
Noname manuscript No.
(will be inserted by the editor)

Exploration of the T -Interval-Connected Dynamic Graphs:1

the Case of the Ring2

David Ilcinkas · Ahmed M. Wade3

4

Received: date / Accepted: date5

Abstract In this paper, we study the T -interval-connected dynamic graphs from the6

point of view of the time necessary and sufficient for their exploration by a mobile7

entity (agent). A dynamic graph (more precisely, an evolving graph) is T -interval-8

connected (T ≥ 1) if, for every window of T consecutive time steps, there exists9

a connected spanning subgraph that is stable (always present) during this period.10

This property of connection stability over time was introduced by Kuhn, Lynch and11

Oshman [14] (STOC 2010). We focus on the case when the underlying graph is a12

ring of size n, and we show that the worst-case time complexity for the exploration13

problem is 2n−T −Θ(1) time units if the agent knows the dynamics of the graph,14

and n+ n
max{1,T−1} (δ − 1)±Θ(δ) time units otherwise, where δ is the maximum15

time between two successive appearances of an edge.16

Keywords Exploration · Dynamic graphs · T-interval-connectivity ·Mobile agent17

A preliminary version of this paper appeared in the Proceedings of the 20th International Colloquium on
Structural Information and Communication Complexity (SIROCCO 2013) [13].

Partially supported by the ANR projects DISPLEXITY (ANR-11-BS02-014) and MACARON (ANR-13-
JS02-002).

D. Ilcinkas
LaBRI, CNRS & Univ. Bordeaux, France
Tel.: +33 5 4000 69 12
Fax: +33 5 4000 66 69
E-mail: david.ilcinkas@labri.fr

A.M. Wade
École Polytechnique de Thiès, Senegal
Tel.: +221 77 142 66 70
E-mail: awade@ept.sn

2 David Ilcinkas, Ahmed M. Wade

1 Introduction18

Partly due to the very important increase of the number of communicating objects19

that we observe today, the distributed computing systems are becoming more and20

more dynamic. The computational models for static networks are clearly not suffi-21

cient anymore to capture the behavior of these new communication networks. One22

can nevertheless consider the appearances and disappearances of nodes or edges due23

to the dynamic nature of the network as (topological) failures. But even the com-24

putational models that take into account a certain degree of fault tolerance become25

insufficient for some very dynamic networks. Indeed, the classical models of fault26

tolerance either assume that the frequency of fault occurrences is small, which gives27

enough time to the algorithm to adapt to the changes, or that the system stabilizes after28

a certain amount of time (as in the self-stabilizing systems for example). Therefore,29

in the last decade or so, many more or less equivalent models have been developed30

that take into account the extreme dynamism of some communication networks. An31

interested reader will find in [4] a very complete overview of the different models and32

studies of dynamic graphs (see also [15] and [16]).33

One of the first developed models, and also one of the most standard, is the model34

of evolving graphs [7]. To simplify, given a static graph G, called the underlying35

graph, an evolving graph based on G is a (possibly infinite) sequence of spanning36

but not necessarily connected subgraphs of G (see Section 2 for precise definitions).37

Differently speaking, the node set does not change but edges can appear or disappear38

at each time instant. This model is particularly well adapted for modeling dynamic39

synchronous networks.40

In all its generality, the model of evolving graphs allows to consider an extremely41

varied set of dynamic networks. Therefore, to obtain interesting results, it is often re-42

quired to make assumptions that reduce the possibilities of dynamic graphs generated43

by the model. One example is the assumption of connectivity over time, introduced44

in [7], which states that there is a journey (path over time) from any vertex to any45

other vertex. Another example is the assumption of constant connectivity, for which46

the graph must be connected at all times. This latter assumption, which is very usual,47

has been recently generalized in a paper by Kuhn, Lynch and Oshman [14] by the48

notion of T -interval-connectivity (see also [17] for other kinds of generalizations).49

Roughly speaking, given an integer T ≥ 1, a dynamic graph is T -interval-connected50

if, for any window of T consecutive time steps, there exists a connected spanning51

subgraph which is stable throughout the period. (The notion of constant connectivity52

is thus equivalent to the notion of 1-interval-connectivity). This new notion, which53

captures the connection stability over time, allows the finding of interesting results:54

the T -interval-connectivity allows to reduce by a factor of about Θ(T) the number of55

messages that is necessary and sufficient to perform a complete exchange of infor-56

mation between all the vertices [14] (gossip problem).57

In this paper, we carry on the study of these T -interval-connected dynamic graphs58

by considering the problem of exploration. A mobile entity (called agent), moving59

from node to node along the edges of a dynamic graph, must traverse/visit each of its60

Exploration of the T -Interval-Connected Dynamic Graphs: the Case of the Ring 3

vertices at least once (the traversal of an edge takes one time unit).1 This fundamental61

problem in distributed computing by mobile agents has been widely studied in static62

graphs since the seminal paper by Claude Shannon [19].63

As far as highly dynamic graphs are concerned, only the case of periodically-64

varying graphs had been studied before the preliminary version of this paper [13],65

both in the absence [10,12] and in the presence of harmful nodes [8,9]. Since then,66

several works also considered the problem of exploring highly dynamic networks.67

