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Abstract. We tackle local distributed testing of graph properties. This
framework is well suited to contexts in which data dispersed among the
nodes of a network can be collected by some central authority (like in,
e.g., sensor networks). In local distributed testing, each node can provide
the central authority with just a few information about what it perceives
from its neighboring environment, and, based on the collected informa-
tion, the central authority is aiming at deciding whether or not the net-
work satisfies some property. We analyze in depth the prominent example
of checking cycle-freeness, and establish tight bounds on the amount of
information to be transferred by each node to the central authority for
deciding cycle-freeness. In particular, we show that distributedly testing
cycle-freeness requires at least dlog de−1 bits of information per node in
graphs with maximum degree d, even for connected graphs. Our proof is
based on a novel version of the seminal result by Naor and Stockmeyer
(1995) enabling to reduce the study of certain kinds of algorithms to
order-invariant algorithms, and on an appropriate use of the known fact
that every free group can be linearly ordered.

1 Introduction

1.1 Context and objective

We are interested in monitoring structural properties of networks. Our setting
is the one of a large-scale distributed system in which nodes are linked together
so as to form a network G. Our objective is to discuss the ability of the nodes to
decide whether or not the network satisfies certain structural properties, which
may in turn govern the ability of the network to perform certain tasks efficiently.
Examples of such structural properties are, e.g., large expansion, which governs
the ability to disseminate information quickly, or cycle-freeness, which prevents
communication packets to enter into infinite loops. For the purpose of decid-
ing structural properties of the network, each of its nodes can perform some
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local computation, and eventually produce an individual output based on struc-
tural information gathered in its vicinity, and reflecting the local structure of
the network around the node. This information is then transmitted to a central
authority, which is in charge of taking the final decision about G, as a combi-
nation of all individual outputs produced by the nodes. The crucial point here
is that the communication channel available between the central authority and
each of the nodes is supposed to be narrow, and hence the amount of information
that can be transmitted from each node to the central authority is limited. Yet,
we want the central authority to be able to decide whether or not G satisfies
some given structural property. A typical example of such a setting is a sensor
network, in which the sensed data are gathered at a distant base station, either
directly, or via intermediate routers and/or other sensors.

The setting presented above shares characteristics with both property test-
ing [14] and distributed decision [12, 13]. Indeed, at a conceptual level, property
testing on graphs can be viewed as: (1) querying a small number of nodes, typ-
ically o(n), or even O(1) nodes, in n-node networks; (2) extracting information
from each query, typically O(log n) bits of information (e.g., the identity of a
neighbor of the queried node); and (3) deciding whether the queried graph satis-
fies some given property P, on the basis of the collection of information obtained
from the queried nodes. It is the role of the tester algorithm to choose which
nodes to query, and to eventually take the decision about the tested graph.
The lack of information resulting from querying just a small subset of nodes is
balanced by relaxing the decision requirement, which is subject to probabilistic
errors, and does not impose to reject illegal instances that are “close” to legal
instances.

Similarly, distributed decision in graphs [12, 13] can be viewed as (1) querying
all nodes; (2) having every node providing a single bit of information (true
or false) based on local information gathered in its vicinity; and (3) deciding
whether the queried graph satisfies some given property P, on the basis of the
collection of boolean information obtained from the queried nodes. In distributed
decision, the instance is accepted if and only if the logical conjunction of the
boolean information computed at each node is true. That is, if the input graph
satisfies P, then every node must individually accept. Otherwise, at least one
node must individually reject. Distributed decision assumes no gap between, on
the one hand, the instances to be accepted, and, on the other hand, the ones to
be rejected. Furthermore, the decision is usually deterministic and error-free.

The formal model used in this paper for monitoring structural properties of
networks relaxes property testing in the sense that, as for distributed decision,
all nodes are queried. It also relaxes distributed decision in the sense that, as
for property testing, the decision is made by an algorithm taking as input struc-
tured information provided by the nodes (and not only boolean information).
Therefore, as far as the computational constraints are concerned, our model is
very liberal, by taking the best of property testing, and of distributed decision.
On the other hand, the model is very conservative regarding the final output,
by allowing no errors, and by requiring perfect dichotomy between the legal in-
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#queried amount of decision gap error
nodes information mechanism

property testing [14] o(n) O(logn) algorithm ε-far yes
distributed decision [12, 13] n 1 logical conjunction none no

distributed testing n O(logn) algorithm none no
Table 1. Distributed testing

stances and the illegal instances. We call this model distributed testing. Its main
characteristics are summarized in Table 1.

