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1 Introduction

The rendezvous problem concerns two or more autonomous mobile entities (agents),
which start from distinct points in some search space and have to meet. This problem
has been studied extensively under a variety of assumptions, the most important lying
in the nature of the search space (subsets of Euclidean space vs. graphs), the mode of
movement of the agents (deterministic vs. randomized), and the power of the adversary
(synchronous vs. asynchronous). Other aspects of the problem include the amount of
knowledge that may be available to the agents about the space where they are moving,
the amount of interactions with the environment, the quantity of computational resources
that the agents can use in order to decide their moves, etc.

In this paper, we focus on asynchronous rendezvous of exactly two agents in a network
modeled by an undirected simple graph. We use a classical model of asynchrony that
has been used in several recent papers [BITTJI3IT6/22)32]. According to this model, the
complete sequences of edges to be followed by each agent are known to the adversary,
who can vary at will the speed of the execution of that sequence. The graph where
the agents are moving is assumed to be embedded in the three-dimensional Fuclidean
space in such a way that graph nodes correspond to points of the space and graph edges
correspond to pairwise disjoint curves connecting these points (every graph admits such
an embedding). The agents are modeled as points moving inside the embedding. The
speed of an agent traversing an edge is completely controlled by the adversary, as long as
it remains non-negative and it allows the agent to complete the edge traversal in finite
time. In fact, some authors make the assumption that agents can also be moved back and
forth on the curve representing an edge, but as observed by Stachowiak [32], this does
not give the adversary any additional power. Underlying this model is the assumption
that agents can meet not only on nodes of the graph, but also in the interior points of
edges. One is forced to make this assumption, since otherwise two agents are unable to
enforce asynchronous rendezvous even in the graph that consists of a single edge. The
cost of rendezvous is measured in terms of the total number of edges traversed by both
agents until they meet.

Related work The synchronous rendezvous in graphs or gathering (if there are more than
two agents in the system) has been extensivelly studied in the past few years. A sur-
vey of these results is proposed by Pelc in [30]. In the most recent work in this area [1§],
Dieudonné and Pelc propose two universal deterministic algorithms for synchronous gath-
ering both polynomial in the size of the network.

De Marco et al. [16] initiated the study of asynchronous deterministic rendezvous in
graphs, providing algorithms for labeled agents operating in the infinite line, in a ring
of unknown size, and in arbitrary graphs with known upper bound on the size. Later,
Stachowiak [32] improved the algorithm for the infinite line. Czyzowicz et al. [13] proved
the feasibility of rendezvous of labeled agents in graphs without knowledge on the size,
and in connected terrains on the plane. Guilbault and Pelc [22] characterized the starting
positions from which two anonymous agents can achieve deterministic rendezvous in an
unknown graph, and gave a rendezvous algorithm that works for all such starting posi-



tions. Moreover, they presented a randomized algorithm that achieves rendezvous from
all starting positions with probability 1. Collins et al. [I1] gave an almost optimal algo-
rithm for two-dimensional grids, which was generalized and further improved by Bampas
et al. [5]. A deterministic asynchronous rendezvous algorithm with cost polynomial in
the size of the network and in the length of the smaller label was proposed by Dieudonné
et al. [19]. Also, as an application of their algorithm [19], they solve several fundamental
problems such as: counting, leader election, renaming, and gossiping.

In a different model of asynchrony, that has been used mainly in the context of
rendezvous of more than two agents, i.e., gathering, agents operate in Look-Compute-
Move cycles. In a Look operation, an agent obtains a snapshot of the current positions
of the agents in the network, then in a Compute operation it computes its next move,
and finally in the Move operation it executes the move it computed. The time that
elapses between consecutive operations of each agent is controlled by the adversary, thus
an agent may compute a move based on information that is outdated by the time it
executes that move. Gathering has been studied both on graphs [6/14/15/24/25/26/27]
and on the Euclidean plane [T3I47/89/TOJT2IT720/2112331].

An extensive overview of results concerning mainly randomized rendezvous in contin-
uous search spaces is contained in the book by Alpern and Gal [2]. The survey by Kranakis
et al. [29] discusses and compares many of the models developed by the theoretical com-
puter science community for rendezvous in graphs. A more recent survey by Pelc [30]
contains an overview of results in the deterministic network setting. A monograph by
Kranakis et al. [28] focuses on results on the rendezvous problem in ring networks. Fi-
nally, the book by Flocchini et al. [20] includes an extensive presentation of the gathering
results in both continuous and discrete spaces.

