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Abstract

We consider the problem of periodic graph exploration in which a mobile entity with constant memory,
an agent, has to visit all n nodes of an input simple, connected, undirected graph in a periodic manner.
Graphs are assumed to be anonymous, that is, nodes are unlabeled. While visiting a node, the agent may
distinguish between the edges incident to it; for each node v, the endpoints of the edges incident to v

are uniquely identified by different integer labels called port numbers. We are interested in algorithms for
assigning the port numbers together with traversal algorithms for agents using these port numbers to obtain
short traversal periods.

Periodic graph exploration is unsolvable if the port numbers are set arbitrarily, see [1]. However, sur-
prisingly small periods can be achieved by carefully assigning the port numbers. Dobrev et al. [4] described
an algorithm for assigning port numbers and an oblivious agent (i.e., an agent with no memory) using it,
such that the agent explores any graph with n nodes within the period 10n. When the agent has access
to a constant number of memory bits, the optimal length of the period was proved in [7] to be no more
than 3.75n − 2 (using a different assignment of the port numbers and a different traversal algorithm). In
this paper, we improve both these bounds. More precisely, we show how to achieve a period length of at
most (4 + 1

3
)n − 4 for oblivious agents and a period length of at most 3.5n − 2 for agents with constant

memory. To obtain our results, we introduce a new, fast graph decomposition technique called a three-layer
partition that may also be useful for solving other graph problems in the future. Finally, we present the
first non-trivial lower bound, 2.8n − 2, on the period length for the oblivious case.

Keywords: algorithms and data structures, graph exploration, periodic graph traversal, oblivious agent,
constant-memory agent, three-layer partition
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1. Introduction

Efficient search in unknown or unmapped environments is a fundamental problem in algorithmics. Its
applications range from robot navigation in hazardous environments to rigorous exploration (and indexing)
of data available on the Internet. Due to a strong need to design simple and cost-effective agents as well as
to design exploration algorithms suitable for rigorous mathematical analysis, it is of practical importance
to limit the memory of agents.

In this paper, we consider the task of graph exploration by a mobile entity equipped with a constant
number of bits memory. The mobile entity may be, e.g., an autonomous piece of software navigating through
a graph that represents the nodes and connections of a computer network. For the sake of simplicity, we
call the mobile entity an agent and model it as a finite state automaton. We require that the agent visits
all nodes in an input graph infinitely many times, in a periodic manner. The task of periodic traversal of
all nodes of a network is particularly useful in network maintenance, where the status of every node has to
be checked regularly.

To assist the agent, we assign local port numbers to the edges at each node as a preprocessing step.
Then, while traversing the graph, the agent is allowed to use the local port numbers to ensure that all nodes
are visited. Our goal is to minimize the length of the traversal period; in other words, we would like to
assign the port numbers so that the maximum number of edge traversals performed by the agent between
two consecutive visits to the same node and entering through the same port is minimized. From here on,
we assume that the input graph is simple, connected, and undirected. We also assume it to be anonymous,
i.e., all nodes are unlabeled.

1.1. Problem definition

Let G = (V, E) be a simple, connected, undirected graph. For any node v ∈ V , the degree of v is the
number of neighbors of v and is denoted by dv. To enable an agent to distinguish between the different
edges incident to a node, the edges at every node v will be assigned local port numbers from {1, 2, . . . , dv}
bijectively. (Every edge will therefore be assigned two port numbers; one at each of its two endpoints.)
See Figure 1.

We model agents as Mealy automata. The Mealy automaton has a finite number of states and a transition
function f governing the actions of the agent (cf. [10]). If the automaton enters a node v of degree dv through
port i in state s, it switches to state s′ and exits the node through port i′, where (s′, i′) = f(s, i, dv). The
memory size of an agent is related to its number of states; to be precise, it equals the number of bits needed
to encode these states. Note that in this model, the size of the agent’s memory represents the amount of
information that the agent can remember while moving. This does not restrict computations made on a
node and thus the transition function can be any deterministic function; any additional memory needed
for computations can be seen as provided temporarily by the hosting node. Nevertheless, our traversal
algorithms only perform very simple tests and operations on the non-constant inputs i and d, namely
equality tests and incrementations.
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Figure 1: In a port number assignment, the dv edges incident to node v are locally given the numbers 1, 2, 3, . . . , dv in some
order.

The problem considered in this paper is to design a port number assignment algorithm and a traversal
algorithm that enable the agent to periodically visit all nodes in an input graph. The efficiency measure
we use to compare solutions is the resulting period length, which is the maximum number of edge traversals
between two consecutive visits to a node entering through the same port, taken over all nodes. The period
length is expressed in terms of n, the number of nodes in the input graph, and our main objective is to find
algorithms achieving a small period length for any input graph. We focus on two cases: the oblivious agent,
having a single state (or equivalently, zero memory bits), and the constant-memory agent, equipped with
a constant number of bits independent of the size of the input graph. By the above discussion, oblivious
agents can be regarded as having access to any amount of temporary memory while stationed at a node but
losing all this memory when exiting the node.

1.2. Previous results

Budach [1] proved that no finite automaton can explore all graphs. Rollik [12] later proved that an
agent needs Ω(log n) memory bits to explore any graph with n nodes, even if restricted to cubic planar
graphs. (This lower bound was in fact recently proved to be optimal by Reingold in his breakthrough
paper [11].) Therefore, the basic periodic graph exploration problem is unsolvable for agents with small
memory. Providing the agent with a pebble to mark nodes does not help much as the asymptotic size of the
memory needed remains Ω(log n) bits [5]. Furthermore, even a highly-coordinated multi-agent team capable
of (restricted) teleportation cannot explore all graphs using only constant memory [3]. Nevertheless, placing
some extra information in the graph can help a lot. Cohen et al. [2] demonstrated that putting two bits
of advice at each node allows any graph to be explored by an agent with constant memory by a periodic
traversal of length O(m), where m is the number of edges.

The impossibility results mentioned above all use the ability of an adversary to assign local port numbers
in a misleading order. On the other hand, if port numbers are carefully assigned beforehand (still under
the condition that at each node v, port numbers from 1 to dv are employed) then a simple agent, even an
oblivious one, can perform periodic graph exploration within a period of length O(n) [4]. More precisely,
Dobrev et al. [4] showed that there exists an algorithm for setting the port numbers in such a way that an
oblivious agent using the so-called Right-Hand-on-the-Wall algorithm as its traversal algorithm will traverse
any graph with n nodes within the period 10n. Significantly, this holds even if the nodes themselves are not
marked in any way while the agent traverses the graph. For agents with constant memory, Ilcinkas [8] gave
an algorithm achieving an upper bound of 4n− 2 on the period length, which was subsequently improved to
3.75n− 2 by Ga֒sieniec et al. [7]. (References [4] and [8] also considered dynamic versions of periodic graph
exploration in which the graph may be modified while the agent is traversing it.)

As for corresponding lower bounds on the period length, the star graph with n nodes (i.e., having n− 1
edges) yields a trivial lower bound of 2n − 2 for any type of agent, independent of the amount of available
memory, since every edge of the graph must be traversed in both directions. Also note that in case the input
graph contains a Hamiltonian cycle, the optimal period length is n: just set the port numbers to direct the
agent along the cycle.
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1.3. Our new results and organization of the paper

In this paper, we improve the previously best upper and lower bounds on the period length for periodic
graph exploration by an oblivious agent [4] and by an agent with constant memory [7, 8] as follows. We
present an efficient deterministic algorithm named FindWitnessCycle for assigning port numbers at
the nodes of the input graph so that an oblivious agent using an extremely simple traversal algorithm
named the Right-Hand-on-the-Wall algorithm (reviewed in Section 2.2) achieves a period length of at most
(4 + 1

3
)n − 4. Our port number assignment algorithm relies on a new three-layer partition technique for

graphs, described in Section 3, permitting an optimal O(|E|)-time construction of the port labeling. The
details of FindWitnessCycle can be found in Section 4. As a special case, we also consider a class of
graphs for which an oblivious agent can obtain a traversal with period length at most 2n by using a simpler
algorithm named TerseCycles as the port number assignment algorithm. Next, we provide the first non-
trivial lower bound, 2.8n−2, on the period length for oblivious agents in the general case in Section 5. Then,
in Section 6, we give an algorithm (also based on the three-layer partition approach) which assigns port
numbers so that an agent with constant memory is able to accomplish periodic graph exploration within a
period length of at most 3.5n− 2. Finally, Section 7 summarizes our new results and discusses some related
open problems.

