
Theory of Computing Systems manuscript No.
(will be inserted by the editor)

Exploration of Dynamic Cactuses with Sub-logarithmic1

Overhead2

David Ilcinkas · Ahmed M. Wade3

4

Received: date / Accepted: date5

Abstract We study the problem of exploration by a mobile entity (agent) of a class6

of dynamic networks, namely constantly connected dynamic graphs. This problem7

has already been studied in the case where the agent knows the dynamics of the8

graph and the underlying graph is a ring of n vertices [19]. In this paper, we consider9

the same problem and we suppose that the underlying graph is a cactus graph (a10

connected graph in which any two simple cycles have at most one vertex in common).11

We propose an algorithm that allows the agent to explore these dynamic graphs in12

at most O(n logn
log logn ) time units. We show that the lower bound of the algorithm is13

Ω(n logn
(log logn)2 ) time units (for infinitely many n).14
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1 Introduction16

The exploration of a graph by a (physical or software) mobile agent consists of visit-17

ing at least once each of the vertices of the graph, starting from a given vertex of the18

graph. In practice, many concrete systems can be modeled by graphs. This is what19

makes the use of graphs very versatile. For example, graphs can be used to model20

pipeline systems, underground tunnels, roads networks, etc. In this case, the explo-21

ration is performed by a mobile robot. Graphs can also be used to model more ab-22

stract environments such as computer networks. In this case, the mobile entities used23

to explore these environments are software agents, that is to say a program running24

in these environments.25

This fundamental problem in distributed computing by mobile agents has been26

extensively studied since the seminal paper by Claude Shannon [28]. However, the27

majority of the work concerns static graphs, while new generations of interconnected28

environments tend to be extremely dynamic. To take into account the dynamism of29

these extreme environments, for a decade, researchers have begun to model these dy-30

namic environments with dynamic graphs. Several models have been developed. The31

interested reader may find in [7] a comprehensive overview of the different models32

and studies of dynamic graphs (see also [21]).33

One of the first developed models, and also one of the most classical, is the model34

of evolving graphs [14]. For simplicity, given a static graph G, called underlying35

graph, an evolving graph G based on G is a (possibly infinite) sequence of (spanning36

but not necessarily connected) subgraphs of G (see Section 2 for the precise defini-37

tions). This model is particularly suited for modeling synchronous dynamic networks.38

In this paper, we study the problem of exploration of dynamic graphs consid-39

ering the model of constantly connected evolving graphs. An evolving graph G =40

(G1,G2, . . .) is called constantly connected if each graph Gi which composes it is41

connected. This class of graphs was used in [26] to study the problem of information42

dissemination. In 2010, Kuhn, Lynch and Oshman [20] generalize this class of dy-43

namic graphs by introducing the notion of T -interval-connectivity. Roughly speaking,44

given an integer T ≥ 1, a dynamic graph is T -interval-connected if for any window45

of T time units, there is a connected spanning subgraph that is stable throughout the46

period. (The notion of constant connectivity is equivalent to the notion of 1-interval-47

connectivity.) This new concept, which captures the connection stability over time,48

allows to derive interesting results: the T -interval-connectivity allows a savings of a49

factor about Θ(T ) on the number of messages necessary and sufficient to achieve a50

complete exchange of information between all vertices [11,20].51

During these last few years, several studies consider constantly connected dy-52

namic graphs where the underlying graph of the dynamic graph is a ring of n vertices.53

The problem of exploration with termination by a mobile agent is considered in [9,54

17,19]. If the dynamics of the graph is known, [19] shows that a single agent can55

solve the problem, and 2n−3 time units are necessary and sufficient. If the dynamics56

is not known in advance, [9] shows that two agents knowing an upper bound N on57

the number of vertices can solve the problem, and (3N−6) time units are sufficient58

if all agents are active at each time step, and O(N2) moves are sufficient if a subset59

of the agents might be active at each time step. The case when the agent has partial60
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information about network changes is considered in [17]. More precisely, the authors61

study the exploration time for a single agent which knows the dynamics of the graph62

for the next S steps in its H-hop neighborhood, for given parameters S and H.63

The problem of perpetual exploration is considered in [5,15]. In [5], the authors64

consider that all agents are active at each time step and show that to solve the problem,65

one agent is sufficient in the rings of size two1, two agents are sufficient in the rings66

of size three, and three agents are sufficient for all other rings. In [15] the authors67