Our contribution The goal of this paper is not to give an algorithm for rendezvous in a
particular setting, but instead to give an algorithm to check whether two given walks in
a given graph enforce rendezvous against an asynchronous adversary with a cost of at
most a given integer k.

Thus, the main result of this paper is a complete characterization of pairs of walks
of two agents that enforce rendezvous against an asynchronous adversary with at most
a given cost. The characterization is efficient in that it can be checked in time polyno-
mial in the length of the given walks. The certificate of rendezvous enforcement that is
produced by the checking algorithm contains a wealth of information on why rendezvous
is enforced. Note that the characterization we propose is different from the characteri-
zation for asynchronous rendezvous given by Guibault and Pelc [22]. Indeed, our paper
answers the question of whether the adversary can avoid rendezvous given two agent
walks, whereas Guibault and Pelc [22] study the possibility of deterministic rendezvous
given two agent starting positions.

The outline of the paper is the following. In Section 2] we prove an equivalence between
the general continuous adversary and a more restricted discrete adversary, which proves
useful for our analysis. Section [3] is devoted to proving our characterization of pairs
of walks that enforce rendezvous. We conclude with Section [4, where we discuss the
implications of our results on the design of asynchronous rendezvous algorithms.



2 Discretization of asynchronous continuous schedulings

We consider agents moving asynchronously on anonymous, undirected, simple graphs.
Let G = (V, E) be such a graph. An agent can move from node u € V to node v € V' if
and only if there is an undirected edge {u,v} € E.

Definition 1 (Walk). A walk P on graph G = (V, E) is a sequence of nodes (p;)y<;<,,
such that for each i in the range 0 < i < r — 1, {p;,piy1} € E. For any non-negative
integer k < r, Plk] denotes the residual walk (p;),<;<,. The length |P| =r of the walk
is either a non-negative integer for finite walks, or positive infinity for infinite walks.

Let P = (pi)g<ic, and Q = (¢i)g<;<s be two walks on G. We propose to establish
an equivalence between two adversarial models for asynchronous rendezvous. In the first
model, we assume an arbitrary non-crossing embedding 7 of G in R3.

Definition 2 (Trajectory). If P is a walk on G then the corresponding trajectory is
a curve yp : bp — R3, where {p = Ry if P is infinite, or £p = [0,7] if P is of length r.
Furthermore, vp(0) = n(po) and every edge is traversed in unit time with uniform speed
(this enforces that for all k € N, vp(k) = n(px)).

Definition 3 (Rendezvous points). Let P and Q be two walks on G. The rendezvous
points of P and Q are the elements of the set {(z,y) : yp(z) = vo(y)}.

Definition 4 (Continuous adversary).

1. A continuous scheduling S. for P and Q is a pair of continuous, monotone, and
surjective functions Ap : £ — bp, Ag : £ — Lo, where { = Ry if either P or Q is
infinite, or £ = [0,1] if P and Q are both finite. Furthermore, Ap(0) = Ag(0) = 0.

2. We say that rendezvous occurs under S; at time ¢ if and only if (Ap(t), Ao(t)) is a
rendezvous point of P and Q.

3. The cost of rendezvous for P and Q under S, is

min {Ap(t) + Ao(t) : yp(Ap(t)) = vo(ra(t))}

We interpret such a scheduling as the adversary moving the agents on the embedding
of G in such a way that at each time ¢ > 0, the first agent is on the point yp(Ap(t))
and the second agent is on the point yg(Ag(t)). Note that, under this definition for a
continuous scheduling, we assume that the adversary has the power to arbitrarily vary
the speeds used by the two agents to execute their prescribed walks, provided that these
speeds remain non-negative at all times. The adversary may well immobilize an agent
even in the midst of traversing an edge of the graph, but cannot turn an agent back on its
prescribed walk nor prevent it to reach each node of the walk in finite time. The cost of
rendezvous corresponds to the sum of the number of edges traversed by each agent until
the time of meeting (this number may be fractional if rendezvous occurs in the interior
of an edge). We can visualize a continuous scheduling by looking at the functions A\p
and Ao as parametric equations defining a curve in fp x lo (see e.g. Figure |1). Due
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Fig. 1. Continuous scheduling.

to the monotonicity of Ap and Ag, the slope of this curve is always between 0 and 7,
inclusive.