2. Preliminaries

2.1. Notation and basic definitions

For any undirected graph G = (V, E), we denote by
−→
G the symmetric directed graph obtained from G

by replacing each undirected edge {u, v} ∈ E by two directed edges in opposite directions: one directed
edge from u to v, denoted by (u, v), and one directed edge from v to u, denoted by (v, u). For each directed
edge (u, v) or (v, u), we say that the undirected edge {u, v} ∈ G is its underlying edge. For any node v of a
directed graph the out-degree of v is the number of directed edges leaving v, the in-degree of v is the number
of directed edges incoming to v, and cumulative degree of v is the sum of its out-degree and its in-degree.

Directed cycles constructed by our algorithm traverse some edges in G once and other edges twice (in
opposite directions). However, at early stages, our algorithm for oblivious agents is solely interested in
whether the edge is unidirectional or bidirectional, regardless of the direction. To alleviate the presentation
(despite some abuse of notation), in this context, an edge that is traversed once when deprived of its
direction is called a one-way edge. Similarly, an edge that is traversed twice is called a two-way edge, and it
is understood to be composed of two one-way edges. Hence, we extend the notion of one-way and two-way
edges to general directed graphs in which the direction of edges is removed. In particular, we say that two
nodes s and t are connected by a two-way path, if there is a finite sequence of nodes v1, v2, . . . , vk, where

each pair vi and vi+1 is connected by a two-way edge, and s = v1 and t = vk. We call a directed graph
−→
K

two-way connected if for any pair of nodes there is a two-way path connecting them. Note that two-way
connectivity implies strong connectivity, but not the other way around.

2.2. Traversal algorithms for oblivious agents

A simple graph traversal algorithm for oblivious agents is the Right-Hand-on-the-Wall algorithm [4].
This algorithm is specified by the transition function f : (s, i, d) 7→ (s, (i mod d) + 1). Differently speaking,
if the agent enters a degree-dv node v by port number i, it will exit v through port number (i mod dv) + 1.
The Right-Hand-on-the-Wall algorithm assumes that the initial starting node can be any node v in G and
that the agent entered v from port number dv; therefore, the traversal will always start with an edge with
port number 1. See Figure 2 for an example. For any given graph, there exists at least one assignment of
port numbers that allows the Right-Hand-on-the-Wall algorithm to visit all nodes periodically [4].

Graph traversal according to the Right-Hand-on-the-Wall algorithm is called right-hand traversal or
RH-traversal for short.

Given a port number assignment algorithm and a traversal algorithm for the agent, it is possible, for a
given degree d, to permute all port numbers incident to each degree-d node of a graph G according to some
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Figure 2: (a) Running the Right-Hand-on-the-Wall algorithm with the given port number assignment and starting at node a

will visit all nodes of the graph in the order 〈a, d, b, e, b, c, b, a, . . . 〉, with period length 7. (b) If this port number assignment
is used then the Right-Hand-on-the-Wall algorithm will not be able to visit all nodes of the graph.

fixed permutation σ, and to modify the transition function f of the agent accordingly, so that the agent
behaves exactly the same as before in G. The new transition function f ′ is in this case given by the formula
f ′ = σ ◦ f ◦ σ−1 and the two traversal algorithms are said to be equivalent. More precisely, two traversal
algorithms described by their respective transition functions f and f ′ are equivalent if for any d > 0 there
exists a permutation σ on {1, . . . , d} such that f ′ = σ ◦ f ◦ σ−1. The following lemma states that any pair
consisting of a port number assignment algorithm and a traversal algorithm for oblivious agents, and solving
the periodic graph exploration problem, can be expressed by using the Right-Hand-on-the-Wall algorithm
as the traversal algorithm.

Lemma 1. Any traversal algorithm enabling an oblivious agent to explore all graphs is equivalent to the
Right-Hand-on-the-Wall algorithm.

Proof. Consider an arbitrary algorithm A enabling an oblivious agent to periodically explore all graphs. Let
f be its transition function. Fix an arbitrary d > 1 and let fd be the function i 7→ f(s, i, d) from {1, . . . , d}
to {1, . . . , d}, where s is the single state of the oblivious agent. Consider the d + 1-node star of degree d.
For 1 ≤ i ≤ d, let vi be the leaf reachable from the central node u by the edge with port number i.

For the purpose of obtaining a contradiction, first suppose that fd is not surjective. Let i be a port
number without pre-image. If the agent is started by the adversary in node vj , with j 6= i, then the node
vi is never explored. Therefore fd is surjective, and thus a permutation of the set {1, . . . , d}. Again for the
purpose of contradiction, suppose that fd can be decomposed into more than one cycle. Let i be a port
number outside 1’s orbit (i.e., 1 and i are not in the same cycle of the permutation). If the agent is started
by the adversary in node v1, then the node vi is never explored. Hence, fd is a cyclic permutation, i.e.,
it is constructed with a single cycle. Since the equivalence classes of permutations (often called conjugacy
classes) correspond exactly to the cycle structures of permutations, the traversal algorithm A is equivalent
to the Right-Hand-on-the-Wall algorithm.

Because of Lemma 1, we will always assume in the rest of the paper when referring to oblivious agents
that the Right-Hand-on-the-Wall algorithm is employed as the traversal algorithm.

2.3. Witness cycles and RH-traversability

Any (possibly non-simple) directed cycle formed when traversing a graph according to the Right-Hand-
on-the-Wall algorithm described above for a fixed port number assignment is called an RH-cycle. A witness
cycle for a graph G is an RH-cycle that contains every node of G at least once.

If we are given a witness cycle C for G, it is straightforward to assign port numbers to the nodes in G

so that an oblivious agent using the Right-Hand-on-the-Wall algorithm will traverse G according to C. (To
ensure that any node can be used as the starting node, at every node v, assign port numbers 1 and dv to an
underlying edge for an edge in C directed out from v and into v, respectively.) Therefore, to obtain a port
number assignment algorithm for oblivious agents, we just need to specify how to construct a witness cycle
for any input graph. This will be done in Section 4.
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One key step in our method in Section 4 is to compute a set of RH-cycles and then merge them into

a single witness cycle. Recall that
−→
G is the symmetric directed graph obtained from G by replacing each

undirected edge by two directed edges. In the rest of this subsection, we characterize when a spanning

subgraph of
−→
G is a union of RH-cycles.

Definition 1. Let
−→
H be a spanning subgraph of

−→
G . A node v ∈ G is RH-traversable in

−→
H if there exists a

port number assignment π for G such that, for each edge (u, v) ∈
−→
H incoming to v via an underlying edge e,

there exists an outgoing edge (v, w) ∈
−→
H leaving v via an underlying edge e′ such that e′ is the successor

of e in π at node v.

As a special case, if
−→
H is a witness cycle for G then every node is RH-traversable in

−→
H . However, nodes

may be RH-traversable in
−→
H even if

−→
H is not a witness cycle (q.v. Figure 4), and the next lemma (Lemma 2)

gives a useful condition for checking RH-traversability in the general case. To state the lemma, we need the

following additional notation. Let
−→
H be a fixed spanning subgraph of

−→
G . Any undirected edge {u, v} in G

is called a two-way edge for
−→
H if both of the directed edges (u, v) and (v, u) belong to

−→
H . Otherwise, if

(u, v) belongs to
−→
H but (v, u) does not, then {u, v} is called a one-way edge to v in

−→
H as well as a one-way

edge from u in
−→
H . For each node v in

−→
H , define:

• bv = The number of two-way edges for
−→
H incident to v.

