G,M then either its advice points

toward a node v whose distance to the destination has changed or its advice has

been changed due to a deletion. More formally:

∀ (u, v) ∈ A : u is a liar within G− =⇒ (v ∈ S(G,G−)) ∨ ({u, v} /∈ E−)

Proof. Consider two nodes u and v such that v /∈ S(G,G−) and {u, v} ∈ E−.

From both hypotheses, we know that the distance from u to t is the same in both

G and G−. Since the set A of advice is truthful in G, and because a distance

cannot decrease from G to G−, the advice of u is still correct.

We are now ready to show the impact of random edge deletions on the

number of liars.

6. Edge Deletions Under the Random Adversary

As Lemma 5.2 shows liars come either directly from the deletion of the edge

leading to their advice or from distance changes. We will therefore start by

analyzing the number of distance change created byM random edge deletions

on a graph G with advice set AG. We will denote A the modified advice set on

the resulting graph G− (recall that some illegal pieces of advice needed to be

randomly redirected in this model).

6.1. Impact on the number of distance changes

Under the random adversary, for a given node, the probability of changing

its distance afterM edge deletions can be bounded using the upper bound on

the probability of disconnecting a given path (Corollary 5.1):
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Lemma 6.1. For any graph G = (V,E), and any graph G− = (V,E−) chosen

uniformly at random in G−G,M, with M 6 m
2 , the probability that a node u ∈ V

has a different distance in G and G− is bounded as follows:

Pr [u ∈ S] 6M · hdG(u, t)
m

Proof. Distances dG(u, t) and dG−(u, t) are different if and only if for every

shortest path P = {u0 = u, u1, ..., u` = t} at least one edge {ui, ui+1} does not

belong to E−. The probability of this happening is upper-bounded by the prob-

ability of deleting at least one edge in any given shortest path from u to t. In

particular, it is upper-bounded by the probability of deleting at least one edge

in the shortest path with the minimum number of hops, which is, from Corol-

lary 5.1, less than or equal to hdG(u,t)
m · M. Therefore we have:

Pr [dG(u, t) 6= dG−(u, t)] 6M · hdG(u, t)
m

The upper bound on the number of distance changes given by Theorem 4.2

can be derived from this Lemma, by bounding for every node u its distance to t

in G by the hop-diameter D of G.

Proof of Theorem 4.2, the part on |S|. Let us denote by Xu the random variable

that has value 1 if u ∈ S and 0 otherwise. Since expectation is linear, the size of

the set S satisfies:

E (|S|) =
∑
u∈V

E (Xu)

=
∑
u∈V

Pr(u ∈ S)

Thus the expectation of the number of distance changes afterM edge deletions

is:

E (|S|) 6
∑
u∈V
M · hdG(u, t)

m

6M · nD
m
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6.2. Impact on the number of liars

The following Lemma can be deduced from Lemmas 6.1 and 5.2:

Lemma 6.2. Any node u ∈ V is a liar in graph G− with a probability at most:

Pr [u ∈ K(G−,A)] 6 hdG(u, t) · M
m

Proof. From Lemmas 6.1 and 5.2 it can be deduced that, for a given node u ∈ V

such that (u, v) ∈ A, the probability for a node u of being a liar can be bounded

as follows:

Pr [u ∈ K(G−,A)] 6 Pr [v ∈ S] + Pr [{u, v} /∈ E−]

6 hdG(v, t) · M
m

+ M
m

6 (hdG(u, t)− 1) · M
m

+ M
m

Finally:

Pr [u ∈ K(G−,A)] 6 hdG(u, t) · M
m

From this Lemma we can show the upper bound on the total number of liars,

given by Theorem 4.2.