One illustrative example of the differences between, on the one hand, dis-
tributed testing, and, on the other hand, property testing and distributed de-
cision, is cycle-freeness (see Table 2). For 2-sided error, it is known [15] that
cycle-freeness in graphs with maximum degree d can be property tested with
O( 1

ε3 + d
ε2 ) queries returning Θ(log n) bits per queried node, where ε ∈ (0, 1)

is the gap parameter between the legal and illegal instances. For 1-sided error,
Ω(
√
n) queries are required [15], and this is sufficient [8]. If one does not allow

errors, it is folklore that, even in connected graphs, cycle-freeness cannot be dis-
tributedly decided4. It is however known [18] that cycle-freeness in connected
graphs can be verified distributedly with the help of O(log n)-bit additional in-
formation (i.e., certificates) per node. As for distributed decision, each node just
outputs a boolean, and the global decision is the logical conjunction of these
booleans. Moreover, [9, 19] proved that Ω(log n)-bit certificates are necessary for
verifying trees. In [3], the size of the certificates is nevertheless decreased to con-
stant, by allowing nodes to output just 2 bits instead of 1. (We call this latter
setting distributed certification).

Of course, there is a very simple algorithm for distributedly testing cycle-
freeness in connected graphs: each node v output its degree deg(v), and the
central authority accepts if and only if

∑
v deg(v) = 2(n − 1). The number of

bits returned by each queried node is dlog de in graphs with maximum degree d.
One question is: can we do better, i.e., with less bits of information transmitted
from each node? Note that the answer is yes for subdivided graphs, where a
subdivided graph [1] is a graph in which no two vertices of degree different
from 2 are adjacent. Indeed, in such graphs with n ≥ 3, the following algorithm
works, with only four different kinds of outputs (i.e., 2-bit outputs): a node with
degree 6= 2 outputs 0, and a node with degree 2 outputs 2, 3 or 4 depending on
whether it is adjacent to 0, 1 or 2 nodes with degree 6= 2, respectively. The central
authority then accepts if and only if the sum of the outputs equals 2(n− 1).

4 To see why, assume there exists a local algorithm A deciding cycle-freeness locally.
Run A on the path with consecutive identities from 1 to n (nodes with identities 1
and n being the two extremities). In this configuration, the n/2 middle nodes output
“true”. Then, run A on the same path with identities n/2, . . . , n, 1, . . . , n/2 − 1.
Again, the n/2 middle nodes output “true”. Therefore, on the cycle with consecutive
identities from 1 to n, all nodes output “true”, yielding A to accept the cycle, a
contradiction.
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#queried amount of success Comments
nodes information probability

property testing [15] O( 1
ε3

+ d
ε2

) dlogne 2-sided ε-far
property testing [8, 15] Θ(

√
n) dlogne 1-sided ε-far

distributed decision [folklore] n 1 impossible –
distributed verification [9, 18, 19] n 1 deterministic Θ(logn)-bit certificates
distributed certification [3] n 2 deterministic O(1)-bit certificates

distributed testing [this paper] n log d±Θ(1) deterministic –

Table 2. Monitoring cycle-freeness in n-node max-degree-d (connected) graphs

In this paper, we question the existence of a distributed tester for cycle-
freeness in arbitrary graphs, returning less than dlog de bits from each of the n
queried nodes.

1.2 Our results

We prove that every distributed tester for cycle-freeness in graphs with maxi-
mum degree d requires that at least one node outputs at least dlog de − 1 bits.
Hence, the distributed tester in which every node simply outputs its degree
is essentially optimal. This tight result completes the whole picture regarding
checking cycle-freeness (see Table 2). That is, if one can stand errors and slacks
then property-testing enables to query just a few nodes. On the other hand, if
one insists on deterministically systematically rejecting graphs with cycles, and
accepting graphs without cycles, then distributed testing seems to be the right
option. Indeed, it consumes moderate bandwidth resources to gather the out-
puts of the nodes, and needs not to provide certificates (as opposed to distributed
verification, and distributed certification).