In the second model, let G be the graph produced by subdividing each edge of G into
two parts. Let P = (j;)g<;<o, and Q = (§i)g<i<z, be the walks on G that correspond to
P and Q on G. - -

Definition 5 (Discrete adversary).

1. A discrete scheduling Sy for P and Q is a sequence ((uiavi))0§i§2(r+s) of pairs of
nodes of G, such that (ug,vo) = (Po,qo) and, for every integer t > 0, if (ug,vy) =
(Ps, Gj), then either (uit1,vi41) = (Dit+1,q5) or (Weg1, Vig1) = (Pi, Gj+1)-

2. We say that rendezvous occurs under Sy at time t if and only if uy = vy.

3. The cost of rendezvous for P and Q under Sy is min {% DUy = vt}.

The intended interpretation of a discrete scheduling is that at each time step t > 0,
the adversary allows the two agents to instantaneously hop onto the nodes u; and v,
(respectively) of G. Of course, by definition of the scheduling, only one agent really
moves at each time step while the other stays on the same node. Alternatively, we can
imagine that the adversary moves the agents in 7(G) as follows: in each time interval
of the form [t, t+ %], where ¢t is half-integral, the agent whose position changes between
(ugt, vor) and (ugit1,v2i41) — suppose without loss of generality that this is the agent
performing the walk P, moving from p; to piy1 — is moved monotonously from 7(;) to
1(Pi+1), while the other agent does not move. Here we assume that, for odd i = 2k + 1,
n(pi) is exactly the middle point of the embedding of the edge (pok, Dar+2)-

By the preceding discussion, it is not hard to see that any discrete scheduling can be
converted to an equivalent continuous scheduling that preserves the occurrence or non-
occurrence of rendezvous and also the cost of rendezvous. We now prove the converse,
thus establishing the promised equivalence between the two adversarial models:

4



Theorem 1. For every continuous scheduling S, = (f,g) for P and Q, there exists a
discrete scheduling Sq = ((ui, vi))g<i<a(r1s), Such that:

1. If rendezvous occurs under S, with cost C(S;), then rendezvous also occurs under Sy
with cost in the range C(S;) — 1 < C(Sy) < C(S,) + 1.

2. If rendezvous does not occur under S, then rendezvous does not occur under Sy.

Proof. We consider a grid that covers ¢p x fg, aligned at the points of ¢p and g that
correspond to embeddings of nodes of G. Thus, each square in the grid is of the form
[D2j, P2j+2)ep X [Gok, G2k+2)eo- We use the terms boundary and interior of a square with

their usual topological meaning. For any square, the diagonal with slope —7 is called

primary, and the diagonal with slope 7 is called secondary. We say that a square is
traversed by S, if the corresponding curve contains any point of the square. By the
monotonicity properties of the scheduling, the entry point of a square is always on the
left or bottom boundary of the square, whereas the exit point of a square is always on
the top or right boundary. Consequently, the next square traversed is always upward,
rightward, or diagonally upward and rightward with respect to the current one.

Let (R;);>( be the sequence of squares traversed by S.. We construct a new continuous
scheduling S’ by normalizing the traversal of each square R;, in such a way that in
the new scheduling the agents never move simultaneously (thus the curve of S, is a
sequence of horizontal and vertical segments) and, furthermore, during the movement of
one agent the other one is immobilized either on a node or in the middle point of some
edge (thus the curve of S. is aligned to a finer grid that consists of squares of the form
[Di, Piv1)ep X (@5, @j+1)eo)- Scheduling Sy, can be immediately converted into a discrete
scheduling Sy that results in rendezvous if and only if S, results in rendezvous, and the
cost of rendezvous of S, and of Sy is exactly the same. What remains to be shown is,
therefore, the equivalence between S, and S..

Definition of S.: We first define the entry and exit points of S. for each R;. If the entry
(resp. exit) point of S, lies in the interior of some boundary edge of the square, then
the entry (resp. exit) point of S, is exactly at the middle of the same edge. If the entry
(resp. exit) point of S, is at a corner of the square, then it coincides with the entry
(resp. exit) point of S.. Observe that by the continuity of S., the exit point of S, from
square R; always coincides with the entry point of S, into square R;41.