consider time varying graphs whose topology is arbitrary and unknown to the agents68

and investigates the number of agents that are necessary and sufficient to explore69

such graphs. In addition to the problem of exploration, the problem of dispersion of a70

team of agents [3], gathering [10] and patrolling by a team of agents [8] are studied,71

considering constantly connected dynamic graphs based on the ring.72

Besides, several papers focus on the complexity of computing the optimal explo-73

ration time of a dynamic graph given as (a centralized) input, in a similar manner74

as in the Traveling Salesman Problem for static graphs. In the dynamic case, the75

problem is called Temporal Graph Exploration Problem [4,12,23] or Dynamic Map76

Visitation Problem [1,2]. In [2], the case of several agents is considered, while [4,77

12,23] and most of [1] consider the case of a single agent. The problem is shown to78

be NP-complete, even when the underlying graph has pathwidth 2 and at each time79

step, the current graph is connected [4]. In the other papers, several polynomial-time80

algorithms are given, either exact algorithms for specific graph classes, or approxi-81

mation algorithms for the general cases. In particular, [1] gives an O(n2) algorithm to82

compute the optimal exploration time of a given 1-interval-connected dynamic graph83

based on the n-vertex ring. Inapproximability results for the general case are given84

in [12,23].85

It turns out that the problem of exploration is much more complex in dynamic86

graphs than in static graphs. Indeed, let us consider for example the scenario where87

the dynamic graph is known. The worst-case exploration time of n-vertex static graphs88

is clearly in Θ(n) (worst case 2n−3). On the other hand, the worst-case exploration89

time of n-vertex (1-interval-connected) dynamic graphs remains largely unknown.90

In [12] the authors give a worst-case lower bound in Ω(n2) for general graphs and91

Ω(n logn) for degree-bounded graphs. An upper bound in O(d logd · n2

logn ) for degree-92

bounded graphs is given in [13].93

The goal of this paper is to extend the results obtained in [19] to larger families94

of underlying graphs. Unfortunately, the problem turns out to be much more difficult95

than it seems. We will see that proving that any dynamic graph based on a tree of96

cycles (a cactus) can be explored in time O(n) is already a challenging problem.97

Our results. We will first give two exploration methods that are efficient for exploring98

a very large set of constantly connected dynamic graphs based on a cactus, when the99

agent knows the dynamics of the graph. We will then combine these two exploration100

methods. We show that the combination of the two methods yields an algorithm that101

explores all constantly connected dynamic graphs based on a cactus of n vertices in102

1 In [5], the authors define a ring of size two as a two-node path if the graph is simple, or as two nodes
linked by two bidirectional edges otherwise.
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O(n logn
log logn ) time units, and we derive a lower bound of Ω(n logn

(log logn)2 ) time units for103

the algorithm (for infinitely many n).104

2 Preliminaries105

This section provides precise definitions of the concepts and models discussed infor-106

mally earlier. We also give some previous results from the literature on the problem107

studied in this paper.108

Definition 1 (Dynamic graph) A dynamic graph is a pair G = (V,E ), where V is a109

static set of n vertices, and E is a function which maps every integer i ≥ 0 to a set110

E (i) of undirected edges on V .111

Definition 2 (Underlying graph) Given a dynamic graph G = (V,E ), the static112

graph G = (V,
⋃

∞
i=0 E (i)) is called the underlying graph of G . Conversely, the dy-113

namic graph G is said to be based on the static graph G.114

In this paper, we consider dynamic graphs based on a cactus of size n. We also115

assume that the agent knows the dynamics of the graph, that is to say, the times of116

appearance and disappearance of the edges of the dynamic graph.117

Definition 3 (Constant connectivity) A dynamic graph is called constantly con-118

nected if, for any integer i, the static graph Gi = (V,E (i)) is connected.119

Definition 4 (Cactus) A cactus is a simple graph G = (V,E) in which two connected120

cycles have at most one vertex in common (see Figure 1).121

Fig. 1 Example of a cactus.