The most related papers are [11], a generalization of our paper to the case when68

the underlying graph is a tree of cycles (a cactus), and [6], a part of which is a gen-69

eralization to the cases of the graphs with bounded treewidth, in general and for70

some specific subclasses, like the rings. Note that our results and those of [6] on71

the rings were proved independently. In [5], the authors study the impact that syn-72

chrony, anonymity and topological knowledge have on the computability and com-73

plexity of the deterministic multi-agent exploration with termination of the 1-interval-74

connected dynamic graphs based on the ring, in the case when the agents do not know75

the dynamics of the graph. Finally, [3] presents and proves the correctness of a self-76

stabilizing algorithm allowing three robots to perpetually explore a dynamic graph77

based on the ring in which each node can reach infinitely often any other node.78

Besides, several papers focus on the complexity of computing the optimal explo-79

ration time of a dynamic graph given as (a centralized) input, in a similar manner as in80

the Traveling Salesman Problem for static graphs. In the dynamic case, the problem81

is called Temporal Graph Exploration Problem [6,18] or Dynamic Map Visitation82

Problem [1,2]. In [2], the case of several agents is considered, while [6,18] and most83

of [1] consider the case of a single agent. In these papers, several polynomial-time84

algorithms are given, either exact algorithms for specific graph classes, or approxi-85

mation algorithms for the general cases. In particular, [1] gives an O(n2) algorithm to86

compute the optimal exploration time of a given 1-interval-connected dynamic graph87

based on the n-node ring. Inapproximability results for the general case are given88

in [6,18].89

We focus here on the (worst-case) time complexity of this problem, namely the90

number of time units used by the agent to solve the problem in the T -interval-connec-91

ted dynamic graphs. The problem of exploration, in addition to its theoretical inter-92

ests, can be applied for instance to the network maintenance, where a mobile agent93

has to control the proper functioning of each vertex of the graph.94

We consider the problem in two scenarios. In the first one, often referred as the95

offline scenario, the agent knows entirely and exactly the dynamic graph it has to96

explore. This situation corresponds to predictable dynamic networks such as trans-97

portation networks for example. In the second scenario, often referred as the online98

scenario, the agent does not know the dynamics of the graph, that is the times of99

appearance and disappearance of the edges. This case typically corresponds to net-100

works whose changes are related to frequent and unpredictable failures. In this sec-101

ond scenario, Kuhn, Lynch and Oshman [14] noted that the exploration problem is102

1 Note that several specializations of this problem exist, depending on whether the agent has to even-
tually detect termination (exploration with stop), return to its starting position (exploration with return),
or even visit each vertex infinitely often (perpetual exploration). The rest of the paper just considers the
general version of the problem.

4 David Ilcinkas, Ahmed M. Wade

impossible to solve under the single assumption of 1-interval-connectivity. In fact,103

it is quite easy to convince oneself that by adding the assumption that each edge of104

the underlying graph must appear infinitely often, the exploration problem becomes105

possible, but the time complexity remains unbounded. In this article, and only for the106

second scenario, we therefore add the assumption of δ -recurrence, for some integer107

δ ≥ 1: each edge of the underlying graph appears at least once every δ time units.108

It turns out that the problem of exploration is much more complex in dynamic109

graphs than in static graphs. Indeed, let us consider for example the first scenario110

(known dynamic graph). The worst-case exploration time of n-node static graphs is111

clearly in Θ(n) (worst case 2n− 3). On the other hand, the worst-case exploration112

time of n-node (1-interval-connected) dynamic graphs remains largely unknown. No113

lower bound better than the static bound is known, while the best known upper bound114

is quadratic, and directly follows from the fact that the temporal diameter of these115

graphs is bounded by n. Also, without the 1-interval-connectivity assumption, it is116

already NP-complete to decide whether exploration is feasible at all, while with this117

assumption the problem remains hard to approximate (see [6,18]). In this paper, we118

focus on the study of T -interval-connected dynamic graphs whose underlying graph119

is a ring. Note that, in this particular case, the T -interval-connectivity property, for120

T ≥ 1, implies that at most one edge can be absent at a given time.121

Our results. We determine in this paper the exact time complexity of the exploration122

problem for the n-node T -interval-connected dynamic graphs based on the ring, when123

the agent knows the dynamics of the graph. This is essentially 2n−T −1 time units124

(see Section 3 for details). When the agent does not know the dynamics of the graph,125

we add the assumption of δ -recurrence, and we show that the complexity is n +126

n
max{1,T−1} (δ −1)±Θ(δ) time units in this case (see Section 4 for details).127

2 Model and definitions128

This section gives the precise definitions of the concepts and models informally men-129

tioned in the introduction. Some definitions are similar or even identical to the defi-130

nitions given in [14].131

Definition 1 (Evolving graph) An evolving graph is a pair G = (V,E), where V is132

a static set of n vertices, and E is a function which maps to every integer i ≥ 0 a set133

E (i) of undirected edges on V .134

Definition 2 (Underlying graph) Given an evolving graph G = (V,E), the static135

graph G = (V,
⋃

∞
i=0 E (i)) is called the underlying graph of G . Conversely, the evolv-136

ing graph G is said to be based on the static graph G.137

In this article, we consider the evolving graphs based on the n-node ring, de-138

noted Cn. Since the cases n = 1 and n = 2 are trivial and somehow degenerated, we139

will assume n≥ 3.140

Exploration of the T -Interval-Connected Dynamic Graphs: the Case of the Ring 5

Definition 3 (T -interval-connectivity) An evolving graph G = (V,E) is T -interval-141

connected, for an integer T ≥ 1, if for every integer i≥ 0, the static graph G[i,i+T [=142