Let R; = [P2j,P2j+2)ep X [Goks G2r42)eo De a square traversed by S., and let e =
(u,v) = (P2j, P2j+2) and € = (w,x) = (Gok, Gor+2) be the edges in G that define R;. The
general rule for constructing the normalized traversal of R; is the following:

If S, traverses at least one point of the interior of R;, then S/, goes from entry point
to exit point, passing through the center of the square. The precise choice of route
is arbitrary, as long as S. respects this condition, the monotonicity conditions,
and is a sequence of horizontal and vertical segments aligned to the finer grid
mentioned earlier.

There is one exception to this rule, viz. if e = €’ and scheduling S, does not touch the
secondary diagonal of R; including its endpoints, then S’ goes from entry point to exit



Fig. 2. Normalization of a continuous scheduling, general case.

e #e " e

Fig. 3. Normalization of a continuous scheduling that enters from the bottom edge and exits through
the right edge.

Fig. 4. Normalization of a continuous scheduling when it traverses only boundary points of the square.

point avoiding the center of the square. If S, traverses only boundary points of R;, then
8! uses the unique route that connects its entry point to its exit point.

We illustrate the cases when the entry point lies on the bottom edge of R; in Figures[2]
and [4l The remaining cases can be easily obtained by symmetry.

We call a point in R; or on the boundary of R; a rendezvous point of R; if whenever
a scheduling passes through this point, rendezvous occurs. We prove that in any R;, the
scheduling S, traverses a rendezvous point if and only if the scheduling S’ traverses a
rendezvous point. We consider the following cases:

— &, stays on the boundary of R;, or S, traverses an interior point of R; and e # ¢':
The only possible rendezvous points are the corners of R;, and by construction S,
passes through exactly the same corners as S..



— S, traverses an interior point of R; and touches the secondary diagonal and e = ¢’: In
this case, rendezvous occurs under S.. Moreover, e = ¢’ implies that poji1 = Gog+1,
and since S, goes through the center of the square, rendezvous also occurs under S!.

— &S, traverses an interior point of R; and does not touch the secondary diagonal and
e = €’: In this case, S, goes through either (v,w) or (u,z). If edge e is traversed in
the same direction by both walks then v = w and v = z and rendezvous does not
occur under S, nor under S.. Lastly, If edge e is traversed in opposite directions by
the walks, then u = z and v = w and rendezvous occurs under S, and under S..

The above case analysis establishes the equivalence between S! and S, with respect
to the occurrence of rendezvous.

As far as the cost of rendezvous is concerned, note that in all cases, if S; has a
rendezvous point in a square R;, then there exists a corresponding rendezvous point of S,
in the same square R;. Furthermore, the horizontal distance between the two rendezvous
points is strictly smaller than half the length of the side of R; (in either direction), and
likewise for the vertical distance. This establishes the desired inequality between the cost
of rendezvous of S, and of S.. O

3 A characterization of rendezvous-enforcing pairs of walks

In the following, we only consider walks P, Q on a subdivided graph G that correspond
to valid walks in the original graph G. We drop the “tilde” marks for convenience, but
keep in mind that the walks under consideration are walks on some subdivided graph.
Therefore, every other node corresponds to the middle of some edge in the original graph,
and every occurrence of such a node is immediately preceded and succeded by nodes that
correspond to the endpoints of this edge in the original graph.

Definition 6. We say that walks P and Q enforce rendezvous with cost at most C if
and only if any discrete scheduling for P and Q has cost at most C.

Definition 7. Let P = (pi)g<i<, and Q = (Gi)g<;<s be two walks on G. We define the
corresponding obstruction graph H(P, Q) = (U, D) to be the directed graph with node
set U ={(i,j) : pi = ¢;} U {z,y}, where x and y are two special nodes, and edge set D
containing the following edges:

regular edges: ((7,5), (k,1)) € D, for all (i,7), (k,l) € U such that |i — k| = |j — 1| = 1.

vertical jump edges: ((4,5),(i,5')) € D, for all (i,j),(i,j") € U such that j' > j and
pi € {qj+1,--- 7%"—1}-

horizontal jump edges: ((i,7),(¢,7)) € D, for all (i,5),(i',7) € U such that i’ < i
and q; € {pir+1,-- - Pi-1}-

Furthermore, there exists an edge from node x to each node of the form (0,7) or (i,s),
and also an edge from each node of the form (r,j) or (i,0) to node y.