A mobile entity, called agent, operates on these dynamic graphs. The agent can122

traverse at most one edge per time unit. It may also stay at the current vertex (typically123

to wait for an incident edge to appear). We say that an agent explores the dynamic124

graph if and only if it visits all the vertices.125

In this article, we will use the following results from the literature.126



Exploration of Dynamic Cactuses with Sub-logarithmic Overhead 5

Theorem 1 [19] For every integers n ≥ 3 and t ≥ 0, and for every constantly con-127

nected dynamic graph based on a ring with n vertices, there exists a vertex v(t) such128

that an agent starting at time t on v(t) and going in the clockwise2 direction for n−1129

time units will never be blocked by a missing edge, and thus will explore all vertices130

within those n−1 time units.131

Sketch of proof. Consider n virtual agents placed on the n vertices (one agent on each132

vertex). Make all agents move in the clockwise direction for n− 1 time units from133

time t. Since at most one edge is removed at a time, it holds that, at each time, at most134

one such virtual agent is blocked at this time without having been blocked before.135

Thus, one of the n virtual agents is never blocked during the n−1 time units, and the136

starting vertex of this agent is the vertex v(t) we are looking for. �137

Theorem 2 [20] For every constantly connected dynamic graph on n vertices, at138

most n− 1 time units are sufficient for an agent to go from any vertex to any other139

vertex in the graph, when the agent knows the dynamics of the graph.140

Sketch of proof. Let u be some arbitrary vertex of the dynamic graph. For any integer141

i≥ 0, let Vi be the set of vertices reachable from u in at most i time units. We have that142

Vi  Vi+1 until Vi contains all the vertices. Indeed, before all vertices are reachable,143

there exists a vertex not in Vi which is neighbor of a vertex in Vi, because the dynamic144

graph is constantly connected. �145

Theorem 3 [19] For every integer n≥ 3 and for every constantly connected dynamic146

graph based on a ring with n vertices, there exists an agent (algorithm), EXPLORE-147

RING, exploring this dynamic graph in time at most 2n− 2 time units. (The agent148

knows the dynamics of the graph).149

Sketch of proof. The algorithm proceeds as follows. Go to vertex v(n−1), whose exis-150

tence is guaranteed by Theorem 1. This can be done in at most n− 1 time units, by151

Theorem 2. At time n− 1, go clockwise during n− 1 time units to fully explore the152

ring, thanks to the properties of v(n−1). �153

In this paper, we will only consider asymptotic exploration times. Since explo-154

ration of an n-vertex dynamic graph requires at least n−1 edge traversals, Theorem 2155

implies that requiring the agent to return to the starting vertex can at most double the156

exploration time. Therefore we will in fact study in this paper the exploration with157

return problem.158

To give a simpler analysis of our algorithms, we consider the tree representation159

of a cactus given in [6]. For any given cactus, the set of all vertices V is partitioned160

into three subsets of vertices. Call C-vertices the vertices of degree 2 that belong to161

one and only one cycle, G-vertices the vertices that do not belong to any cycle, and162

H-vertices the other vertices (which belong to at least one cycle and have a degree at163

least 3), which we also call attachment vertices.164

A subtree is a connected set consisting of H-vertices and G-vertices. A subtree is165

called maximal if the sets of H-vertices and G-vertices that it consists of cannot be166

2 The actual definition of the “clockwise” direction does not really matter as long as it is any fixed
direction.
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extended. A graft is a maximal subtree that does not contain two H-vertices belonging167

to the same cycle. Finally, a block is a graft or a cycle.168

It is not difficult to see that a cactus is formed by a set of blocks attached via169

H-vertices (see Figure 2.(a)).170

(a) (b)
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G2H2C1H1G1

H6
C5
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G2

C2

C3 C4

G3

G1

H2H1

H3

C4

H4

H5
H4

C3

C5H6G3H5C2

Fig. 2 Tree representation of a cactus.

If we add an edge between the blocks and the H-vertices, we obtain the tree171

TG = (VG,EG) such that each element of VG is a block or an H-vertex. Figure 2.(b)172

gives the tree representation of the cactus shown in Figures 1 and 2.(a). We say that173

a cactus is rooted if the tree that represents it is rooted.174

Given that constantly connected dynamic graphs based on trees (or grafts) are175

static and thus easy to explore, in this paper we consider cactuses that only consist176

of cycles and H-vertices. These cactuses will be called plump cactuses. Blocks are177

then always cycles, and we will use the term cycle in the sequel. In the following, we178

will assume that the cactus is rooted at the cycle where the agent starts exploration.179