(V,
⋂i+T−1

j=i E (j)) is connected.143

Definition 4 (δ -recurrence) An evolving graph is δ -recurrent if every edge of the144

underlying graph is present at least once every δ time steps.145

Definition 5 (Temporal diameter) The temporal diameter of an evolving graph is146

the maximum time needed to go from any node to any other node starting at any time147

when at most one edge can be traversed at each time unit.148

Note that the temporal diameter of any 1-interval-connected evolving graph is at149

most n−1.150

A mobile entity, called agent, operates on these dynamic graphs. We do not as-151

sume any limitation in terms of computational capabilities or memory. Nevertheless,152

the agent can traverse at most one edge per time unit. It may also stay at the current153

node (typically to wait for an incident edge to appear). We say that an agent explores154

the dynamic graph if and only if it visits all the nodes.155

3 The agent knows the dynamics of the graph156

In this section, we assume that the agent perfectly knows the dynamic graph to be157

explored.158

3.1 Upper bound159

The theorem presented in this subsection, Theorem 1, shows that the worst-case ex-160

ploration time is actually small, bounded by 2n, when the underlying graph is a ring.161

Furthermore, it shows that the agent can benefit from the T -interval-connectivity to162

spare an additive term T (cf. Figure 1). Note that our upper bound is constructive,163

and tight (cf. Theorem 2).164

The proof of Theorem 1 being quite long and technical, we first present a simpler165

and elegant proof, but giving a less precise upper bound, namely 2n−2 for any value166

of T . Nevertheless, we believe that this simplified result and its proof are of indepen-167

dent interest, because of the simplicity of the proof and the fact that the presented168

algorithm visits every node in the last n−1 time units. Note that this implies that the169

agent is not changing direction and is never blocked during these n−1 steps.170

Proposition 1 For every integers n≥ 3 and T ≥ 1, and for every T -interval-connec-171

ted dynamic graph based on Cn, there exists an agent (algorithm) exploring this dy-172

namic graph in time at most 2n− 2 such that this algorithm visits every node in the173

last n−1 time units.174

Proof We first prove that, for any time t, there exists a node v(t) such that an agent175

starting from v(t) at time t and moving in the clockwise direction is not blocked in176

the n− 1 following time units, implying that such an agent has visited all nodes by177

6 David Ilcinkas, Ahmed M. Wade

1 2

2n− 3

⌊
3(n− 1)

2

⌋

T

Exploration time

⌊
n+ 1

2

⌋

Fig. 1 Worst-case exploration time of the T -interval-connected dynamic graphs based on Cn as a function
of T .

time t +n−1. Indeed, consider that n virtual agents are placed on the n nodes of the178

graph at time t (one virtual agent on each node). Further consider that all these virtual179

agents go clockwise from time t on. At the first round (from time t), all virtual agents180

are trying to traverse different edges, so at most one virtual agent may be blocked.181

More generally, at each round, only one additional virtual agent can be blocked. Since182

there are n virtual agents, there exists at least one of them which is not blocked from183

time t to time t +n−1. Its starting node v(t) satisfy the desired properties.184

We can now describe the algorithm satisfying the statement of the proposition.185

Let u be the starting node of the agent and let v be the node v(n− 1) described in186

the first part of this proof. The algorithm simply consists in going from u to v in time187

at most n−1 (recall that the temporal diameter of any 1-interval-connected dynamic188

graph is at most n−1, so this is always possible), then in waiting at v until time n−1189

(if v is reached sooner), and finally in going clockwise from v for n− 1 time units.190

The proposition follows from the properties of the node v. �191

Before proceeding with the formal theorem and its proof, let us informally de-192

scribe the key ingredients of the proof of the most general case.193

We consider two algorithms, being the algorithms always going in the clockwise,194

resp. counter-clockwise, direction, traversing edges as soon as the dynamic graph195

allows it. At the beginning of the process, the two agents executing these algorithms,196

starting from the same initial position, try to traverse distinct edges and thus, at each197

time step, at least one of them progresses. During this phase, the average speed of the198

two agents is thus 1/2 (edge traversals per time unit). However, when the agents are199

about to meet each other on an edge or on a node (thus after time at most n), their200

progression may be stopped by the absence of a unique edge e.201

Exploration of the T -Interval-Connected Dynamic Graphs: the Case of the Ring 7

If this edge e is absent for at least n−1 time steps, then any agent has enough time202

to change its direction and to explore all the nodes of the graph in the other direction,203

hence completing exploration within 2n steps, see Fig. 2.204

If the edge e does not stay absent long enough and reappears at time t, we mod-205

ify the two algorithms as follows. The agent previously progressing in the clockwise,206

resp. counter-clockwise, direction, starts now by exploring the ring in the opposite di-207

rection, before going back in the usual direction the latest possible so that it reaches208

the edge e at time at most t. At time t, the two modified algorithms cross each other,209

and then continue their progression in their usual direction until one of them termi-210

nates the exploration. Note that, after time t, we have again the property that, at each211

time step, at least one agent progresses. See Fig. 3.212

Globally, except during the period when e is absent, the average speed of the two213

agents is 1/2. Besides, the modification of the algorithms generally allows each of the214

agents to explore an additional part of the ring. Unfortunately, these parts of the ring215

are traversed twice instead of once. Nevertheless, in the general case, the speed of216

both the modified agents is 1 during the period when e is absent. This compensates217

the loss induced by traversing twice some parts of the ring. Overall, the average speed218

is thus globally of at least 1/2, which implies that at least one of the two modified219

agents performs exploration within time 2n.220

In order to obtain a better upper bound thanks to the T -interval connectivity, we221

use the following observation.222

Observation. When a dynamic graph based on a ring is T -interval connected, all223

edges are present during T −1 steps between the removal of two different edges.224