Establishing that every distributed tester for cycle-freeness must output
dlog de − 1 bits at some node requires to combine several techniques. First, we
show that one can reduce our concern to order-invariant testers, that is, roughly,
to algorithms whose output at a node does not depend on the actual value of
the identities of the nodes in its vicinity, but solely on the relative order of these
values. The celebrated result by Naor and Stockmeyer [20] enabling to reduce
the study of certain kinds of algorithms to order-invariant algorithms cannot be
applied in our context because our instances are not necessarily in the class LCL
of so-called locally checkable languages. Nevertheless, we were able to provide a
novel reduction, that does not require LCL membership, by using the infinite
version of Ramsey Theorem.

Our second main technique is the construction, for every order-invariant dis-
tributed tester supposed to decide cycle-freeness with too few information pro-
vided by each node, of two explicit instances, one with a cycle, and one without,
that cannot be distinguished by the tester. This construction is difficult because,
as mentioned before, cycle-freeness can be distributedly tested with just a 2-bit
output per node in subdivided graphs. Nevertheless, by an appropriate use of
the known fact that every free group can be linearly ordered, we were able to
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construct legal and illegal instances that cannot be distinguished locally by the
assumed order-invariant distributed tester.

1.3 Related work

Local computing is a wide domain of studies in distributed network computing,
and the reader is referred to the textbook [21] for an excellent introduction to
local computing, providing pointers to the most relevant techniques for solving
prominent problems (e.g., MIS, coloring, etc.) locally. The question of what
can be computed in a constant number of communication rounds was actually
introduced in the seminal work by Naor and Stockmeyer in [20]. In particular,
[20] introduced the class of locally checkable languages (LCL), and studied the
question of how to deterministically or randomly construct instances of LCL
languages in a constant number of rounds.

With the objective of providing distributed network computing with a com-
plexity theory based on decision problems, following the guidelines of classical
(sequential) complexity theory, [12, 13] introduced several decision classes for lo-
cal computing, and studied the relationships between these classes (which are
depending on the number of allowed rounds, on the potential access to oracles,
on the potential use of non-determinism and/or of randomization, etc.). Paper
[12] generated several following up contributions, including, e.g., studies on the
impact of randomization [11], studies on the impact of node identifiers [10],
studies on verification tasks where certificates include node IDs [17], etc. See
also [16] for other forms of local checking, and for their impact on distributed
graph-optimization problems.

Local distributed testing was introduced in [3] (although [3] does not use this
terminology). Beside introducing complexity classes related to local distributed
testing, and studying the relationships between these classes, [3] focused atten-
tion to verification, and on the size of the certificates involved in the verification.
Our paper is also very much related to [4, 5], which use models that resemble lo-
cal distributed testing, but where nodes are restricted to perform just one round
of communication before outputting a value on O(log n) bits. In the restricted
setting of [4, 5], even checking the presence of a 4-cycle in the network may not
be feasible. Instead, in local distributed testing, the number of communication
rounds is just restricted to be constant, but one aims at producing smaller output
values, e.g., on O(1) bits.

2 Local Distributed Testing

Let us consider a network modeled as a simple connected graph G. We are inter-
ested in the task consisting, for the nodes of G, to collectively decide whether G
satisfies some given property P, like, say, being planar, being a tree, etc. For
this purpose, nodes can exchange information, so that every node eventually
produces an output. The computational model considered in this paper is the
classical LOCAL model [21], which is a standard distributed computing model
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capturing the essence of locality. In this model, nodes have pairwise distinct
identities (the identity of node v is denoted by id(v) ∈ N). They are woken up
simultaneously, and computation proceeds in fault-free synchronous rounds dur-
ing which every node exchanges messages of unlimited size with its neighbors in
the underlying network G, and performs arbitrary individual computations on
its data. The running time of an algorithm is defined as the maximum number
of rounds it takes to terminate at all nodes, over all possible networks, and all
possible identity assignments for the nodes in these networks. Similarly to [20],
we consider algorithms whose running time is independent of the size of the net-
work, and independent of the size of the identities. That is, they run in constant
time.