• iv = The number of one-way edges to v in
−→
H .

• ov = The number of one-way edges from v in
−→
H .

Thus, bv + iv + ov equals the number of edges in G incident to v that are underlying edges for directed edges

belonging to
−→
H . For an example, see Figure 3.

Lemma 2. A node v is RH-traversable in
−→
H if and only if bv = dv or iv = ov > 0.

Proof. (⇒) Let π be a port number assignment for G meeting the requirements of Definition 1 and denote
the port number assigned by π to any edge e at v by π(e). If bv = dv then we are done, so consider the
case bv 6= dv. Suppose for the sake of contradiction that there are no one-way edges to v or from v. Let e

be any edge that is not two-way and let e′ be the two-way edge with the largest possible π(e′) satisfying
π(e′) < π(e). It follows that there must exist some one-way edge f from v with π(e′) < π(f) < π(e), which
is a contradiction. Therefore, there exists at least one-way edge to v or from v, and thus iv > 0 or ov > 0 by
definition. The number of incoming edges equals the number of outgoing edges at v, so bv + iv = bv + ov,
i.e., iv = ov.
(⇐) If bv = dv then all edges incident to v are used in both directions and any ordering of the edges
gives an acceptable port number assignment. Otherwise, bv 6= dv and iv = ov > 0, and we can take the

following port number assignment: First, all underlying edges that are two-way edges for
−→
H are numbered

consecutively, starting from 1, followed by an underlying edge for any one-way edge from v. Next, all other
underlying edges for one-way edges are numbered consecutively while alternating between one-way edges
to v and one-way edges from v so that the last (incoming) edge gets port number dv. See Figure 3. Finally,
the remaining edges may be numbered arbitrarily by the unused port numbers.

Lemma 2 immediately yields:

Corollary 1. A spanning subgraph
−→
H of

−→
G is a union of RH-cycles if and only if at each node v of G, the

number of one-way edges to v in
−→
H equals the number of one-way edges from v in

−→
H , and if this number is

zero then all two-way edges for
−→
G incident to v must also be present in

−→
H .
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Figure 3: In this example, edges belonging to
−→
H are shown as arrows. Node v has dv > bv = 2, iv = 2, and ov = 2, so by

Lemma 2, v is RH-traversable in
−→
H . The displayed port number assignment corresponds to the construction in the proof of

Lemma 2.

2.4. Operations on cycles by modifying port numbers

Consider the graph and the port number assignment in Figure 4. The port numbers induce a set C of
three RH-cycles. Every node is RH-traversable in the directed graph formed by taking the union of the
cycles in C according to Lemma 2, but there is no witness cycle in C. However, if we exchange two port
numbers at one of the degree-three nodes, then the three cycles merge into a witness cycle.

In this subsection, we describe two operations on cycles (implemented by modifying the corresponding
port number assignments) and the conditions under which these operations will produce a witness cycle.
The operations are called Merge3 and EatSmall, and were introduced by Dobrev et al. in [4].

1

1

2

1 2

2

2

1

12

3

2

3

1

Figure 4: The above port number assignment induces three cycles, indicated by dashed and dotted lines. Note that every node
is RH-traversable in the union of the three cycles, but there is no witness cycle among the three cycles.

Let
−→
H be a subgraph of G that has only RH-traversable nodes. Observe that any port number assignment

partitions
−→
H into a set of RH-cycles. Take any ordering γ of this set of cycles. We define two rules which

transform one set of cycles to another by changing the port number assignment. The first rule, Merge3,
takes as input three cycles incident to a node and merges them into one cycle. In the case where the node
is visited by more than three cycles, the rule is applied to arbitrarily chosen three cycles. The second rule,
EatSmall, breaks a non-simple cycle into two subcycles and transfers one such subcycle to another cycle.

• Rule Merge3: Let v be a node incident to at least three different cycles C1, C2 and C3. Let x1, x2

and x3 be the underlying edges at v containing incoming edges for cycles C1, C2 and C3, respectively

(x1, x2 and x3 can be a one-way edge or a two-way edge in
−→
H ). Assume w.l.o.g. that x2 is between

x1 and x3 in the port number assignment at v; see Figure 5. Modify the port number assignment at v

as follows: (1) let the successor of x2 become the new successor of x1, (2) let the old successor of x3

become the new successor of x2, (3) let the old successor of x1 become the new successor of x3, and
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(4) keep the same relative order of the other edges. It is easy to see that this operation connects the
cycles C1, C2 and C3 into a single cycle.

3

4

6

1

2

3

4

5

6

C1

C2

C3

before after

1 = x1

2 = x2

5 = x3
C3

Figure 5: Applying rule Merge3 will change the port number assignment at the shown node so that the three cycles C1, C2,
and C3 are merged into one cycle.

• Rule EatSmall:

Let C1 be the smallest cycle in the ordering γ such that

– there is a node v that appears in C1 at least twice

– there is also another cycle C2 incident to v

– γ(C1) < γ(C2)

Let x and y be underlying edges at v containing incoming edges for C1 and C2, respectively; let z

be the underlying edge containing the incoming edge by which C1 returns to v after leaving via the
successor of x. If z is the successor of y, choose a different x. See Figure 6. Modify the ordering of
the edges in v as follows: (1) the successor of x becomes the new successor of y, (2) the old successor
of y becomes the new successor of z, (3) the old successor of z becomes the new successor of x, and
(4) the order of the other edges remains unchanged.

1

3

4 5

6

C1

C2

before after

C1

C2

2 = z

5 = y

6 = x

1

3

4

2 = z

Figure 6: Applying rule EatSmall modifies the port number assignment at the shown node so that cycle C1 becomes shorter
and C2 longer.

The next important lemma implies that a witness cycle can be found by repeatedly applying Merge3
and EatSmall.

Lemma 3. Let
−→
K be a two-way connected spanning subgraph of G such that all nodes in G are RH-

traversable in
−→
K . Consider the set of RH-cycles generated by some port numbering of its nodes, with C∗
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being the largest cycle according to some ordering γ. If neither Merge3 nor EatSmall can be applied to the
nodes of C∗ then C∗ is a witness cycle.

Proof. Suppose, by contradiction, that C∗ does not span all the nodes in G. Let V ′ be the set of nodes of G

not traversed by C∗. Since
−→
K is two-way connected there exist two nodes u, v ∈ G, such that v belongs to

C∗ and u ∈ V ′, and the directed edges (u, v) and (v, u) belong to
−→
K . Edges (u, v) and (v, u) cannot belong

to different cycles of
−→
K because Merge3 would be applicable. Hence, (u, v) and (v, u) must both belong to

the same cycle C′. However, (u, v) and (v, u) cannot be consecutive edges of C′ because this would imply
dv = 1 which is not the case, since v also belongs to C∗. Hence, C′ must visit v at least twice. However,
since C∗ is the largest cycle we have γ(C′) < γ(C∗) and the conditions of applicability of rule EatSmall are
satisfied with C1 = C′ and C2 = C∗. This is a contradiction, proving the claim of the lemma.

3. Three-layer partition

The three-layer partition is a new, fast graph decomposition method that we shall use to efficiently
construct periodic tours, both for oblivious agents in Section 4 and bounded-memory agents in Section 6.
It is defined as follows.

For any set X of nodes in a graph G, the neighborhood of X (denoted by NG(X)) is the set of neighbors
of X in G, excluding nodes belonging to X . For any node v in G and subgraph T of G, we say that v is
saturated in T if v and all edges incident to v in G are also present in T .

Definition 2. A three-layer partition of a simple, connected, undirected graph G = (V, E) is a 4-tuple
(X, Y, Z, TB) such that:

• The three sets X, Y , and Z form a partition of V .