We use this observation to gain an additive term of T −1 on the exploration time,225

yielding to a time of roughly 2n−T . A much more precise analysis of the modified226

algorithms allows us to obtain the exact claimed bounds.227

Theorem 1 For every integers n≥ 3 and T ≥ 1, and for every T -interval-connected228

dynamic graph based on Cn, there exists an agent (algorithm) exploring this dynamic229

graph in time at most230





2n−3 if T = 1
2n−T −1 if 2≤ T ≤ (n+1)/2⌊ 3(n−1)

2

⌋
if T > (n+1)/2

231

Proof Fix n≥ 3 and an arbitrary dynamic graph based on the ring Cn. Let v0, · · · ,vn−1232

be the vertices of Cn in clockwise order. Assume that the agent starts exploration233

from v0 at time 0. In order to prove this theorem, we will describe various algorithms,234

and we will show that at least one of them will allow the agent to perform exploration235

within the claimed time bound. Fix T to be any positive integer, and let T be this236

bound.237

First assume that at most one edge e is absent during the time interval [0,T).238

Then, an agent going to the closest extremity of e (in time at most b(n−1)/2c) and239

then changing direction (for n−1 steps) will explore all nodes of the ring in time at240

8 David Ilcinkas, Ahmed M. Wade

most b3(n−1)/2c ≤ T (see Fig. 1). So let us assume from now on that at least two241

different edges are absent at least once each during the time interval [0,T).242

Before proceeding with the rest of the proof, we introduce the following nota-243

tions. Given a time interval I and two algorithms A and B, let dI
A be the number of244

edge traversals performed by agent A during the time interval I, let α I
A, resp. α I

A,B, be245

the number of time steps in I for which agent A, resp. both agents A and B, do(es)246

not move. (For all the algorithms we will consider, the reason why an agent will not247

move will always be the same: the edge it wants to traverse is absent.) Finally, let β I
248

be the number of time steps in I for which no edges are absent.249

Let us now consider two simple algorithms. L, respectively R, is the algorithm250

always going in the counter-clockwise, resp. clockwise, direction, traversing edges251

as soon as the dynamic graph allows it. Now consider the sum of the number of252

edges traversed by each of the two algorithms until some time t. Since only one edge253

can be absent at a given time, this sum increases by at least one (and obviously by at254

most two) at each time step, until this sum is larger than or equal to n−1. So let e be255

the unique unexplored edge when this sum reaches n− 1. If the sum jumps directly256

from n−2 to n, then fix e to be any of the last two unexplored edges. In both cases,257

let t1 be the first time one of the two agents reaches one extremity of e. We consider258

two cases.259

Case 1. The edge e is absent during the whole interval [t1, t1 +n−1).260

In this case, the first agent to reach an extremity of e, at time t1, goes back in261

the opposite direction and explores the ring in n− 1 further steps. This gives an262

exploration time of at most t1 +n−1. Let I1 = [0, t1). We have263

t1 =
{

dI1
L +α

I1
L (1)

dI1
R +α

I1
R (2)

264

and, since L and R are always trying to traverse distinct edges during I1 and at265

most one edge may be removed at any time, we also have266

α
I1
L +α

I1
R +β I1 ≤ t1. (3)267

Besides, by definition of t1, we have dI1
L +dI1

R ≤ n−1. (4)268

Recall that we are considering the case when there are at least two removed differ-269

ent edges during the whole interval [0, t1+n−1). As mentioned before, when the270

dynamic graph is T -interval connected, all edges must be present during T − 1271

steps between the removal of two different edges. This implies that during the272

whole interval [0, t1 + n− 1), there are at least T − 1 steps when no edges are273

absent. By definition of Case 1, these steps must occur before time t1. Thus, we274

have275

β I1 ≥ T −1 (5)276

Summing the first five (in)equalities, we obtain277

(1)+(2)+(3)+(4)+(5)→ t1 +T ≤ n,278

or equivalently t1 +n−1≤ 2n−T −1, which gives the exact claimed bound for279

the general case T ≥ 2. Fig. 2 illustrates the trajectories analyzed in Case 1.280

For T = 1, this bound is one unit larger than the claimed bound. So let us further281

study the case T = 1. If the inequality (4) is in fact strict, then the correct bound is282

obtained. Otherwise, it means that at time t1−1, both agents were free to move.283

Exploration of the T -Interval-Connected Dynamic Graphs: the Case of the Ring 9

v0

e

R

L

Fig. 2 In the case when edge e is absent for a long time (Case 1 in the proof), one of the dotted and dashed
trajectories explores all nodes in the desired time.