Proof of Theorem 4.2, the part on K. Let us set X ′s to be the random variable

that has value 1 if s is a liar in G− and 0 otherwise. From Lemma 6.2 we can

deduce that the expected number of liars in G− is:

E (|K(G−,A)|) = E

 ∑
s∈V \{t}

X ′s


=

∑
s∈V \{t}

E (X ′s)

=
∑

s∈V \{t}

Pr [u ∈ K(G−,A)]

6
∑

s∈V \{t}

hdG(s, t) · M
m

6
∑

s∈V \{t}

D · M
m
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This gives the following upper bound on the number of liars:

E (|K(G−,A)|) 6M · Dn
m

and concludes the proof of the second part of Theorem 4.2.

Remark on the case of node deletions. The expected number of liars created

by M′ node deletions can be analyzed in the exact same way. First it can be

shown that the probability of disconnecting every shortest path from a node u

to a node t is upper bounded by M′ · hdG(u,t)
n . Then, from that, the bound on

the number of distance changesM′D can be obtained, which finally gives that

the number of liars is also upper bounded byM′D.

6.3. Lower Bound

This section handles the proof of Theorem 4.3, which states that the lower

bound on the number of liars after M random edge deletions can be up to

Ω(M · nDm ) for some family of small-diameter unweighted graphs that we will

define right away and show on Figure 4.

Graph settings.. It is desirable to have a lower bound that is not based on graph

disconnections. In order to guarantee that, in the random model, it is needed

to use a M-connected graph, so that M deletions would never disconnect the

graph. For that purpose we will use a gadget-graph parametrized by its diam-

eter, δ, and its connectivity, κ. We denote this graph by Pδ,κ. It is composed

of κ paths of length δ where, for every i ∈ [1, δ], the i-th node of every path is

connected to the (i + 1)-th node of every other paths. For every i ∈ [1, δ + 1]

and every j ∈ [1, κ], we will denote the i-th node of the j-th path by ui,j . The

construction of the graph, H, used for the lower bound is based on two copies,

G = (V,E) and G′ = (V ′, E′), of anyM-edge-connected graph. Every node of

graph G (respectively G′) is connected to two nodes a and b (respectively a′ and

b′). Nodes a and a′ are linked by a path X = {x0 = a, x1, . . . , xD−1, xD = a′} of

length D. Also, node b and b′ are linked by a graph P = PD,M as follows: for
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every j ∈ [1,M], an edge is added between nodes b and u1,j and between nodes

b′ and uD+1,j . Finally every node xi from path X is connected toM nodes, and

each of these node is connected, for every j ∈ [1,M], to node ui+1,j . If D

denotes the diameter of G, then graph H has:

• diameter D + Θ(1);

• n = 2|V |+ Θ(DM) nodes;

• and m = 2|E|+ 4|V |+ Θ(DM2) edges.

However notice that, since G is M-connected, m > nM and n > (D − 1)M,

thus m > (D − 1)M2. Therefore, we have n = Θ(|V |) and m = Θ(|E|).

Target location and advice set.. Since the graphH is symmetric, we can consider,

without lost of generality, that the target node t is located within graphG′. Since

the original configuration has to be truthful, every node u that belongs to G has

its advice pointing toward node a.

G

x1 a′a

b′b

t

G′

ui+1,1 ui+2,1

xi+1

xi xD−1

P = PD,3

Figure 4: Graph used in the lower bound in the case of edge deletions.
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Impact of M random edge deletions.. Let us now focus on the case where an

edge is deleted in the path X that links node a and a′, this case is depicted in

Figure 5. If one of these edges is deleted then a shortest path A, from a to t,

has the form a  xi  ui+1,•  b′ with {xi, xi+1} being the first edge that

has been deleted from X. Whereas a shortest path B, from b to t, has the form

b ui+1,•  b′. Notice that such paths A and B always exist since the graph H

isM-connected. Since d(b, ui+1,•) = i + 1 and d(a, xi) + d(xi, ui+1,•) = i + 2,

the path A is longer than the path B, therefore any node from G that is still

connected to b is a liar since its advice point toward node a. If such an event

occur, then the number of liars created is at least |V | − (M − 1), that is in

Ω(n −M) when M 6 |V |
2 . Now, the probability that such an event occurs is

equal to the probability of deleting at least one edge in the path X, which is,

from Corollary 5.2, in Ω(DmM). Therefore the expected number of liars is in

Ω
(
M · (n−M) · Dm

)
, which concludes the proof of Theorem 4.3.