• Y = NG(X) and Z = NG(Y ) \ X.

• TB is a connected, cycle-free subgraph of G (i.e., a tree) with node set X∪Y in which all nodes from X

are saturated.

See Figure 7 for an example. We call X the top layer, Y the middle layer, and Z the bottom layer of the
partition. Any edge of G between two nodes in Y is called horizontal, and the tree TB is called a backbone
tree of G. Note that a backbone tree is not the same thing as a spanning tree (in particular, it does not
contain any node from the bottom layer Z); however, backbone trees will help us to find certain useful
spanning trees later on.

middle layer Y

bottom layer Z

top layer X

Figure 7: A three-layer partition. Solid lines and black nodes belong to the backbone tree TB . Dashed lines represent horizontal
edges outside TB. Dotted lines represent edges that are incident to nodes from Z.

We now present a fast algorithm named 3L-Partition for constructing a three-layer partition with
backbone tree TB of any given graph G = (V, E). The pseudocode is given in Figure 8. During execution,
the nodes in V are dynamically partitioned into sets X, Y, Z, P , and R with temporary contents, where:

• X is the set of nodes currently saturated in TB.

9



• Y = NG(X) contains all nodes at distance 1 from X .

• Z = NG(Y ) \ X contains all nodes at distance 2 from X .

• P = NG(Z) \ Y contains all nodes at distance 3 from X .

• R = V \ (X ∪ Y ∪ Z ∪ P ) contains all remaining nodes from V .

(Thus, the contents of sets Y, Z, P , and R strictly depend on the current contents of X .) Initially, all nodes
belong to R and the backbone tree TB is empty. Each iteration of the main loop (called a round) makes one
node v saturated in TB by moving it to X and inserting the corresponding edges into TB. The algorithm
terminates when no more nodes can be saturated, i.e., can be added to X without inducing a cycle.

Algorithm 3L-Partition

Input: A simple, connected, undirected graph G = (V, E).
Output: A three-layer partition (X, Y, Z, TB) of G.

1: X = Y = Z = P = ∅; R = V ; TB = ∅.
2: Select an arbitrary node v ∈ R.
3: loop
4: X = X ∪ {v} /* Insert the newly selected node v into X . */
5: Update the sets Y, Z, P , and R on the basis of the new X .
6: Make node v saturated in TB by inserting every edge incident to v that is not already in TB.
7: if node v was selected from P then
8: Take any horizontal edge from the middle layer Y and insert it into TB to connect the newly

formed star rooted in v to the rest of TB.
9: end if

10: /* Select a node v for saturation in the next round. */
11: if any node v ∈ Y can be added to X without inducing a cycle then
12: Select v for saturation.
13: else if any node v ∈ Z can be added to X without inducing a cycle then
14: Select v for saturation.
15: else if P is non-empty then
16: Arbitrarily select a new node v from P for saturation.
17: else
18: Exit loop. /* No more nodes can be moved to X . */
19: end if
20: end loop
21: return (X, Y, Z, TB)

Figure 8: Algorithm 3L-Partition.

Theorem 1. Algorithm 3L-Partition computes a three-layer partition of any simple, connected, undirected
graph G.

Proof. We shall show that the algorithm outputs a three-layer partition of G with a distinguished backbone
tree TB. We use the following invariant: At the end of each round, nodes in X and Y are spanned by a
partial backbone tree TB and a new node v is selected for saturation in the next round.

At the end of the first round, the invariant is satisfied because X consists of a single node whose neighbors
in G form Y (step 5) and all edges incident to it belong to TB (step 6). Now assume that the invariant is
satisfied at the beginning of any round i > 1. When the newly selected node v is inserted into X (step 4),
the contents of all other sets are updated (step 5). By definition, v is always selected in such a way that
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all nodes belong to R here

Figure 9: An example of running Algorithm 3L-Partition. The input is the graph shown in (-), and (a)–(e) present the
configuration in each round after a new node has been saturated and the sets X, Y, Z, P, R as well as the backbone tree TB

have been updated. In (a)–(e), the current contents of each set X, Y, Z, P, R are displayed at different horizontal levels, and
solid lines and black nodes belong to the backbone tree TB . The saturated nodes are a, b, c, d, and e, chosen from different sets
Y, Z, and P .

adding all edges incident to v will not create a cycle in TB. If v was chosen from Y (this happens only
when v has no horizontal incident edges), v is already connected to TB so all edges incident to v (added in
step 6) will be connected to the rest of TB, too. Alternatively, if v comes from Z (this happens when all
nodes in Y have horizontal edges outside of TB) and v has exactly one neighbor w ∈ Y , then as soon as all
edges incident to v are inserted, the new part of TB gets connected to the old one via node w. Finally, if v

was selected from P (this happens when all nodes in Y have horizontal edges outside of TB and each node
in Z has at least two neighbors in Y ) then all edges incident to v are inserted into TB. Note that when v

was moved to X , all its neighbors in Z were moved to Y , forming at least one new horizontal edge in Y

(formerly this edge lay across sets Y and Z). We use this new horizontal edge to connect a newly formed
star with the remaining part of TB. The algorithm exits its main loop when it attempts to select a new node
for saturation from an empty set P , meaning that all nodes from V are already distributed among X, Y, Z,
and in accordance with our invariant, this means that the backbone tree TB is completed.

Figure 9 illustrates the execution of Algorithm 3L-Partition.

The next two lemmas summarize some properties of Algorithm 3L-Partition that will be used later in
the paper.

Lemma 4. The three-layer partition output by Algorithm 3L-Partition satisfies the following:

1. Each node y ∈ Y has an incident horizontal edge not belonging to TB.

2. Each node z ∈ Z has at least two neighbors in Y .

Proof. To prove property 1, assume by contradiction that there exists a node y ∈ Y with no horizontal edges
outside of TB. Observe that in this case, y can be saturated and thus moved to X , inserting into TB all
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remaining edges incident to y. Indeed, since all such edges led only to nodes in Z before y was saturated,
their insertion does not create any cycles. Thus, property 1 holds.

Next, assume there is a node z in Z with at most one incident edge leading to layer Y . Then, we can
also saturate z since all edges incident to z form a star that shares at most one node with TB. Thus, no
cycle is created, which proves property 2.

Lemma 5. Algorithm 3L-Partition can be implemented to run in O(|E|) time.

Proof. Below, we say that any node of G is colored red if it has already been tested for saturation (regardless
of whether or not it was finally included in X), and green otherwise. All nodes are initially colored green
and put in the set R. During the execution of steps 10–19 of 3L-Partition, a green node v is selected
for saturation from one of the sets Y, Z, and P (in that order). Depending on which sets that v and its
neighbors belong to, v either passes or fails the ensuing saturation test:

• If v ∈ Y then v may be saturated if none of its neighbors belongs to Y .

• If v ∈ Z then v may be saturated if only one neighbor of v belongs to Y .

• If v ∈ P then v may always be saturated.

If v passes the test then it will be saturated in the next iteration and promoted to X ; on the other hand,
if v fails the test, this means that saturating v would create a cycle in TB because of some edges already
present in TB. In both cases, the algorithm will never need to consider v for saturation again, and v can
be safely colored red. This shows that each node needs to be considered for saturation by steps 10–19 only
once. The saturation test takes d(v) steps, i.e. O(|E|) time for all vertices.

Moreover, every (green or red) neighbor of a node v that is subjected to the above saturation test may
be promoted to a higher ranking set among Y, Z, P and R depending on the result of the saturation test
for v. This happens in the step of updating these sets (Step 5). Also in the same step, neighbors of newly
promoted vertices may also be promoted, and this process continues until every vertex is listed correctly,
as a result of promotions. However, note that vertices which are already in the backbone tree or have the
same ranking with their newly promoted neighbor, will not be promoted by definition. This implies that
not every vertex at distance two or three of a newly saturated vertex is needed to be checked for update.