This implies that either β I1 ≥ 1 (the inequality (5) is strict) or that the inequality284

(3) is strict. In both cases, this also gives the correct bound.285

Case 2. The edge e is not absent during the whole interval [t1, t1 +n−1).286

Then let t2 be the time such that t2 + 1 is the first time at which every edge has287

been explored by L or R (or both). Note that this definition implies that t2 ≥ t1.288

We now define two new algorithms, one of which will explore the dynamic graph289

within time T .290

Let L′ be the algorithm that is equal to L until some time t, at which L′ goes back291

in the other direction forever. More precisely, L′ is the algorithm for which t is292

the largest possible value such that L′ and R share the same position at time t2293

(intuitively, L′ just has time to catch back R at time at most t2). Similarly, let R′294

be the algorithm that is equal to R until some time t, at which R′ goes back in295

the other direction forever. More precisely, R′ is the algorithm for which t is the296

largest possible value such that R′ and L share the same position at time t2.297

In order to analyze the algorithms L′ and R′, we introduce two other algorithms.298

Let L′′, respectively R′′ be the algorithm defined as L′, resp. R′, but turning back299

exactly one time unit later than L′, resp. R′.300

Finally, let Texp be the exploration time of the first between L′ and R′ exploring301

the dynamic graph, and let I1 = [0, t1), I2 = [t1, t2), I1,2 = [0, t2), I3 = [t2,Texp),302

and I = [0,Texp).303

As in the first case, we have304

t1 =
{

dI1
L +α

I1
L (1)

dI1
R +α

I1
R (2)

305

On I1, we have306

10 David Ilcinkas, Ahmed M. Wade

α
I1
L′′ +α

I1
R′′ −α

I1
L′′,R′′ +β I1 ≤ t1. (3)307

Besides, L and R are always trying to traverse distinct edges during I1. Moreover,308

by definition, the algorithm L′′, resp. R′′, does not catch R, resp. L, before time t2309

(and thus t1). This gives310

α
I1
L +α

I1
R +α

I1
L′′,R′′ +β I1 ≤ t1 (4)311

(1)+(2)+(3)+(4)→ α
I1
L′′ +α

I1
R′′ +2β I1 ≤ dI1

L +dI1
R (5)312

On I1,2, we have313

t2 =

{
d

I1,2
L′′ +α

I1,2
L′′ (6)

d
I1,2
R′′ +α

I1,2
R′′ (7)

314

Note that, by definition of L′′ and R′′315

d
I1,2
L′′ ≤ d

I1,2
L′ +1 (8)316

d
I1,2
R′′ ≤ d

I1,2
R′ +1 (9)317

(6)+(7)+(8)+(9)→ 2t2 ≤ d
I1,2
L′ +d

I1,2
R′ +α

I1,2
L′′ +α

I1,2
R′′ +2 (10)318

Note that, by definition of t1 and t2, the edge e is absent during the whole interval319

I2. Besides, neither L′ nor R′ reaches an extremity of the edge e before turning320

back, because otherwise it would reach the other extremity too late, namely at321

time at least t1 + n− 1, which is larger than t2 by definition of Case 2. (By the322

way, this proves that Texp > t2.) This implies that L′′ and/or R′′ may reach an323

extremity of e (at time t1) but in this case turn back immediately before trying to324

traverse it. Moreover, L′′ and R′′ cannot reach an extremity of edge e while going325

clockwise, resp. counter-clockwise, before time t2. This means that they are never326

blocked during the time interval I2. This translates into327

α
I1,2
L′′ = α

I1
L′′ (11)328

α
I1,2
R′′ = α

I1
R′′ (12)329

(5)+(10)+(11)+(12)→ 2t2 +2β I1 ≤ dI1
L +dI1

R +d
I1,2
L′ +d

I1,2
R′ +2 (13)330

Starting from time t2 + 1, the algorithms L′ and R′ are always trying to traverse331

distinct edges. Since L′ and R′ are not blocked at time t2, this means that, on I3,332

we have333

α
I3
L′ +α

I3
R′ +β I3 ≤Texp− t2 (14)334

and335

Texp−t2 =

{
dI3

L′ +α
I3
L′ (15)

dI3
R′ +α

I3
R′ (16)

336

(14)+(15)+(16)→Texp− t2 +β I3 ≤ dI3
L′ +dI3

R′ (17)337

(17)+ 1
2 (13)→338

Texp +β I1 +β I3 ≤ 1
2 (d

I1
L +dI1

R +d
I1,2
L′ +d

I1,2
R′)+dI3

L′ +dI3
R′ +1 (18)339

Let x, resp. y, be the number of edges traversed by L′, resp. R′, before turning340

back. Then341

d
I1,2
L′ = 2x+d

I1,2
R (19)342

d
I1,2
R′ = 2y+d

I1,2
L (20)343

Counting the number of edges that still need to be traversed by L′ and R′ until344

exploration is performed, we obtain345

dI3
L′ ≤ n−1− x−d

I1,2
R (21)346

Exploration of the T -Interval-Connected Dynamic Graphs: the Case of the Ring 11

v0

e

R′

L

Fig. 3 In the case when edge e is absent for a short time (Case 2 in the proof), the dashed trajectory is used
(or its equivalent in the other direction). The turning time of the dashed trajectory is defined at the latest
possible time such that both the dashed and the dotted trajectories traverse edge e at the same time.