G

a′a

b′

t

G′

ui+1,1 ui+2,1

xi

b

Figure 5: The case where an edge of the upper path has been removed.

Remark. If we do not want to restrain the analysis toM-edge-connected graphs,
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then the graph that connects b to b′ can be changed to a line of length D+2, and

connections between the path from a to a′ and this new path become useless.

t

Gt

y

D + 3

b

a

a′

G

G′

x

c

D + 3

Figure 6: An Ω(n) lower bound for the edge addition.

7. Edge Addition Under the Random Adversary

We will show in this section that with the random adversary model, the

expected number of liars after one single edge addition is Ω(n) for some family

of graphs.

In order to prove the lower bound, we consider a graph H with O(n) nodes

and diameter O(D) whose construction is based on three copies of any given

n-node graph of diameter D, namely G,G′ and Gt. Every node from graph G

(respectively G′) is connected to two new nodes a and b (respectively a′ and b).

Also, every node that belongs to graph Gt is connected to a fourth node, named

c. The graph H is then built by connecting node a (respectively a′) to node c by

a path of length D + 3. Figure 6 shows the graph H with some indications on

node positions that will be used and detailed right after.

Let us now observe the configuration of advices in H when the destination

node t belongs to graph Gt. Any node u that belongs to G has two possible ways
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for exiting graph G in order to get closer to t, either through node a or node b.

The distances dH(a, t) and dH(b, t) have the followng values in graph H:

dH(a, t) = dH(a, c) + 1 = D + 4

dH(b, t) = 2 + dH(a′, t) = 2 + dH(a, t) = D + 6

Since dH(a, t) < dH(b, t) the shortest path from any node of graph G to t in H

goes through node a. Therefore every node from G will have its advice pointing

toward node a. Let us now add an edge {x, y} to graph H and call this new

graph H+. The edge {x, y} has one of its extremities in G′ with constant prob-

ability and the other extremity, y, belongs to Gt also with constant probability.

Some distances have been changed by this edge addition, in particular there is

a shortcut b x y  c t which implies that:

dH+(b, t) = min(4, dH(b, t)) = min(4, D + 6) = 4

Thus dH+(b, t) < dH+(a, t) and therefore, for any node u that belongs to G, the

shortest path to node t in the graph H+ goes through node b. Every node from

G is then turned into a liar by adding the edge {x, y}. These nodes represent

a constant proportion of nodes in graph H. Therefore the expected number of

liars for a single random edge addition is in Θ(n), which concludes the proof of

Theorem 4.4.

8. Conclusion

This study shows that, in the context of routing, links and routers failures

usually creates very few errors. More precisely it shows that the number of

errors grows linearly (at most) with the diameter. It is promising in the case

of dynamic routing since most networks where routing protocols are used have

very small diameter. This result could be used to design dynamic protocols that

decide to update their routing tables based on the tradeoff between the cost

of update and the cost of dealing with existing errors. Such a protocol could

make these decision using an estimated number of errors giving (local) obser-

vations on the probability of failure. In this context it would also be interesting
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to have a better understanding of the appearance of liars. For example, it can

be important to know that some deletions create no liar at all. This actually

happens with a probability p0 > 1 − n/m, which is the probability of deleting

no advice (and therefore preserving all distances). Nevertheless it is not trivial

to give a tight bound on this probability, since it is possible that no liars are cre-

ated when deleting an advice. This question would allow to know the average

number of liars created conditioned on the event of creating at least one liar,

and this second expectation E (k | at least 1 liar) could be much larger than the

overall expected number of liars for some graphs. We can, using p0, state that

E (k | at least 1 liar) > E (k) · mn . It could be interesting to give a non trivial up-

per bound on this last expectation but it is not clear if it would be possible. More

generally, it could be interesting to have a distributed algorithm estimating the

amount of liars to decide if an update mechanism should be executed.
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