If the agent starts on an H-vertex, one of the cycles attached to the H-vertex will be180

the root cycle.181

In this paper, we use the classical formalism of static trees. We will talk about182

degree, child, parent, height or depth of a cycle. Instead of subtree, we will rather use183

the term sub-cactus of a cactus C to denote a cactus C′ corresponding to a subtree in184

the rooted tree representation of C.185

3 Chain method186

In this section, we give a simple algorithm inspired by DFS to explore constantly187

connected dynamic graphs based on a plump cactus of n vertices. The principle of188

the algorithm is very simple. If the agent enters a cycle it has not visited yet, it visits189

it using the algorithm EXPLORE-RING for exploring dynamic graphs based on the190

ring (see Theorem 3), then passes to the attachment vertex of its closest unexplored191

child and explores it recursively. If all its children have already been explored and192

there is a cycle not yet explored, then it goes to its parent.193
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Algorithm 1 CHAIN-METHOD()
1: while not all vertices have been visited do
2: if the current cycle is not yet explored then
3: EXPLORE-RING (current cycle)
4: end if
5: if there is a child not yet explored then
6: GO-TO-THE-ATTACHMENT-VERTEX (with this child)
7: else
8: GO-TO-THE-ATTACHMENT-VERTEX (with the parent)
9: end if

10: end while

Theorem 4 For any integer n≥ 3, and for any constantly connected dynamic graph194

based on a plump cactus of n vertices, there is an agent, executing the algorithm195

CHAIN-METHOD, able to explore this dynamic graph in at most ∑
k
i=1(di +2)(ni−1)196

time units, where ni is the size of the cycle i, di its degree, and k the number of cycles197

of the cactus.198

Proof An agent executing the algorithm CHAIN-METHOD pays on each cycle Rni of199

the cactus at most 2ni− 2 time units to explore it (see Theorem 3). To switch to the200

attachment vertex of a child or the parent (if it has one), ni−1 time units are sufficient201

(see Theorem 2). As the degree of a cycle is equal to the number of its incident edges,202

then on each cycle Rni of the cactus, the agent pays at most (di+2)(ni−1) time units.203

The cactus is composed of k cycles, hence the agent pays at most ∑
k
i=1(di+2)(ni−1)204

time units to explore the dynamic graph. �205

Note that if the degree of each cycle is constant, then the time to explore the206

dynamic graph using the CHAIN-METHOD is in O(n), where n is the size of the207

cactus. Figure 3 presents a plump cactus of size n in which exploration using the208

CHAIN-METHOD takes time Ω(n2). Indeed, any algorithm exploring this graph has209

to explore the Ω(n) attached cycles of length 3. However, when the CHAIN-METHOD210

is used, the order of visit of these cycles is fixed and the adversary may choose the211

dynamicity of the graph such that going from one attached cycle to the next takes212

time Ω(n). Hence the overall exploration time is Ω(n2).213

4 Star method214

As we have seen in the previous section, the algorithm CHAIN-METHOD is not ef-215

fective for exploring constantly connected dynamic graphs based on cactuses with216

cycles of large degree, because the order of visit of the sub-cactuses is fixed, which217

makes the algorithm spend a lot of time to go from one sub-cactus to the next. On the218

contrary, the algorithm STAR-METHOD presented in this section focuses on reducing219

these transit times on the root cycle (the cycle where the exploration starts) to the220

minimum. The idea is to visit the sub-cactuses while exploring the root cycle. Note221

that directly using the algorithm EXPLORE-RING on the root cycle does not work,222

because when returning to the attachment vertex after exploring a sub-cactus, the223

agent cannot continue the exploration according to the algorithm EXPLORE-RING on224
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n
3

Fig. 3 Difficult graph for the CHAIN-METHOD.

the root cycle, as the dynamicity has changed on this cycle. To avoid this issue, the225

algorithm STAR-METHOD uses the algorithm EXPLORE-RING on a carefully chosen226

virtual dynamic cycle that takes into account both the dynamics of the root cycle and227

the time needed to recursively explore the sub-cactuses.228

Theorem 5 For any integer n≥ 3, and for any constantly connected dynamic graph229

based on a plump cactus C of n vertices, there is an agent, executing the algorithm230

STAR-METHOD, able to explore this dynamic graph in at most fS(C) = 3(nr−1) time231

units if C is an nr-vertex cycle, or fS(C) = 3(nr−1)+∑
`
i=1 fS(Ci)+max1≤i≤` fS(Ci)232

time units otherwise, where nr is the size of the root cycle, ` ≥ 1 is the number of233

sub-cactuses attached to the root cycle, and fS(Ci) is the recursive exploration cost234

of the sub-cactus Ci using the same algorithm.235

Proof Let C be a plump cactus, with n vertices, and let G be a constantly connected236

dynamic graph based on C. We prove the theorem by induction on the tree structure237

of the cactus. If C consists of a single ring (base case), then the algorithm STAR-238