Under these observations, it is preferable to amortize the number of checks/updates with the edges of
the graph. Each edge can participate in promotional checks whenever one of its two vertices is involved.
If each of the two endvertices reaches its highest possible ranking, the edge also stops participating in any
promotional check. Note that each vertex can be checked for promotion more than once, but always via a
different edge. Given that every vertex can be checked/promoted at most three times, this implies that the
number of checks/updates per edge is a constant factor, and thus the overall cost of the updating step is
also O(|E|).

Therefore, the complexity of the algorithm 3L-partition remains in O(|E|).

The three-layer partition method is employed in Section 4 and Section 6. We believe that this method
may be of use for other problems as well in the future such as designing spanning trees with special properties,
connected dominating sets, etc.

4. Efficient periodic graph traversal by an oblivious agent

The main result of this section is an algorithm named FindWitnessCycle that constructs a short
witness cycle for any given graph G. By the remarks in Sections 2.2 and 2.3, this consequently solves the
problem of periodic graph traversal by an oblivious agent.

According to Lemma 3, it is sufficient to construct a spanning subgraph
−→
K of G which is two-way

connected such that each node of G is RH-traversable in
−→
K . We first consider a restricted case of a terse

set of RH-cycles in Section 4.1, for which it is possible to construct a spanning tree of G with no saturated
nodes. In this case, we give a specialized algorithm that constructs a witness cycle of size 2n. For the case

12



of arbitrary graphs considered in Section 4.2, we need a more involved argument, leading to a witness cycle
of size ≤ (4 + 1

3
)n.

4.1. Terse set of RH-cycles

Suppose G is a graph that has a spanning tree T with no saturated nodes, i.e., for every node v, G contains
some edge incident to v which does not belong to T . Here, we present an algorithm named TerseCycles

that finds a very short witness cycle for this type of graphs.

Algorithm TerseCycles is listed in Figure 10. The idea is to first construct a spanning subgraph
−→
K

of
−→
G that consists of RH-traversable nodes. For this purpose, TerseCycles takes the edges of a spanning

tree T without saturated nodes as two-way edges in
−→
K , inserts some extra one-way edges, and then runs a

procedure named RestoreParity, outlined in Figure 11, to make sure that the number of one-way edges

in
−→
K incident to each node is always even. Procedure RestoreParity visits each node v of the tree T in

bottom-up order and counts all one-way edges incident to v; if this number is odd, the two-way edge leading
to the parent is reduced to a one-way edge (whose direction is unspecified at this point in time). Note that
the cumulative degree of the root must be even since the cumulative degree of all nodes before restoring

parity is even. At the conclusion of RestoreParity we remove temporarily from
−→
K all two-way edges.

All one-way edges forming a connected component are arranged to form a single cycle. Now all these cycles
are merged into a single witness cycle by adding a minimal number of previously removed two-way edges.

Algorithm TerseCycles

Input: A graph G that admits a spanning tree with no saturated nodes.
Output: A witness cycle for G.

1: Let T be a spanning tree of G with no saturated nodes.

2: Construct
−→
K by replacing each edge {u, v} in T by two directed edges (u, v) and (v, u).

3: For each node v ∈ G, add to
−→
K a one-way edge incident to v and belonging to G \ T .

4: Root T arbitrarily.

5: RestoreParity(
−→
K, T, root(T ))

6: Remove temporarily from
−→
K all two-way edges.

7: Take any port numbering as in Lemma 2 and produce a set C of RH-cycles induced by it.
8: For any node v visited by two cycles entering v via ports i and j, swap i and j forming a single cycle.

9: Restore connectivity in
−→
K by adding back a minimal number of two-way edges.

10: Modify port numbers at each node to satisfy the construction in Lemma 2 while preserving the order
of one-way edges.

11: return the cycle in C

Figure 10: Algorithm TerseCycles.

Lemma 6. After the completion of Algorithm TerseCycles, every node of
−→
K is RH-traversable.

Proof. Every node is either saturated or has at least two one-way edges incident to it.

Corollary 2. For any graph G admitting a spanning tree T such that none of the nodes is saturated (i.e.,
G \ T spans all nodes of G), it is possible to construct a witness cycle of length at most 2n.

Proof. Observe that after the execution of Procedure TerseCycles, each node of v ∈
−→
K has an even (and

non-zero) number of one-way edges incident to it. One can provide direction to all one-way edges and port
numbering at each node v so that all edges outgoing from and incoming to v belong to the same cycle. This
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Procedure RestoreParity

Input: A directed graph
−→
K (may be modified by the procedure), a tree T , and a node v ∈ T .

Output: 0 or 1 (the parity for node v in
−→
K).

1: Pv = (number of one-way edges incident to v in
−→
K \ T ) (mod 2)

2: if v is not a leaf in T then
3: for each node cv ∈ T that is a child of v do

4: Pv = (Pv + RestoreParity(
−→
K, T, cv)) (mod 2)

5: end for
6: end if
7: if Pv = 1 then

8: Reduce the two-way edge (v, parent(v)) to a one-way edge in
−→
K with unspecified direction.

9: end if
10: return Pv

Figure 11: Procedure RestoreParity.

is done in two steps. First, the initial port numbering and the direction of one-way edges are obtained via
greedy selection of one-way edges to form cycles. Later, if there is a node v that belongs to two or more
cycles (based on one-way edges), the cycles are merged at v via direct port number manipulation. When this

stage is done, the set of nodes in
−→
K is partitioned into components, with all nodes in the same component

belonging to the same cycle based on one-way edges. Also note that each component is at distance one
from some other component, where the components are connected by at least one two-way edge (this is a
consequence of the fact that each node has at least two one-way edges incident to it). The two-way edge
is used to connect the components. By successively connecting pairs of components at distance one, we
end up with a single component, i.e., a witness cycle spanning all the nodes. It is important to only add a
minimal set of two-way edges enforcing connectivity to actually end up with a single cycle. Note that for

each one-way edge introduced in
−→
K , a two-way edge from the spanning tree is reduced to a one-way edge

during the restore parity process. This happens because one-way edges form a collection of stars and at
least one endpoint of every one-way edge (in a star) is free. Thus, the number of all edges in the witness
cycle is bounded by 2n.

By Corollary 2, Algorithm TerseCycles yields a small witness cycle for any graph that admits a
spanning tree with no saturated nodes. This situation occurs for large, non-trivial classes of graphs, including
two-connected graphs, graphs admitting two disjoint spanning trees, and many others. On the negative side,
observe that in general, finding a spanning tree having no saturated nodes amounts to finding a Hamiltonian
path, a problem known to be NP-hard even if restricted to 3-regular, planar graphs [6].

4.2. Construction of witness cycles in arbitrary graphs

Given any graph G, Algorithm FindWitnessCycle in Figure 12 can be used to construct a witness
cycle for G. The algorithm is based on the following approach. First compute a spanning tree T of G. Let
Hi for i = 1, 2, . . . , k be the connected components of G \ T , having, respectively, ni nodes. For each such
component, run Algorithm 3L-Partition, obtaining three sets Xi, Yi, Zi and a backbone tree Ti. Use the
edges of Ti as two-way edges in Gi, insert extra one-way edges incident to the nodes of sets Yi and Zi, and
apply the procedure RestoreParity. We shall explain below how to do this so that the total number of

edges in all resulting Gi-graphs is smaller than (2 + 1
3
)n. Next, we let

−→
K be the union of T (where every

edge of T is used both directions) with all the Gi-graphs, and take a port numbering that generates a set of
RH-cycles as in Lemma 2. Finally, we apply rules Merge3 and EatSmall to this set of cycles until neither
rule can be applied. The set of cycles obtained will contain a witness cycle according to Lemma 3.
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Algorithm FindWitnessCycle

Input: A graph G.
Output: A witness cycle for G.

1: Compute a spanning tree T of G.
2: for each connected component Hi of G \ T do
3: (Xi, Yi, Zi, Ti) = 3L-Partition(Hi)
4: Gi = Ti /* These edges are inserted into Gi as two-way edges. */
5: Form a set Pi by selecting, for each node in Zi, two edges leading to Yi.