Let outA(G, id, v) denotes the output of node v ∈ V (G) running Algorithm
A in G with identity assignment id. We denote by outA(G, id) the global output,
that is,

outA(G, id) = {outA(G, id, v), v ∈ V (G)}

is the multiset of all individual outputs (the same individual output may appear
more than once in outA(G, id)). By “collectively decide” a graph property P, we
mean the following. To each output corresponds a global state of the system.
We question the ability to define two classes of global states, one called accept,
and one called reject, so that the following holds. If G satisfies P, then the nodes
must compute outputs that yields the system to be in an accept state, while if G
does not satisfy P, then the nodes must compute outputs that yields the system
to be in a reject state. More specifically, assume that each node of an n-node
network can output one of the different values in a set S. Let Mn,S =

((
S
n

))
be

the set of all multisets of cardinality n, with elements taken from S. We say that
a graph property P can be distributedly tested with output set S if there exists a
local distributed algorithm D, and a decomposition of Mn,S for every n ≥ 1, into
two computable sets Yn (the “yes”-set, or accept set) and Mn,S \ Yn (the reject
set) such that, for every n-node graph G, and for every identity assignment id
to the nodes in G, the following holds:

G satisfies P ⇐⇒ outD(G, id) ∈ Yn.

In other words, a distributed tester for P consists in a local distributed al-
gorithm D producing an output at every node, coupled with a sequential algo-
rithm S which takes as input the collection of all outputs produced by the nodes,
and accepts or rejects, under the constraint that it must accept if and only if G
satisfies P.

An example (borrowed from [13]) of a graph property that can be distribut-
edly tested is: clique-width at most 2. Indeed, a graph has clique-width at
most 2 if and only if it is a cograph – see [7]. Now, cographs have also been
characterized as the family of P4-free graphs (i.e., the graphs which do not
contain the path on 4 nodes as an induced subgraph) – see [6]. Hence, to de-
cide clique-width at most 2, each node can simply communicate at bounded
distance to check whether it contains an induced P4 in its vicinity, and out-
put 0 if it is the case, and 1 otherwise. The accept set is simply defined as



7

Yn = {{x1, . . . , xn} ∈ Mn,{0,1} :
∏n
i=1 xi = 1}. Distributed testing restricted

to this latter class of accept sets actually reduces to distributed decision [13].
(See [2] for the difficulty of property testing cographs).

The size of S needs not be constant, and may actually vary with n. This
is for instance the case of the aforementioned task of testing cycle-freeness, for
which every node simply returns its degree. In this case, Yn = {{x1, . . . , xn} ∈
Mn,[n] :

∑n
i=1 xi = 2(n− 1)}, where [n] = {1, . . . , n}.

Note that every computable graph property P can be distributedly tested in
this model. Indeed, each node can just output its identity, and the set of all the
identities of its neighbors. In other words, each node v outputs its identity and
its adjacency list Lv in the current graph G. In this case,

Yn = {{L1, . . . , Ln} : graph (L1, . . . , Ln) satisfies P}

would enable to distinguish graphs that satisfy P from those that do not. How-
ever, such a trivial solution involves individual outputs of size Ω(n log n) bits
in dense graphs. Our objective is to study the ability of distributedly testing
graph properties with individual outputs having size as small as possible, ideally
constant, independent of the network size, and of the range of identities. We de-
fine the output size of a distributed tester in a graph family G as the maximum,
taken over all instances (G, id) where G ∈ G, of the maximum number of bits
outputted by a node in this instance.

3 Order-invariance revisited

Our first result in the paper is a key ingredient for the proof of our main result.
This ingredient may have its interest on its own, and it is worth dedicating an
entire section to it. We show that, w.l.o.g., one can consider only order-invariant
distributed testers. Recall that an order-invariant distributed algorithm is a dis-
tributed algorithm for which the output at any given node does not depend on
the actual values of the identities of the nodes in its vicinity, but only on the
relative order of these identities. More precisely, let BG(v, t) be the ball of ra-
dius t around node v in graph G, that is, BG(v, t) is the subgraph of G induced
by all nodes at distance at most t from v, excluding the edges between the nodes
at distance exactly t from v. An algorithm A is order-invariant if the following
holds: for any graph G, for any node v, and for any two identity assignments id
and id′ of the nodes in G, if the ordering of the nodes in BG(v, t) induced by id,
and the one induced by id′ are identical, then the output of A at node v is the
same in both (G, id) and (G, id′).