METHOD simply applies the algorithm EXPLORE-RING and returns to the starting239

vertex, which proves the theorem in this case. Otherwise let nr be the size of the root240

cycle, and let C1,C2, . . . ,C` be the sub-cactuses attached to this root cycle. Moreover,241

for a proof by induction, we assume that the theorem holds for these sub-cactuses.242

Let fS be the recursive function defined in the statement of the theorem. The al-243

gorithm STAR-METHOD proceeds as follows. First, we introduce the following trans-244

formation of G into another dynamic graph G ′, based on a ring Rn′ of size n′. The245

dynamic graph G ′ is constructed as follows. We retain the root cycle of C and the246

dynamics of the graph G on this cycle. We replace every H-vertex of C with two247

C-vertices linked by a sequence of static paths of length equal to the recursive cost248

of exploring each subtree attached to the H-vertex. More precisely, the lengths of the249

added paths are fS(Ci), for all the sub-cactuses Ci attached to the H-vertex. Thus,250

we obtain a constantly connected dynamic graph based on a ring of size n′ (see Fig-251

ure 4). The dynamic graph G ′ is indeed constantly connected because we retain the252
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dynamicity of the subgraph of G based on the root cycle of C, which itself respects253

the constant connectivity.254
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Fig. 4 Correspondence between the dynamic graph based on C and the dynamic graph based on Rn′ .

We use the fundamental properties behind EXPLORE-RING, namely Theorem 1255

and 2, on respectively G ′ and G , to obtain a traversal that efficiently explores the256

root cycle and the sub-cactuses altogether. More precisely, if t is the time after nr−257

1 time units elapsed, let v(t) be the vertex of Rn′ described in Theorem 1. If v(t)258

does not correspond to a vertex of the root cycle C, then we set v as the H-vertex259

in C corresponding to the static subpath containing v(t). Otherwise, v is simply the260

corresponding vertex in C.261

Now let Agent B be the virtual agent, starting from the previously defined ver-262

tex v(t), that goes in the clockwise direction in G ′ without being blocked for n′− 1263

time units (by Theorem 1). We define the Agent A following the STAR-METHOD as264

follows.265

First Agent A uses nr − 1 time units to reach the previously defined vertex v266

on C. This is possible thanks to the property from Theorem 2. Now, whenever the267

(virtual) Agent B stays on a subpath P corresponding to some sub-cactus Ci for at268

least fS(Ci) consecutive time units, Agent A uses this time to recursively explore the269

sub-cactus Ci. If, after completing this exploration, Agent B is still lying on P, then270

Agent A simply waits on the attachment vertex. Whenever Agent B lies on the part271

corresponding to the root cycle (that is outside of the added subpaths), Agent A be-272

haves exactly as Agent B.273

This simulation of agent B on G takes at most n′− 1 = (nr − 1) +∑
`
i=1 fS(Ci)274

time units. By construction, the root cycle and all sub-cactuses are explored, except275

for possibly one sub-cactus Ci, if the agent B starts (and ends) inside the static path276

corresponding to Ci. In this case, the agent A uses at most fS(Ci)≤max1≤ j≤` fS(C j)277

additional time units to explore Ci. Finally, in any case, the agent returns to the start-278
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ing vertex, using at most nr − 1 time units. Overall, this can be done in fS(C) =279

3(nr− 1)+∑
`
i=1 fS(Ci)+max1≤i≤` fS(Ci) time units, which concludes the proof of280

the theorem. �281

If the height of the rooted tree of the cactus is constant, then the time to explore282

the dynamic graph using the STAR-METHOD is O(n) time units, where n is the size of283

the cactus. However, Figure 5 presents a plump cactus of size n in which exploration284

using the STAR-METHOD may take 2Ω(n)n time units for a specific choice of missing285

edges at each time. Indeed, at each step of the induction, there is only one sub-cactus,286

and its cost is paid twice, once in the sum, and once in the max (cf. the formula in287

Theorem 5). The cycle of length n/2 to the right needs exploration time Ω(n). Then,288

recursively, each additional cycle of size 4 on its left will introduce a multiplicative289

factor of 2 in the recursive cost of the sub-cactus. As the number of cycles of size 4290

is Ω(n), the overall exploration time is 2Ω(n)n.291

Starting vertex

n
2

Fig. 5 Difficult graph for the STAR-METHOD.