dI3
R′ ≤ n−1− y−d

I1,2
L (22)347

Similarly as in Case 1, because of the T -interval connectivity and the hypotheses348

that at least two different edges are removed, we have349

β I ≥ T −1. (23)350

Besides, note that β I1 +β I3 = β I .351

Finally, since dI1
L −d

I1,2
L and dI1

R −d
I1,2
R are less than or equal to 0, we get352

(18)+ 1
2 (19)+ 1

2 (20)+(21)+(22)+(23)→Texp ≤ 2n−T .353

In fact, we claim that this last inequality is strict. We will prove this claim by con-354

tradiction, assuming that inequalities (14), (21), (22), and (23) are in fact equali-355

ties. The equalities for (21) and (22) imply that the algorithms L′ and R′ are not356

blocked during the last step of I3, which allow them to simultaneously terminate357

exploration at this last step. Equation (14) being an equality, this implies that this358

last step is counted in β I3 . However, this step where no edges are absent being the359

last one of I, it cannot belong to the T −1 consecutive steps with no absent edges360

that occur between the removal of two different edges in the same interval I. This361

contradicts the fact that (23) is an equality, concluding the proof for T ≥ 2. Fig. 3362

illustrates the trajectories analyzed in Case 2.363

For T = 1, the bound obtained so far is one unit larger than the claimed bound.364

For the purpose of contradiction, assume that Texp = 2n− 2. This implies that365

all inequalities are in fact equalities except exactly one of the inequalities (14),366

(21), (22), and (23). In the latter case, we proved more precisely that β I = 1367

because β I3 = 1. This implies that β I1 = 0 in all four cases. We will now come to368

12 David Ilcinkas, Ahmed M. Wade

a contradiction by proving that one of the inequalities (3), (4), (8), or (9) must be369

strict.370

The only way for Equation (8), resp. (9), to be an equality is that L′′, resp. R′′,371

traverses an edge just before turning back, that is at the step, say tL′ , resp. tR′ ,372

when L′, resp. R′, turns back. Differently speaking, Equation (8), resp. (9), being373

an equality implies that L′′ and thus L, resp. R′′ and thus R, are not blocked at374

step tL′ , resp. tR′ . Since (3) is assumed to be an equality, and because β I1 = 0,375

at least one of L′′ and R′′ is blocked at each time step of the interval I1. This376

is in particular true for the times tL′ and tR′ . Therefore, the two times tL′ and377

tR′ must be different. Without loss of generality, assume that tL′ < tR′ . Let us378

now consider the step at time tR′ . At this step, R′′ and thus R as well are not379

blocked. This implies that L must be blocked at this step because of (4) being an380

equality. However, L′′ has already turned back and does not travel with L anymore,381

and thus cannot be blocked at this step. This would lead to (3) being strict, the382

contradiction concluding this proof. �383

3.2 Lower bound384

We now prove that the precise bound given in Section 3.1 is actually the exact worst-385

case time complexity of the exploration problem.386

Theorem 2 For every integers n≥ 3 and T ≥ 1, there exists a T -interval-connected387

dynamic graph based on Cn such that any agent (algorithm) needs at least388





2n−3 if T = 1
2n−T −1 if 2≤ T ≤ (n+1)/2⌊ 3(n−1)

2

⌋
if T > (n+1)/2

389

time units to explore it.390

Proof For any integers n ≥ 3, and 2 ≤ T ≤ d(n + 1)/2e, we define a T -interval-391

connected dynamic graph Gn,T based on Cn. Let v0,v1, · · · ,vn−1 be the vertices of Cn392

in clockwise order. Assume that the exploration starts from v0 at time 0. In Gn,T , the393

edge {v0,v1}, respectively {vT−1,vT}, is absent in the time interval [0,n− 2T + 1),394

respectively [n− T,2n). See Figure 4. Note that this dynamic graph is indeed T -395

interval-connected.396

Consider any agent (algorithm). We will now prove that the time it uses to ex-397

plore Gn,T is at least 2n−T −1. Since the agent must explore all vertices, it must in398

particular explore both vT−1 and vT . We consider two cases.399

Case 1. vT−1 is explored before vT .400

To visit vT−1 without going through vT , the agent must traverse the edge {v0,v1}.401

By construction, this edge is absent until time n−2T +1. Moreover, the length of402

the path between v0 and vT−1 without going through vT is T −1. Thus the agent403

needs at least n− T time units to reach vT−1 for the first time. Since the edge404

{vT−1,vT} is absent in the time interval [n−T,2n), the fastest way of reaching405

vT is to traverse the whole ring through v0, inducing n− 1 additional time units.406

So in this first case, the agent needs at least 2n−T −1 time units to explore Gn,T .407

Exploration of the T -Interval-Connected Dynamic Graphs: the Case of the Ring 13

absent during [0, n− 2T + 1)

absent during [n− T, 2n)

v0

v1

vT−1

vT

Initial position

Fig. 4 T -interval-connected dynamic graph based on Cn achieving the worst-case exploration time, for
2≤ T ≤ d(n+1)/2e.