Let Gi = Gi ∪ Pi. /* One-way edges. */
6: Form a set Si of independent stars spanning all nodes in Yi that are not incident to Pi.

Let Gi = Gi ∪ Si. /* One-way edges. */
7: Root Ti arbitrarily and run RestoreParity(Gi, Ti, root(Ti)).
8: end for
9:

−→
K = T ∪ G1 ∪ G2 ∪ · · · ∪ Gk

10: Take any port numbering as in Lemma 2 and produce a set C of RH-cycles induced by it.
11: Repeatedly apply Merge3 or, if not possible, EatSmall to C until neither rule can be applied.
12: return the largest cycle in C

Figure 12: Algorithm FindWitnessCycle.

Theorem 2. For any n-node graph algorithm, FindWitnessCycle returns a witness cycle of size at most
(4 + 1

3
)n − 4.

Proof. For each component Hi, we apply Algorithm 3L-Partition to obtain three sets Xi, Yi, Zi and a
backbone tree Ti. By Lemma 4, we can add one-way edges incident to the nodes in Yi as well as pairs of
one-way edges incident to the nodes in Zi and then apply Procedure RestoreParity to each Gi. Note
that when each star Si is constructed, we may do it in such a way that no path of length three or more is
created. Indeed, otherwise we could remove a middle edge of any path of length three and the set of spanned
nodes would remain the same. Hence, Si is a forest of stars. Moreover, we can assume that only centers
of such stars can be incident to edges forming Pi, otherwise any edge leading to a leaf node incident to Pi

can be removed. Consequently, after termination of the “for” loop, each node of G is RH-traversable in
−→
K .

Moreover, since
−→
K ⊇ T ,

−→
K is two-way connected, so the conditions of Lemma 3 are satisfied. Hence, at the

end of the algorithm, C contains a witness cycle.

In order to bound the size of the witness cycle, we will bound the number of edges in
−→
K . First note that

2n − 2 edges originate from T (i.e., n − 1 two-way edges). Suppose that for each component Gi containing
ni nodes of G \ T , no one-way edges were added in lines 5 and 6, that is Pi = ∅ and Si = ∅. Hence, the call
to Procedure RestoreParity in line 7 did not modify Gi. In consequence, 2(ni − 1) edges were added for
Gi or 2(n1 + n2 + · · · + nk) − 2k in total. This value is maximized for k = 1, giving 2n − 2 edges added in

the “for” loop, and 4n − 4 total edges in
−→
K . The count remains the same if some Pi 6= ∅ since exactly two

edges were added for each node of Zi in line 5.
Now suppose that Si 6= ∅ in line 6, for some components Gi. For each endpoint v ∈ Yi of a star belonging

to Si and a one-way edge e added for v in Si in line 6, we check whether there is some other edge that was
reduced (from two-way to one-way) during the call to RestoreParity on line 7. This happens when v

is not incident to a horizontal edge of the backbone tree Ti, since one of the edges incident to v will then
become a one-way edge. Thus, the addition of e is done at no extra cost, i.e., the total number of edges
remains the same. However, when two endpoints of a horizontal edge are incident to two edges of Ti, only
one such edge will be amortized. Consider then a collection of one-way horizontal edges, belonging to the
backbone tree Ti with edges of Si incident to both of their endpoints. The collection forms a forest. In
each tree, pick a root arbitrarily and repeat the following process until there is only one edge left. Take an
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arbitrary leaf and amortize the edge of Si incident to it with the tree edge leading to the parent of the leaf.
Remove the leaf and the edge that leads to its parent from further consideration. Note that in this case,
amortization is one to one. When this process is finished, each tree has been reduced to one edge. In other
words, we have a collection of independent one-way horizontal edges belonging to the backbone tree. Note
that each such edge is associated with two independent edges of Si. Clearly, the worst case happens when
the forest was formed by independent one-way edges. This implies that the number of such horizontal edges
is not larger than ni

3
.

Taking into consideration the maximal penalty that we have to pay for edges added in line 6 of the

algorithm, the number of edges forming
−→
K is bounded by (4 + 1

3
)n − 4.

Next, we analyze the algorithm’s time complexity.

Theorem 3. Algorithm FindWitnessCycle can be implemented so it runs in O(|E|) time.

Proof. In O(|E|) time we can find a spanning tree T of G and the connected components of G\T . By Lemma
5, for each connected component Gi having ni nodes and ei edges, Algorithm 3L-Partition terminates
in O(ei) time. The construction of sets Pi in line 5 and set Si in line 6 as well as the call to procedure
RestoreParity on line 7 are completed in O(ni) time. Altogether, the “for” loop terminates in O(|E|)

time. The construction of
−→
K in line 9 and C in line 10 are done in time proportional to their sizes, i.e., O(n).

We show now that line 11, where the rules Merge3 and EatSmall are repeatedly applied, may be per-
formed within O(|E|) time. We chose any ordering γ of cycles and we attach to each edge a label corre-
sponding to the cycle to which the edge belongs. Let C∗ be the largest cycle according to γ and v be any
node of C∗. We repeatedly apply rules Merge3 (resulting cycle obtaining rank of γ(C∗)) and EatSmall to
node v until no longer possible. Observe that, for each node v, this may be done in time proportional to the

degree of node v in
−→
K , resulting in the overall cost of O(|E|). Each time, we traverse the edges of the cycle

(or a part of the cycle) added to C∗ and change their labels to γ(C∗). When neither Merge3 nor EatSmall is
applicable to v we proceed to node v′ (the actual successor of v in C∗) and repeat the procedure of applying
rules Merge3 or EatSmall to v′. Each edge introduced in C∗ was relabeled exactly once, hence the overall
cost of relabeling process is in O(|E|). Although C∗ changes dynamically and some nodes may be traversed
many times we end up by traversing all nodes eventually in C∗. By Lemma 3, C∗ becomes a witness cycle
at the end of this process. Note that the complexity of each Merge3 and EatSmall operation is proportional
to the number of edges added to C∗. By Theorem 2, the overall complexity of line 11 is O(|E|).

Finally, we provide a lower bound example for the FindWitnessCycle algorithm which demonstrates
that the bound stated in Theorem 2 for our algorithm is tight, up to an additive constant.

Lemma 7. There exist graphs for which the FindWitnessCycle algorithm may produce a witness cycle
of size (4 + 1

3
)n − 7.

Proof. Consider the graph in Figure 13.

The main part of the graph containing n = (3k+1) nodes consists of k copies of four nodes XiY2iY2i+1Xi+1,
for i = 1, 2, . . . , k, where the last node of each but the last copy is identified with the first node of the next
copy (see Figure 13). Moreover, an extra node Y1 is adjacent to each of the nodes Y2, Y3, . . . , Y2k+1, and
a node W is adjacent to all other nodes in the graph. Suppose that the star at node W is chosen by the
algorithm as the spanning tree T , represented by the dotted edges in the picture. Algorithm 3L-Partition

locates nodes X1, X2, . . . , Xk in set X and the nodes Y1, Y2, . . . , Y2k+1 in set Y (set Z is empty). Suppose
that the backbone tree is the path Y1X1 . . . Xk+1 - represented by the solid edges in Figure 13. Since the
algorithm adds one horizontal edge for each node from class Y , all edges incident to Y1 are added to the
structures. It is easy to see that the parity restoring procedure will chose the edges YiYi+1 as the one-way
edges of the structure. In consequence, only 2k dashed edges and k thin solid edges in Figure 13 are chosen
as one-way edges; all other edges (i.e., 3k+2 dotted edges and 2k+1 bold solid edges) are taken as two-way
edges. This results in a witness cycle of size 13k + 6, i.e., containing (4 + 1

3
)n − 7 edges.
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Figure 13: Example of a graph for which our algorithm gives a witness cycle of size not smaller than (4 + 1

3
)n − 7.