5 Mixed method292

In a plump cactus C with a root cycle of size nr and with sub-cactuses C1, . . . ,C`,293

the recursive exploration time is fC(C) = 3(nr−1)+∑
`
i=1 fC(Ci)+` · (nr−1) for the294

algorithm CHAIN-METHOD, and fS(C) = 3(nr−1)+∑
`
i=1 fS(Ci)+max1≤i≤` fS(Ci)295

for the algorithm STAR-METHOD.296

Because both methods presented above may have alone a large exploration time,297

we introduce in this section a combination of both methods, that is to say, on some298

sub-cactuses the agent will use the algorithm STAR-METHOD to explore them, and on299

the remaining sub-cactuses it will use the algorithm CHAIN-METHOD. The algorithm300

MIXED-METHOD is recursively defined as follows, with a cost function fM .301

If the cactus is an n-vertex ring, then the agent uses the algorithm EXPLORE-RING302

(which is in fact what both methods do), with a cost of at most fM(C) = 3(n− 1).303

Otherwise, let nr be the number of vertices of the root cycle, and let C1, . . . ,C` be304

its sub-cactuses, with `≥ 1. Assume without loss of generality that the sub-cactuses305

C1, . . . ,C` are ranked in descending order of their exploration cost fM(Ci). The agent306

uses the algorithm CHAIN-METHOD for the k first sub-cactuses, and the algorithm307

STAR-METHOD for the other sub-cactuses, for a well-chosen k.308
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More precisely, for each sub-cactus Ci, with 1 ≤ i ≤ k, the agent goes to the309

attachment vertex of Ci in at most nr − 1 time units (Theorem 2), and explores Ci310

recursively using the algorithm MIXED-METHOD. Then it explores altogether what311

remains of the cactus (the root cycle and the cactuses Ci, for i > k) similarly as in the312

algorithm STAR-METHOD. The only difference is that the recursive costs fM(Ci) are313

used to construct the virtual ring instead of the costs fS(Ci). As a consequence, the314

sub-cactuses are recursively explored using the algorithm MIXED-METHOD instead315

of the algorithm STAR-METHOD.316

The resulting cost is then ∑
k
i=1
(
nr−1+ fM(Ci)

)
+
(
3(nr−1)+∑

`
i=k+1 fM(Ci)+317

maxk+1≤i≤` fM(Ci)
)
. Using the fact that the costs fM(Ci) are decreasing, the preced-318

ing bound becomes 3(nr− 1)+∑
`
i=1 fM(Ci)+

(
k · (nr− 1)+ fM(Ck+1)

)
.3 The algo-319

rithm MIXED-METHOD chooses k such as to minimize the additional cost k · (nr−320

1)+ fM(Ck+1). To summarize, the exploration cost of the algorithm MIXED-METHOD321

is fM(C) = 3(nr−1)+∑
`
i=1 fM(Ci)+min1≤k≤`(k · (nr−1)+ fM(Ck+1)).322

5.1 Upper bound for the algorithm MIXED-METHOD323

In this section, we give an upper bound on the complexity of the algorithm MIXED-324

METHOD. The term k · (nr − 1) + fM(Ck+1) is a priori not monotone with respect325

to k. Therefore, it is not clear how to handle the min in the formula defining the326

function fM . To circumvent this issue, we study a variant of the algorithm MIXED-327

METHOD which chooses k more consistently.328

Theorem 6 An agent executing the algorithm MIXED-METHOD requires at most329

O
(

n logn
log logn

)
time units to explore any constantly connected dynamic graph based330

on a plump cactus of n vertices.331

Proof Fix an arbitrary constantly connected dynamic graph based on a plump cac-332

tus C of n vertices. In order to study the exploration cost of the algorithm MIXED-333

METHOD, we will discuss another algorithm, denoted EXPLORE-CACTUS, which is334

less efficient but easier to analyze. The upper bound obtained for this less efficient335

algorithm will also give us a valid upper bound for the MIXED-METHOD. The algo-336

rithm EXPLORE-CACTUS is defined as the algorithm MIXED-METHOD except that337

the number k of sub-cactuses on which it uses the algorithm CHAIN-METHOD is al-338

ways min{`,2c}, with c = logn
log logn .339

Therefore, the exploration cost fE(C) of the algorithm EXPLORE-CACTUS in a340

plump cactus C having a root cycle of size nr and sub-cactuses C1, . . . ,C` is at most341