Case 2. vT is explored before vT−1.408

To visit vT without going through vT−1, the agent must use the path v0, vn−1, up409

to vT , which is of length n−T . When at node vT , and since the edge {vT−1,vT}410

is absent in the time interval [n− T,2n), the fastest way of reaching vT−1 is to411

traverse the whole ring through v0, inducing n− 1 additional time units. Thus412

also in the second case, the agent needs at least 2n−T −1 time units to explore413

Gn,T .414

This proves the theorem for values of T in [2,d(n+1)/2e]. In fact, this also proves415

the theorem for T = 1 because Gn,2 is obviously also 1-interval-connected, and thus416

the bound 2n-3 proved for T = 2 is also valid for T = 1. Besides, note that only417

one edge is ever removed in Gn,d(n+1)/2e. This dynamic graph is therefore T -interval-418

connected for any T , and thus the theorem is also proved for values of T larger than419

(n+1)/2. �420

4 The agent does not know the dynamics of the graph421

In this section, we assume that the agent does not know the dynamics of the graph,422

i.e., it does not know the times of appearance and disappearance of the edges. As423

explained in the introduction, we assume here the δ -recurrence property, for a given424

δ ≥ 1, in order for the problem to be solvable in bounded time.425

14 David Ilcinkas, Ahmed M. Wade

4.1 Upper bound426

We first prove that there exists a very simple algorithm that is able to explore all the427

δ -recurrent T -interval-connected dynamic graphs based on the ring. This algorithm428

consists in moving as much and as soon as possible in a fixed arbitrary direction, see429

Algorithm 1.430

Algorithm 1 STUBBORN-TRAVERSAL(dir)
Input: a direction dir

for each time step do
if the edge in the dir direction is present then

traverse it
else

wait
end if

end for

Theorem 3 For every integers n≥ 3, T ≥ 1 and δ ≥ 1, and for any direction dir, Al-431

gorithm STUBBORN-TRAVERSAL(dir) explores any δ -recurrent T -interval-connec-432

ted dynamic graph based on Cn in time at most433

n−1+
⌈

n−1
max{1,T −1}

⌉
(δ −1).434

Proof Fix an arbitrary direction dir and let us analyze the algorithm STUBBORN-435

TRAVERSAL(dir). Note first that it will complete exploration after traversing exactly436

n− 1 edges. To bound its exploration time, it thus remains to bound the number of437

time steps when the agent cannot move.438

Since the dynamic graph is δ -recurrent, an edge cannot be absent for more than439

δ − 1 consecutive time steps. Furthermore, since the dynamic graph is T -interval-440

connected, two time steps in which two different edges are absent must be separated441

by at least T − 1 time steps in which all edges are present. Therefore, the agent can442

traverse at least max{1,T − 1} edges between two consecutive blocks at different443

nodes. To summarize, the agent can be blocked at most
⌈

n−1
max{1,T−1}

⌉
times during at444

most δ −1 time steps.445

Putting everything together, the agent will perform edge traversals for n−1 time446

steps and will wait for at most
⌈

n−1
max{1,T−1}

⌉
(δ − 1) time steps, which gives the447

claimed bound. �448

4.2 Lower bound449

It turns out that the simple and natural Algorithm 1, described and analyzed in Sec-450

tion 4.1, is almost optimal, up to an additive term proportional to δ .451

Exploration of the T -Interval-Connected Dynamic Graphs: the Case of the Ring 15

Theorem 4 For every integers n ≥ 3, T ≥ 1, and δ ≥ 1, and for every agent (algo-452

rithm), there exists a δ -recurrent T -interval-connected dynamic graph based on Cn453

such that this agent needs at least454

n−1+
⌊

n−3
max{1,T −1}

⌋
(δ −1)455

time units to explore it.456

This result holds even if the agent knows n, T and δ .457

Proof Let n≥ 3, T ≥ 1, and δ ≥ 1. Fix an arbitrary agent (algorithm) A. We construct458

as follows the δ -recurrent T -interval-connected dynamic graph Gn,T,δ (A) based on Cn459

that this agent will fail to explore in less than the claimed bound.460

Let v0,v1, · · · ,vn−1 be the vertices of Cn in clockwise order. Assume that the agent461

starts exploration from v0 at time 0. For any integer 1 ≤ i ≤ n− 1, if the node vi is462

explored by going from v0 in the counter-clockwise direction, then node vi is de-463

noted vi−n. Finally, let T̃ = max{1,T −1}.464

In the dynamic graph Gn,T,δ (A), only the edges {vT̃+1,vT̃+2}, {v2T̃+1,v2T̃+2},465

and so on, and {v0,v−1}, {v−T̃ ,v−T̃−1}, {v−2T̃ ,v−2T̃−1}, and so on, may be absent.466

The actual times of appearance and disappearance of these edges depend on the algo-467

rithm A. For any integer i≥ 0, each time the agent arrives at node v−iT̃ in the counter-468

clockwise direction, the edge {v−iT̃ ,v−iT̃−1} is removed until either the δ -recurrence469

forces the edge to reappear or the agent leaves the node v−iT̃ to go on v−iT̃+1. Simi-470

larly, for any integer i≥ 1, each time the agent arrives at node viT̃+1 in the clockwise471

direction, the edge {viT̃+1,viT̃+2} is removed until either the δ -recurrence forces the472

edge to reappear or the agent leaves the node viT̃+1 to go on viT̃ . Note that between473

two time steps with two different absent edges, there are at least T −1 time steps for474

which no edges are absent. The dynamic graph is therefore T -interval-connected. It475

is also δ -recurrent by construction.476

By definition of the dynamics of the graph, the agent needs to wait δ−1 time units477

to go from v−iT̃ to v−iT̃−1, for i ≥ 0, or to go from viT̃+1 to viT̃+2, for i ≥ 1. Also,478

except near the origin in the clockwise direction, the agent cannot traverse more than479