5. A lower bound for oblivious agents

The previous section showed that for any n-node graph, we can construct a witness cycle of length at
most (4 + 1

3
)n − 4. In this section, we complement this result with a non-trivial lower bound of 2.8n− 2.

Theorem 4. For any non-negative integers n, k, and l such that n = 5k + l and l < 5, there exists an
n-node graph for which any witness cycle is of length 14k + 2l − 2.

Proof. First consider a single diamond graph G′ with 5 nodes, defined on the left side of Figure 14. W.l.o.g.,
assume that the agent starts its traversal through the edge (v, x). By the structure of G′, the agent then
traverses the edge (x, u). Again, w.l.o.g., suppose the successor of (x, u) is the edge (u, y). Then there is only
one feasible successor of (y, v), namely (v, z), because the other two edges either violate RH-traversability
((v, y)) or leave node z unvisited ((v, x)). Next, the only possible successor of (z, u) is (u, x) because (u, y)
has already been traversed with a different predecessor and (u, z) violates RH-traversability. Similarly, the
successor of (x, v) must be (v, y) and the successor of (y, u) must be (u, z). Therefore, each edge of G′ must
be used in both directions, and the witness cycle has length 12 = 2.4n.

Next, consider the graph G having n nodes and consisting of a chain of k diamond graphs and path of
l nodes attached to node uk, as shown on the right side of Figure 14. Note that G contains 7k+(l−1) edges.
Assume that the agent start the graph traversal at node v1. From the fact that each edge in the witness
cycle is traversed at most twice (one time in each direction), it follows that when returning to ui−1 from vi,
all nodes in Gi (as well as in all Gj for j > i) must have been visited. From RH-traversability, it follows
that the successor of (ui−1, vi) cannot be the same (in reverse direction) as the predecessor of (vi, ui−1), and
similarly the successor of (vi, ui−1) cannot be the same as the predecessor of (ui−1, vi). In turn, this means
that analogous arguments as used above for the graph G′ also apply to every Gi. Therefore, all edges of G

must be traversed in both directions.

Selecting l = 0 in Theorem 4 gives n = 5k, and we obtain the lower bound 14k − 2 = 2.8n − 2 on the
period length for oblivious agents.

6. Periodic graph traversal by an agent with constant memory

In this section, we focus on algorithms for periodic graph traversal by agents with constant memory. The
main idea of the periodic graph traversal mechanism proposed in [8], and further developed in [7], is to visit
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Figure 14: The diamond graph G′ and the chain of diamond graphs used to prove the lower bound in Theorem 4. The witness
cycle for G′ shown on the left is 〈v, x, u, y, v, z, u, x, v, y, u, z, v〉 with length 12.

all nodes in the graph while traversing along an Euler tour of a (in [7], particularly chosen) spanning tree.
In [8], an arbitrary spanning tree T of G is rooted at any leaf, and the port numbers assigned so that

at each non-root node v, port 1 is assigned to the port leading to the parent of v while ports {2, . . . , i + 1}
are assigned to the children of v in T and ports {i + 2, . . . , dv} to the remaining ports. Then, after entering
node v via port 1, the agent recursively visits all subtrees accessible from v via ports 2, . . . , i + 1, where i

is the number of children of v. When the agent returns from the last (ith) child it either: (1) returns to its
parent via port 1, when i + 1 is also the degree of v (i.e., v is saturated in T ); or (2) it attempts to visit
another child of v by traversing the edge e associated with port i + 2. In case (2), the agent learns at the
other end of e that the port number is different from 1, i.e., that this node is not a child of v in the spanning
tree T , and uses its constant memory to immediately backtrack via the same edge (first return to v and then
directly to the parent of v), and then continues the tree traversal process. In these circumstances, the edge e

is called a penalty edge since e does not belong to the spanning tree and an extra cost has to be charged for
traversing it. Since the spanning tree has n− 1 edges, and at each node the agent can be forced to traverse
a penalty edge, the number of steps performed by the agent (equal to the length of the periodic tour) may
be as large as 4n − 2 (n − 1 edges of the spanning tree and n penalty edges, where each edge is traversed
in both directions). The main result of [7] is the efficient construction of a specific spanning tree supported
by a more advanced visiting mechanism stored in the agent’s memory. They showed that the agent is able
to avoid penalties at a fraction of at least 1

8
n nodes. This in turn gave the length of the periodic tour not

larger than 3.75n− 2.
In what follows, we show a new construction of the spanning tree, based on the earlier three-layer

partition. This, supported by a new labeling mechanism together with slightly increased memory of the
agent, allows us to avoid penalties at 1

4
n nodes, resulting in a periodic tour of length ≤ 3.5n. In the new

scheme, shortcuts are created by performing “port swap operations”, where some leaves in the spanning
tree are connected to their parents via port 2 (in [7], this port is always assumed to be 1). The rationale
behind this modification is to treat edges towards certain leaves as penalty edges (rather than the regular
tree edges) and in turn to avoid visits beyond these leaves, i.e., to avoid unnecessary examination of certain
penalty edges.
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Figure 15: Fragment of the spanning tree with the root located to the right of w1 and w2.

6.1. The construction

Recall that the nodes of the input graph can be partitioned into three layers X, Y , and Z, where all
nodes in X and Y are spanned by a backbone tree; see Section 3. The spanning tree T is obtained from the
backbone tree by connecting every node in Z to one of its neighbors in Y. Also recall that every node v ∈ X

is saturated, i.e., all edges incident to v in G also belong to the spanning tree. Every node in Y that lies on
a path in T between two nodes in X is called a bonding node. The remaining nodes in Y are called local.

Initial port labeling:

When the spanning tree T is formed, we pick one of its leaves as the root r where the two ports located
on the tree edge incident to r are set to 1. Initially, for any node v the port leading to the parent is set to
1 and ports leading to the i children of v are set to 2, . . . , i + 1 in such a way that the subtree of v rooted
in child j is at least as large as the subtree rooted in child j′ for all 2 ≤ j < j′ ≤ i + 1. All other ports are
set arbitrarily using distinct values from the range i + 2, . . . , dv, where dv is the degree of v.

Port swap operations:

Now, we modify allocation of ports at certain leaves of the spanning tree located in Z. In particular,
we change labels at all children having no other leaf-siblings in T of bonding nodes (see, e.g., node w1 in
Figure 15), as well as in single children of local nodes, but only if the local node is the last child of a node
in X that has children on its own (see, e.g., node w2 in Figure 15).

Every leaf w located in layer Z has an incident edge e outside of T that leads to some node v in Y by
Lemma 4 (property 2). When swapping port numbers at some leaf w, we set the port number on the tree
edge leading to the parent of w to 2. We call such an edge a sham penalty edge since it appears to be a
penalty edge but in fact connects w to its parent in the spanning tree T . We also set the port number on the
lower end of e to 1. All other port numbers at w (if there are more incident edges to w) are set arbitrarily.
After the port swap operation at w is accomplished we also have to ensure that the edge e will never be
examined by the agent, otherwise it would be wrongly interpreted as a legal tree edge, where v would be
recognized as the parent of w. In order to avoid this problem we also set ports at v with greater care. Note
that v has also an incident horizontal edge e′ outside of T (property 1 of the three-layer partition). Assume
that the node v has i children in T. Thus, if we set to i + 2 the port on e′ (recall that port 1 leads to the
parent of v and ports 2, . . . , i + 1 lead to its children) the port on e will have value larger than i + 2 and
e will never be accessed by the agent. Finally, note that the agent may wake up in the node with a sham
penalty edge incident to it. For this reason, we introduce an extra state to the finite state automaton A
governing moves of the agent in [7] to form a new automaton A+. While being in the wake up state the
agent moves across the edge accessible via port 1 in order to start regular performance (specified in [7]) in
a node that is not incident to the lower end of a sham penalty edge.