We visualize the obstruction graph embedded in what we call an obstruction diagram;
see for example Figures [5] and [6] We use the term row k as a shorthand for the set



of nodes U N {(i,k) : 0 < ¢ < r}. Similarly, column k stands for the set of nodes
Un{(k,j) : 0 <j < s}. A discrete scheduling for P and Q is represented by a path
from grid point (0,0) to grid point (r, s), in the same manner as in Figure . Rendezvous
occurs if and only if the path that corresponds to the scheduling uses one of the grid
points that belong to the node set of H(P, Q).

Definition 8 (Barrier). A barrier W in H(P, Q) is a directed path from node x to
node y. The height h of W is defined as h = max{i+j : (i,7) € W}.

Remark 1. Tt is not hard to see that if H(P, Q) contains a barrier W = («, (ag, bg), - - -, (at, bt), y)
of height h, then the path W = (z, (b, a), ..., (bo,a0),y) is a barrier of height h

in H(Q, P). This symmetry justifies the terminology “P and Q form a barrier of height h,”

which we use in the sequel.

Remark 2. If H(P, Q) contains a barrier of height h, then H(P, Q) contains a barrier
(x, (a0, bo), - .., (at,bt),y) of height at most h such that a; > 0 for all ¢ > 0.

In general, a barrier in H(P, Q) may be of one of the following four types (the letters
“L7, “R”, “T”, and “B” stand for “left”, “right”, “top”, and “bottom”, respectively):

— LB barrier: if its first edge connects x to a node in column 0 and its last edge connects
a node in row 0 to y.

— LR barrier: if its first edge connects x to a node in column 0 and its last edge connects
a node in column 7 to y.

— TB barrier: if its first edge connects = to a node in row s and its last edge connects
a node in row 0 to y.

— TR barrier: if its first edge connects x to a node in row s and its last edge connects
a node in column 7 to y.

The remainder of this section is devoted to proving that the minimum height of any
barrier formed by two walks essentially corresponds to the maximum cost of these walks
when enforcing rendezvous.

Theorem 2. If P and Q form a barrier of height h, then P and Q enforce rendezvous
with cost at most h.

Proof. We prove the theorem by induction on the height of the barrier. If h = 0, then
the barrier and thus the obstruction graph H (P, Q) necessarily contain the node (0,0).
By definition this implies that pg = ¢qg, therefore any scheduling for P and Q results in
rendezvous with cost 0.

Now, assume that the statement holds for all heights up to and including h, and
consider two walks P and Q that form a barrier of height h + 1, for some A > 0. Fix
an arbitrary scheduling S for P and Q. Without loss of generality, let S be such that
(u1,v1) = (p1,qo). In other words, the adversary first moves the agent on the walk P and
thus the residual walks for both agents after the first step of the scheduling are now P[1]
and Q. We claim that P[1] and Q form a barrier of height at most h. This implies, by



the inductive hypothesis, that any scheduling for P[1] and Q results in rendezvous with
cost at most h, and therefore S results in rendezvous with cost at most i + 1.

To prove the claim, let Ug = {(i,J)u : pi = ¢j} U {xm,yr} be the node set of the
obstruction graph H = H(P,Q) and let W = (zg, (ao,b0)m,.-., (at,b)m,ym) be a
barrier of height h 4+ 1 in H(P, Q), such that a;, > 0 for all k¥ > 0 (from Remark [2).
Similarly, let Uy = {(4, 7)) : piv1 = ¢;} U {xp, yur } be the node set of the obstruction
graph H' = H(P[1], Q). Since for ¢ > 0, (i,j)y € Uy if and only if (i — 1,j)p €
Uy, the path W' = (xgr, (a1 — 1,b1) g7, - .., (ag — 1,b¢) g, ygr) must be a barrier in H'.
Furthermore, the height of W’ is: max;<g<; (ar — 1+ by) < maxo<p<t (ar + bg) —1 < h,
where the last inequality follows from the fact that the height of W is at most A+ 1. O

Before proceeding to the converse of Theorem [2, we prove the following technical
lemma.