T̃ new edges before having to traverse such a blocking edge. Hence, to explore all the480

vertices, the agent needs to perform at least
⌊

n−3
T̃

⌋
such traversals. This lower bound481

is obtained in the case when the agent explores the ring by always going clockwise482

(starting in the counter-clockwise direction and/or changing direction during the ex-483

ploration do not help). The waiting time of the agent is thus at least
⌊

n−3
T̃

⌋
(δ − 1).484

Since the agent needs also at least n− 1 time units to traverse enough edges so that485

all vertices are explored, we obtain the claimed bound. �486

5 Conclusion487

We studied in this paper the problem of exploration of the T -interval-connected dy-488

namic graphs based on the ring in two scenarios, when the agent is specific to the489

dynamic graph, and when the agent does not know the dynamics of the graph. The490

16 David Ilcinkas, Ahmed M. Wade

next objective is obviously to extend these results to larger families of underlying491

graphs. Unfortunately, this problem is much more difficult than it seems: proving that492

any dynamic graph based on a tree of cycles (a cactus) can be explored in time O(n)493

is already a challenging open problem.494

References495

1. E. Aaron, D. Krizanc, and E. Meyerson. DMVP: Foremost Waypoint Coverage of Time-496

Varying Graphs. In 40th International Workshop on Graph-Theoretic Concepts in Computer497

Science (WG), LNCS 8147, pages 29–41, 2014.498

2. E. Aaron, D. Krizanc, and E. Meyerson. Multi-Robot Foremost Coverage of Time-Varying499

Graphs. In 10th International Symposium on Algorithms and Experiments for Sensor Systems,500

Wireless Networks and Distributed Robotics (ALGOSENSORS), LNCS 8847, pages 22–38,501

2014.502

3. M. Bournat, A. K. Datta, and S. Dubois. Self-Stabilizing Robots in Highly Dynamic Environ-503

ments. In 18th International Symposium on Stabilization, Safety, and Security of Distributed504

Systems (SSS 2016), LNCS 10083, pages 54–69, 2016.505

4. A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro, Time-varying graphs and dy-506

namic networks. International Journal of Parallel, Emergent and Distributed Systems, volume507

27(5), 2012.508

5. G. A. Di Luna, S. Dobrev, P. Flocchini, and N. Santoro. Live Exploration of Dynamic Rings.509

In IEEE 36th International Conference on Distributed Computing Systems (ICDCS), pages510

570–579, 2016.511

6. T. Erlebach, M. Hoffmann, and F. Kammer. On Temporal Graph Exploration. In 42nd Interna-512

tional Colloquium on Automata, Languages, and Programming (ICALP), LNCS 9134, pages513

444–455, 2015.514

7. A. Ferreira, Building a reference combinatorial model for MANETs. Network, IEEE, volume515

18(5), pages 24–29, 2004.516

8. P. Flocchini, M. Kellett, P. C. Mason, and N. Santoro. Searching for black holes in subways.517

Theory of Computing Systems, 50(1), pages 158–184, 2012.518

9. P. Flocchini, M. Kellett, P. C. Mason, and N. Santoro. Finding Good Coffee in Paris. In 6th519

International Conference on Fun with Algorithms (FUN), LNCS 7288, pages 154–165, 2012.520

10. P. Flocchini, B. Mans, and N. Santoro. On the exploration of time-varying networks. Theoret-521

ical Computer science, volume 469, pages 53–68, 2013.522

11. D. Ilcinkas, R. Klasing, and A. M. Wade. Exploration of Constantly Connected Dynamic523

Graphs Based on Cactuses. In 21st International Colloquium on Structural Information and524

Communication Complexity (SIROCCO), LNCS 8576, pages 250–262, 2014.525

12. D. Ilcinkas and A. M. Wade. On the Power of Waiting when Exploring Public Transportation526

Systems. In 15th International Conference On Principles Of Distributed Systems (OPODIS),527

LNCS 7109, pages 451–464, 2011.528

13. D. Ilcinkas and A. M. Wade. Exploration of the T-Interval-Connected Dynamic Graphs: the529

Case of the Ring. In 20th International Colloquium on Structural Information and Communi-530

cation Complexity (SIROCCO), LNCS 8179, pages 13–23, 2013.531

14. F. Kuhn, N.A. Lynch, and R. Oshman, Distributed computation in dynamic networks. In 42nd532

ACM symposium on Theory of computing (STOC), pages 513–522, 2010.533

15. F. Kuhn and R. Oshman, Dynamic networks: models and algorithms. ACM SIGACT News,534

volume 42(1), pages 82–96, 2011.535

16. O. Michail. An Introduction to Temporal Graphs: An Algorithmic Perspective. Internet Math-536

ematics, volume 12(4), pages 239–280, 2016.537

17. O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Causality, influence, and computation in538

possibly disconnected synchronous dynamic networks. Journal of Parallel and Distributed539

Computing, volume 74(1), pages 2016–2026, 2014.540

18. O. Michail and P. G. Spirakis. Traveling salesman problems in temporal graphs. Theoretical541

Computer science, volume 634, pages 1–23, 2016.542

19. C. E. Shannon, Presentation of a maze-solving machine. 8th Conf. of the Josiah Macy Jr.543

Found. (Cybernetics), pages 173–180, 1951.544