Lemma 8. The new port labeling provides a mechanism to visit all nodes in the graph in a periodic manner
by the agent equipped with a finite state automaton A+.
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Figure 16: Cases (a), (b), (c), and (d) of the local amortization argument used in the proof of Theorem 5.

Proof. It suffices to prove that no difficulty arises at nodes with numbers affected by the modified labeling
scheme.
Case C1: First consider the case when the port numbers are swapped at some node w1 which is a single
child in Z of a bonding node u (see Figure 15). When during traversal the agent returns from the subtree
rooted in a child of u accessible via port i − 1, it enters via port i the edge leading to w1. This edge is
interpreted as a penalty edge and the agent after visiting w1 immediately returns to u and then it goes
with no further action to the parent of u. Note that if the labeling was not changed the agent would act
similarly; however, it would additionally examine a penalty edge located at w1. Thus, thanks to the new
labeling scheme we save one penalty at the node w1.

Case C2: Next, consider the case when the port numbers are swapped at a single child w2 of a local node
v such that v has no siblings different from leaves to its right (accessible via larger ports), see Figure 15.
Assume that s is the (saturated) parent of v and port i at v leads to w2. When during traversal the agent
returns from the subtree rooted in a child of v accessible via port i−1, it enters via port i the edge leading to
w2. When it learns that the port label at w2 is different from 1, it interprets the sham penalty edge linking
v and w2 as the penalty edge. The agent immediately returns to v while switching to the leaf recognition
state [7] (v would be interpreted as the first leaf of s). This means that all remaining leaves accessible from
s (if any) will be visited at no extra charge, i.e., without paying penalty at them. Thus, the agent does not
miss the node w2 and it also saves penalty at w2 and possibly at all leaves that are siblings of v.

6.2. Analysis

Theorem 5. For any undirected graph G with n nodes, it is possible to compute a port labeling such that
an agent equipped with a finite state automaton A+ can visit all nodes in G in a periodic manner with a
tour length that is no longer than 3.5n− 2.

Proof. The main line of the proof explores the fact that the fraction of nodes at which the agent manages
to save on penalties is at least 1

4
. The proof is split into global and local amortization arguments.

• Global amortization [saturated nodes amortize all bonding nodes and single children of saturated
nodes]

Note that in a three-layer partition with k saturated nodes, there are at most 2k − 2 bonding nodes
since introducing a new saturated node implies the creation of at most two bonding nodes. Also note
that there are at most k single leaves (with no siblings) that are children of saturated nodes. In the
global amortization argument, we assume that at these nodes, i.e., all bonding nodes and all single
leaves of saturated nodes, in the worst case the agent always pays penalty (examines the penalty edge).
Fortunately, all of these ≤ 3k− 2 nodes (2k − 2 bonding nodes and k single leaves of saturated nodes)
can be amortized by k saturated nodes. Thus, as required, the fraction of nodes where the agent does
not pay penalty is 1

4
. For all other nodes in T , we use the local amortization argument.
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• Local amortization [direct amortization of nodes within small subtrees]

The local amortization argument is used solely on two-layer subtrees accessible from saturated nodes,
i.e., formed of local nodes and (possibly) their children, cases (a), (b), (c), and (d), see Figure 16, as
well as on leaves accessible from bonding nodes, cases (e) and (f).

The local amortization argument involving local nodes is split into cases (a), (b), (c), and (d) in
relation to the size of subtrees rooted in local nodes. We start the analysis with the largest subtrees
in case (a) and gradually move towards smaller structures in cases (b) and (c), finishing with single
local nodes in case (d).

(a) Consider any subtree TS with at least two children rooted in a local node. In this case, the initial
labeling remains unchanged. During traversal of TS the agent pays penalties at the local node and at
its first child where it switches to the leaf recognition state. In this state, no further penalties at the
leaves of TS are paid. Since the number of children i ≥ 2 the fraction of nodes in the subtree without
penalties is at least 1

3
.

(b) Now consider the case where a saturated node v has at least two children (local nodes) with single
children (two extended leaves according to the notation from [7]) accessible from v. In this case, the
number of penalties paid during traversal of all extended leaves is limited to two since the penalties are
paid at both nodes of the first extended leaf where the agent switches to extended leaves recognition
state. The remaining nodes of the extended leaves are visited at no extra cost. In this case, the fraction
of nodes without penalties is at least 1

2
.

(c) Next, consider the case where a saturated node has only one extended leaf (a local node u and its
single child w) possibly followed by some regular leaves formed of local nodes. In this case, the initial
labeling is changed and the sham penalty edge (u, w) is introduced (case C1 in the proof of Lemma 8).
When the agent visits the extended leaf it enters the sham penalty edge interpreting it as the penalty
edge. Moreover, if u has sibling leaves all of them are visited at no extra cost since after visiting a
sham penalty edge the agent is in the leaf search state ([7]). Thus, in this case there is no penalty to
be paid, i.e. the fraction of nodes where the penalty is not paid is 1.

(d) It may happen that a saturated node has several children that are leaves in T not preceded by
an extended leaf. In this case, the penalty is paid only at the first leaf and all other leaves are visited
(in leaf search mode) at no extra cost. Therefore, a penalty of at least 1

2
is avoided. (Recall that the

case when a saturated node has only one child that is a leaf in T was already considered in the global
amortization argument.)

The remaining cases of the local amortization argument refers to the leaves accessible via bonding
nodes.

(e) When a bonding node has at least two children (all children are leaves) during traversal the agent
pays penalty only at the first child while all other children are visited at no extra cost (thanks to the
leaf search state). Thus, the fraction of nodes (leaves) where the penalty is avoided is at least 1

2
.

(f) Finally, consider the case where a bonding node u has exactly one child w (case C1 from the proof
of Lemma 8). In this case, thanks to the sham penalty edge (u, w), no penalty is paid at w, i.e., the
fraction of nodes without penalties is 1.

In conclusion, the fraction of nodes at which the penalty is avoided is bounded from below by 1
4

in all
considered cases. Thus, the number of visited penalty edges is bounded by 3

4
n. Since the number of edges in

the spanning tree is n−1 the agent visits at most 7
4
n−1 edges where each edge is visited in both directions.

This concludes the proof that the length of the tour is bounded by 3.5n − 2.

Note that in the model with implicit labels, one port at each node has to be distinguished in order to
break symmetry in a periodic order of ports. This is to take advantage of the extra memory provided to the
agent.
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7. Concluding remarks

The following table summarizes our new results on the period length of periodic graph traversal:

Lower bound Upper bound

Oblivious agent: 2.8n− 2 (4 + 1
3
)n − 4

(Section 5) (Section 4.2)
Constant-memory agent: 2n − 2 3.5n− 2

(folklore; see Section 1.2) (Section 6)

For the special class of graphs defined in Section 4.1, the upper bound for oblivious agents was improved
to 2n. However, for general graphs, there is still a substantial gap between the known lower and upper
bounds, both in the oblivious agent case and the constant-memory agent case. The major open problem is
to close these gaps.5

Also, further studies on trade-offs between the length of the periodic tour and the memory of the agent
are needed (our algorithm basically uses the same amount of memory as the one in [7], see section 6.1).

In particular, note that the only known lower bound 2n−2 for agents with memory holds independently
of the size of the available memory, and it refers to trees.

Another open problem is to generalize our techniques to edge-weighted graphs, where the notion of period
length can be naturally extended to the total weight of all edges traversed in a period. For the constant-
memory agent case, it may be useful to try to modify the three-layer partition step employed in Section 6
in such a way that the spanning tree T obtained from the backbone tree by connecting every node in Z to
one neighbor in Y becomes a minimum weight spanning tree.

Finally, it would be interesting to further study the computational complexity of the problem of finding
the shortest witness cycle for an input graph. Computing the shortest witness cycle corresponds to locating
a Hamiltonian cycle in certain graphs, which is an NP-hard problem, so one should consider polynomial-time
approximability in the general case.
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