Lemma 1. If P and Q[1] form a barrier of height at most hy and P[1] and Q form a
barrier of height at most he, then P and Q form a barrier of height at most max(hy, ha)+
1.

Proof. Consider the obstruction graph H(P, Q). Let Wj be a path in H(P, Q) that starts
from a node in row s or in column 0, and ends at a node in row 1 or in column 7, without
using any node in row 0. Such a path must exist, since P and Q[1] form a barrier.
Furthermore, since the height of this barrier is at most h;, we must have max{i + j :
(7”.7) € Wl} < hl + 1.

Similarly, since P[1] and Q form a barrier, there must exist a path Wy in H(P, Q)
that starts from a node in row s or in column 1, and ends at a node in row 0 or in
column r, without using any node in column 0. For this path we must have max{i + j :
(Zvj) € WQ} < h2 + L

We consider every possible combination of types for W7 and Wj. In each case, we
construct a barrier W in H (P, Q) of height at most max(hy, he) + 1.

If Wi corresponds to an LR barrier in H (P, Q[1]), then clearly W1 itself is also an LR
barrier in H (P, Q) and, by the former inequality, its height is at most h; + 1. Similarly,
if Wy corresponds to a TB barrier in H(P[1], Q), then Wy itself is also a TB barrier in
H(P, Q) and its height is at most hg + 1 by the latter inequality. If either of W or Wo
corresponds to a TR barrier, then it also forms a TR barrier for P and Q and its height
is at most max(hy, hg) + 1.

Now, assume that W; and Wj both correspond to LB barriers in H(P, Q[1]) and
H(P[1], Q), respectively. Let (0,a), a > 1, and (1,b), b > 0, be the first nodes of W;
and Wy, respectively.

We first consider the case where a > 1 and b > 0. In this case, we construct an LB
barrier W in H(P, Q) as follows: follow W; up to the last node (i*, j*) such that * =1
or j* = b. Then, follow as many horizontal jump edges or vertical jump edges as needed,
in order to reach node (1, b). Finally, follow W5 until the end. By construction, the height
of W is max(hi, h2) + 1, since only nodes from W; or Wy can be maximum-height nodes
for W. The construction of W is correct in view of the following two observations:



(a)

The node (i*,5*) is well defined: Indeed, there exists at least one node (7,7) in W;
such that ¢ =1 or j = b. Note that Wj starts at row a > 1 and it reaches eventually
row 1. The only edges that can take a walk to a lower row are regular edges, therefore
W7 contains at least one regular edge. The first regular edge of Wj takes the walk
from column 0 to column 1, hence to a node (i,j) with ¢ = 1.

It is possible to reach (1,b) from (i*, j*) via vertical or horizontal jump edges.
Indeed, if j* = b then i* cannot be equal to 0, for otherwise the mere fact that
(0,b) and (1,b) are nodes of H(P, Q) would imply that pg = ¢, and p1 = g, therefore
po = p1, and we do not permit our walks to stay on the same node for two consecutive
steps (cf. Definition [1)). We know, then, that W; reaches a node (i*,b) with i* > 1,
therefore there exists a sequence of horizontal jump edges that lead from (i*,b) to
(1,b).

On the other hand, if i* = 1 then we must have j* < b. Indeed, if we suppose that
j* > b then there must exist a subsequent node of Wi with j = b, due to the fact
that only regular edges can take a walk to a lower row, therefore this contradicts the
definition of (i*, j*) as the last node with i = 1 or j = b. We know, then, that W}
reaches a node (1, j*) with j* < b, therefore there exists a sequence of vertical jump
edges that lead from (1,5*) to (1,b).

If a = 1, i.e. Wi corresponds to a zero-height barrier in H (P, Q[1]), then we have

a=1,po=q =u (because (0,1) is a node), and p; = g, = v (because (1,b) is a node).
If, additionally, b = 0, i.e. Wy also corresponds to a zero-height barrier in H(P][1], Q),
then b = 0 and both (0,1) and (1,0) are nodes of the graph H(P, Q), thus there is a
barrier of height 1 in H(P, Q). Now, assume that b > 0. In this case, we must actually
have b > 2, because b = 1 would imply pgp = ¢1 = p1 and a walk cannot stay on the same
node in two consecutive steps (cf. Definition . Since v and v are visited in sequence
by the walk P, exactly one of them must correspond to the middle of some edge on the
original graph where the walks are defined. We distinguish the two cases:

— If w is the middle of an edge, then either qg = v or qo = v. If ¢¢ = v then we

have a barrier of height 1 in H(P, Q) as before. If g0 = v, then p; = g2 = ¢ = v,
therefore (1,2) is a node of H(P, Q) and we construct a barrier W as follows: start
from node (0,1), follow a regular edge to node (1,2), then follow vertical jump edges
all the way up to node (1,b), b > 2, and then follow W5 until the end.