3(nr− 1)+∑
`
i=1 fE(Ci)+ 2c(nr− 1)+ fE(C2c+1). Among the first 2c sub-cactuses,342

there are at least c sub-cactuses whose number of vertices is at most n/c, where n is343

the total number of vertices in C. Also, all these sub-cactuses have a cost larger than344

fE(C2c+1). It is therefore possible to charge the additional cost fE(C2c+1) to these345

sub-cactuses. We obtain the upper bound fE(C)≤ 3(nr−1)+∑
`
i=1 fE(Ci)+2c(nr−346

1)+ 1
c ∑|Ci|≤ n

c
fE(Ci).347

3 To simplify the notation, we define fM(Ci) as 0 when i > `.
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Differently speaking, there is a multiplicative factor 1+ 1
c in front of fE(Ci) for the348

sub-cactuses Ci such that |Ci| ≤ n
c . Since the number of vertices is divided by c, there349

can be at most logc n such factors stacking in a branch of the cactus. Developing the350

recursive cost, we thus obtain a total exploration time of at most n(1+ 1
c )

logc n(2c+3).351

Using the fact that lim
c→+∞

(1+ 1
c )

c = e, if we replace c with its value, we obtain the352

claimed bound. This concludes the proof of the theorem. �353

5.2 Lower bound for the algorithm MIXED-METHOD354

It turns out that the algorithm MIXED-METHOD does not explore all constantly con-355

nected dynamic graphs based on a cactus of size n in O(n) time units. We have the356

following theorem to prove it.357

Theorem 7 For infinitely many n, there is a constantly connected dynamic graph358

based on a plump cactus of n vertices such that the exploration of the dynamic graph359

by an agent executing the algorithm MIXED-METHOD takes at least Ω

(
n logn
(log logn)2

)
360

time units.361

Proof Let d be the triple of a sufficiently large power of 2 and let h = 1
2 d logd. We362

construct a particular rooted plump cactus Cd for which the exploration cost fM(Cd)363

of the algorithm MIXED-METHOD is large, namely in Ω(d · |Cd |).364

To do so, we use the following transformation. Given an integer i≥ 1 and a cac-365

tus C, the cactus subi(C) is defined as the cactus C in which all edges have been366

subdivided in i edges. Note that, in particular, sub1(C) =C.367

We now define Cd via an inductive construction. More precisely, we define the368

cactuses Cd,i, for 0 ≤ i ≤ h by induction on i. We denote by md,i, rd,i, and td,i, the369

number of edges, the size of the root cycle, and the recursive cost fM(Cd,i), of the370

cactus Cd,i.371

First, let Cd,0 be a ring of md,0 = rd,0 = (d + 3)/3 edges (which is an integer by372

definition of h). The exploration cost of this cactus is td,0 = fM(Cd,0) = 3(rd,0−1) =373

d. For i ≥ 1, we define inductively Cd,i as a cactus with a root cycle of size rd,i =374

td,i−1 + 1 on which are attached on d different vertices the cactuses sub1(Cd,i−1),375

sub2(Cd,i−1), up to subd(Cd,i−1) (see Figure 6). Finally, Cd is defined as Cd,h.376

The number of edges of Cd,i is md,i = rd,i +∑
d
j=1( j ·md,i−1). Recall that the al-377

gorithm MIXED-METHOD chooses the number k of sub-cactuses to explore with the378

algorithm CHAIN-METHOD such as to minimize the additional cost k · (rd,i− 1)+379

fM(subd−k(Cd,i−1)). On one hand, we have rd,i − 1 = td,i−1 by definition. On the380

other hand, the recursive exploration cost of each sub-cactus sub j(Cd,i−1) is j · td,i−1.381

Therefore, the additional cost does not depend on k and is always equal to d · td,i−1. In382

other words, the cactus is constructed in such a way that all the algorithms CHAIN-383

METHOD, STAR-METHOD, and MIXED-METHOD have the same exploration cost.384

Therefore, the exploration cost fM(Cd,i) of Cd,i is td,i = 3(rd,i−1)+∑
d
j=1( j · td,i−1)+385

d · td,i−1 = (3+d(d +1)/2+d) · td,i−1 = ((d2 +3d +6)/2) · td,i−1.386
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rd,i subd(Cd,i−1)sub1(Cd,i−1)

sub2(Cd,i−1)

H2

HdH1

Fig. 6 Inductive construction of the cactus Cd,i.