If v is the middle of an edge, then either ¢,_1 = u or g,4+1 = u (if g, is the last node
of Q, then Wy is a TB barrier and we fall back to one of the previous cases). In any
case, we construct a barrier W as follows: start from node (0, 1), follow vertical jump
edges all the way up to node (0,b—1) or (0,b+ 1), then follow a regular edge to node
(1,b), and then follow W5 until the end.

Finally, the case a > 1, b = 0 can be handled symmetrically. This concludes the

construction of an LB barrier in H(P, Q) when W; and Ws are LB barriers in H (P, Q[1])
and H(P[1], Q), respectively.

To conclude the proof of the Lemma, we observe that in the above argument, the

crucial property that we exploited was that the W; walk eventually reached row 1 and
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that the Wy walk started from column 1. Consequently, the same argument as above can
cover all of the remaining cases where Wy is of type sB, s € {L, T}, and Ws is of type
Lt, t € {B,R}, giving in each case a barrier of type st for H(P, Q). O

We are now ready to prove the converse of Theorem [2]

Theorem 3. If P and Q enforce rendezvous with cost at most h, then P and Q form a
barrier of height at most h.

Proof. We prove the theorem by induction on h. The base case is immediate. Assume
that the theorem holds for all values up to some h > 0 and assume that two walks P
and Q enforce rendezvous with cost at most h+ 1. Let us further assume that both walks
are of positive length. (The proof is otherwise immediate.)

Any discrete scheduling for P and Q has cost at most h + 1. In particular, this is the
case for all discrete schedulings for P and O that first move the agent on the walk Q.
Therefore, any discrete scheduling for P and Q[1] has cost at most h, or, equivalently,
P and Q1] enforce rendezvous with cost at most h. By the induction hypothesis, P
and Q[1] form a barrier of height at most h. By considering the discrete schedulings that
first move the agent on the walk P, we similarly prove that P[1] and Q form a barrier of
height at most h. Applying Lemma 1 concludes the proof. a

Remark 8 (On the efficiency of the characterization). Given two finite walks P = (p;)y<;<,
Q = (gi)g<i<, and an integer k, we can construct the subgraph of H(P, Q) that contains
only nodes with height at most k, and check whether there is a barrier, in time O(rs).
Therefore, in view of Theorems [2| and [3| we can decide in time O(rs) whether P and Q
enforce rendezvous with cost at most k. If &k is not given, we can compute the minimum k
such that P and Q enforce rendezvous with cost at most &k (or decide that they do not en-
force rendezvous) by performing a binary search on k in time O(rslog(r + s)). Similarly,
we can compute the maximum number of moves the adversary can delay rendezvous.

In the case where one or both of the walks are infinite, we can consider the prefixes Py,
Oy of length k of the walks P and Q, respectively. Then, P and Q enforce rendezvous
with cost at most k if and only if H(Pk, Q) contains a barrier of height at most k,
which can be decided in time O(k?). If k is not given, then we can keep doubling our
candidate k until we find that H(Py, Q) contains a barrier. If P and Q do not enforce
rendezvous, this process never terminates. However, if P and Q do enforce rendezvous,
then we can compute the minimum k such that P and Q enforce rendezvous with cost
at most k in total time O(k?).

4 Discussion

Let P = (pi)g<i<, and Q = (¢i)y<;<s be the walks prescribed by a rendezvous algorithm
for two agents in some graph G. Referring to the illustration in Figure [6], one could check
whether the adversary can prevent rendezvous simply by considering the underlying grid
shown in the figure and checking whether there exists a path from (0,0) to (r,s) that
avoids the nodes of the obstruction graph H(P, Q) and has no downward or leftward
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moves. Every such path corresponds to a scheduling that avoids rendezvous, because it
stays on the “non-rendezvous” grid points and consumes both of the walks (cf. the green
(thick) path in Figure [6]).