To simplify the notation, we now remove the first index d. Also, let α = (d2 +387

3d +6)/2) and β = d(d +1)/2. To summarize, we have388

t0 = d

r0 = (d +3)/3
m0 = (d +3)/3

and, for 1≤ i≤ h,389

ti = α · ti−1

ri = ti−1 +1
mi = ri +β ·mi−1 .

Solving the recurrences and setting γ = α/β , we obtain390

th = α
h · t0

rh = α
h−1 · t0 +1

mh = β
h ·m0 +

h

∑
i=1

β
h−i · ri

= β
h ·m0 +

h

∑
i=1

(α i−1 · t0 +1)β h−i

= β
h ·m0 + t0 ·

h−1

∑
i=0

α
i
β

h−1−i +
h−1

∑
i=0

β
h−1−i

= β
h ·m0 +

β h−1
β −1

+ t0 ·β h−1 · γ
h−1

γ−1
.

We now prove that the last term is somehow predominant. Indeed, we have391

β h ·m0 +
β h−1
β−1

t0 ·β h−1 · γh−1
γ−1

≤ 2β ·m0

t0
· γ−1

γh−1
≤ β · γ−1

γh−1
.
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Besides, we have392

γ =
d2 +3d +6

d2 +d
= 1+

2d +6
d(d +1)

= 1+
2
d
+

4
d(d +1)

.

Plugging the last equation into the previous one, we obtain393

β h ·m0 +
β h−1
β−1

t0 ·β h−1 · γh−1
γ−1

≤ β ·
2
d +

4
d(d+1)

(1+ 2
d +

4
d(d+1) )

h−1

≤ β ·
3
d(

(1+ 2
d )

d
2

) 2h
d −1

≤ 3β

d
· 1

2logd−1
≤ 2 ,

where the penultimate inequality uses the fact that limx→+∞(1+ 1/x)x = e and the394

definition of h.395

We are now ready to derive a lower bound on the exploration time th.396

th ≥
αh · t0

3t0 ·β h−1 · γh−1
γ−1

·mh ≥
α

3
· γh−1 · γ−1

γh−1
·mh

≥ α

3
· γ−1

γ
·mh ≥

α

3d
·mh

≥ d
6
·mh .

It remains now to express d and mh as a function of the number n of vertices of397

the cactus Cd .398

2d ≤ β
h ≤ 1

2
mh ≤ n≤ mh ≤ β

2h ≤ d6h

The inequality 2d ≤ n implies that logd ≤ log logn, while d6h = d3d logd ≥ n allows399

to derive that 3d log2 d ≥ logn and thus that d ≥ 1
3

logn
(log logn)2 . Finally, we obtain th ≥400

1
18 n logn

(log logn)2 , which concludes the proof of the theorem. �401

6 Conclusion402

In this paper, we studied the time complexity for exploring constantly connected dy-403

namic graphs based on cactuses, under the assumption that the agent knows the dy-404

namics of the graph. We gave an exploration algorithm for dynamic graphs that we405

called MIXED-METHOD, and we have shown that for exploring the whole class of406

constantly connected dynamic graphs based on cactuses of n vertices, with this algo-407

rithm, Ω(n logn
(log logn)2 ) time units are necessary (for infinitely many n), and O(n logn

log logn )408

time units are sufficient. This study opens several perspectives.409
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In the short term, it would be interesting to find a new method in order to ob-410

tain a better upper bound on the exploration time of dynamic graphs based on cac-411

tuses. At a second stage, an interesting question to investigate would be if T -interval-412

connectivity (for T > 1) allows to save a significant factor in the exploration time of413

the cactuses. A natural further objective is to extend the family of underlying graphs.414

Note that the families of underlying graphs considered so far (rings and cactuses)415

have the property that at most one edge can be absent at a given time in every bi-416

connected component. Studying families of underlying graphs that do not possess417

this property seems to be a challenging problem.418

A further perspective is to consider the exploration problem of dynamic graphs419

using more than one agent, assuming standard models of communication between the420

agents. The objective would be to study whether dynamic graph exploration can be421

performed more efficiently by using more than one agent.422
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