Formally, let N(P, Q) be a directed graph with node set {(7,7) : p; # ¢;,0 < i <
r,0 < j < s} and edge set {((¢,7),v): (i<rAv=(+1,7)V({I<sAv=_(i,7j+1))}
One can verify that the adversary can prevent rendezvous for P and Q for at least k
moves if and only if there exists a directed path of length at least k in N(P, Q) starting
from (0,0), and this condition can be checked in time polynomial in the length of the
two walks.

However, in view of the characterization that we obtained in the previous section, a
different way to check whether P and Q enforce rendezvous with cost at most k is by
checking whether there exists a barrier of height at most k£ in the corresponding obstruc-
tion graph H (P, Q). This property can also be checked in polynomial time. However, we
argue that the certificate of enforcement of rendezvous obtained in this manner, i.e. the
barrier in the obstruction graph, is much more informative than the non-existence of a
certain directed path in N(P, Q).

Indeed, the barrier reveals a lot of information explaining why the two walks enforce
rendezvous. Consider for example the case of a straightline LB barrier that consists
of regular edges only. This barrier tells us that there is something special about the
beginning of the two walks, which enforces rendezvous. A closer examination reveals
that such a barrier implies that there is a prefix of P and a prefix of Q that are exact
reverses of each other.

It is intuitively clear and has been observed by Czyzowicz et al. [13] that, if P contains
a prefix U and at the same time Q contains a prefix that is the reverse of U, then
rendezvous of the two agents under this pair of walks is actually enforced, regardless
of the actions of the adversary. The situation resembles two trains entering a tunnel in
opposite directions. No matter how their speed varies, the trains eventually cross each
other. This notion of tunnel was exploited by Czyzowicz et al. [I3] and by Guilbault and
Pelc [22]. In both papers, it is guaranteed that, for any starting positions of the agents,
their walks eventually create a tunnel, i.e., a prefix of one is the reverse of a prefix of
the other, and thus rendezvous is achieved. In fact, it is equally easy to see that the two
prefixes need not be exact reverses of each other: the agents meet, even if one or both of
them perform arbitrary zigzags (moving back and forth inside the tunnel) that are not
exactly mirrored in the movement of the other agent. This more general notion of tunnel
is implicitly used in various algorithms [BITTIT6/32].

Taking this one step further, one could allow the trains in the tunnel to instanta-
neously jump backward arbitrarily long, each in the direction of its respective starting
point. Even with this new ability, it should still be intuitively clear that two trains that
start from opposite endpoints of a tunnel have to cross each other. In the agent setting,
jumping corresponds to the tunnel itself being a non-simple path on the graph, therefore
enabling an agent to instantaneously “jump” from one occurrence of a particular node to
a different occurrence of the same node, at any position in the tunnel. Such a jump is
backward, resp. forward, if the latter occurrence is closer, resp. further, to the starting
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point of the agent than the former occurrence. Unfortunately, it turns out that rendezvous
may be enforced even though there does not exist any tunnel such that agents are only
allowed zigzags and backward jumps (see Fig. [7| and [§| for an example). Therefore, even
a limited capacity of forward jumping can be allowed, although it is a non-trivial task
to characterize exactly the forward jumps that can be allowed so that rendezvous is still
enforced.

One naturally wonders if that’s all there is to asynchronous rendezvous. Are we forced
to design algorithms that create some kind of tunnel that is traversed by the agents in
opposite directions (allowing for zigzags and jumps obeying certain rules)? Or could we
employ a fundamentally different idea in order to ensure that the agents meet despite
best efforts on the part of the adversary? It seems that a barrier in the obstruction graph
H(P, Q) contains all the information that would enable us to recover the particular path
on the graph that serves as a “tunnel” for P and Q. If this is true, then the former question
would be answered affirmatively. We therefore leave the following as an open question
and an interesting direction for further research: Given a barrier, how do we recover a
path on the graph that the agents want to traverse in opposite directions (allowing for
zigzags and jumps)? Also, what are the correct rules for forward jumps?
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Fig. 6. The obstruction diagram corresponding to the walks in Figure [5| For simplicity, bidirectional
regular edges are illustrated without arrows. The green (thick) path corresponds to a scheduling for P
and Q that avoids rendezvous.
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