A distributed language L is defined by a collection of labeled graphs, or con-
figurations (G, `) where G is a connected graph, and ` : V (G) → {0, 1}∗ is a
function that labels each node v with the label `(v). The construction task de-
fined by a language L consists, for every node v of every graph G, to compute
out(v) such that the global output satisfies (G, out) ∈ L. In their seminal paper,
Naor and Stockmeyer [20] consider the subclass LCL of locally checkable lan-
guages. Languages in LCL are distributed languages that are defined on graph
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families with constant maximum degree, and with constant label size at every
node (i.e., |`(v)| = O(1) for every node v). A language L is locally checkable,
or, alternatively, is in LD according to the terminology of [13], if there exists
a distributed algorithm performing in a constant number of rounds such that,
for any (G, `) ∈ L, all nodes accept, and, for any (G, `) /∈ L, at least one node
rejects. (See [13, 20] for more details). Theorem 3.3 in [20] establishes that, for
every language L ∈ LCL, if there exists a construction algorithm for L perform-
ing in t = O(1) rounds, then there exists a t-round order-invariant construction
algorithm for L.

In the context of this paper, the language corresponding to a distributed
tester (D,S) is determined by the accept set, that is by the set of multisets of
outputs that S accepts. In general, the language corresponding to a distributed
tester (D,S) for a property P is

L = {(G, `) : S accepts ` ⇐⇒ G satisfies P}

where ` is the collection of values `(v), v ∈ V (G), and `(v) is the value owned
by node v. In particular, the language corresponding to the distributed tester
(D,S) for cycle-freeness where D outputs deg(v) at each node v is

Lcycle-free = {(G, `) :
∑
v∈V G `(v) = 2(n− 1) ⇐⇒ G is an n-node tree}.

Observe that such languages are not necessarily locally checkable. For instance,
Lcycle-free /∈ LCL (even if restricted on graphs with maximum degree d, for some
constant d). Hence, Theorem 3.3 in [20] does not apply to our setting. The result
below extends this latter theorem to non locally checkable languages. We define
the domain of a language L as the set of all values taken by the labels `(v) in L,
for all graphs G, and all nodes v of G. Note that, in a construction task defined
by a distributed language L, nodes may be a priori provided with inputs. In this
context, x(v) denotes the input to node v, and every node v has to compute an
output y(v) such that (G, (x, y)) ∈ L.

Theorem 1. For every non-negative integers k, t, d, and every language L de-
fined on connected graphs with maximum degree d, and k-valued domain, if there
exists a t-round construction algorithm A for L, then there is a t-round order-
invariant construction algorithm A′ for L.

Proof. For any set X, and any positive integer r, let us denote by X(r) the set
of all subsets of X with size exactly r. Let X be a countably infinite set, let r
and s be two positive integers, and let c : X(r) → [s] be a “coloring” of each
set in X(r) by an integer in [s] = {1, . . . , s}. Recall that (the infinite version of)
Ramsey’s Theorem states that there exists an infinite set Y ⊆ X such that the
image by c of Y (r) is a singleton (that is, all sets in Y (r) are colored the same
by c). We make use of this theorem as follows.

Let us consider the collection B of all graphs isomorphic to some ball BG(v, t)
of radius t, centered at some node v in some graph G with maximum degree d.
If the language L is described by labels encoding input-output relations, then B
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is the collection of all labeled graphs isomorphic to some labeled ball BG(v, t).
Since the domain of the labels has k values, there are at most k different inputs,
and thus there is a finite number β of pairwise non-isomorphic balls in B.

We enumerate these (labeled) balls from 1 to β, and let ni be the number of
vertices in the ith ball, for i = 1, . . . , β. For every i, the vertices of the ith ball
can be ordered in ni! different manners, corresponding to the ni! permutations
in Σni . We consider the N =

∑β
i=1 ni! ordered balls Bi,σ, for i = 1, . . . , β, and

σ ∈ Σni , and we enumerate these ordered balls as B1, . . . ,BN in an arbitrary
order. Using these balls, we define an infinite set I of identities as follows.

Let X0 = N, and assume that we have already secured the existence of a
sequence of infinite sets X0 ⊇ X1 ⊇ . . . ⊇ Xj , 0 ≤ j < N , such that, for every i,
1 ≤ i ≤ j, the output of A at the center of Bi is the same for all possible identity
assignments to the nodes in Bi with values in Xi, and respecting the ordering

of the nodes in Bi. We define the coloring c : X
(r)
j → [k] where r is the number

of nodes in Bj+1, as follows: for each r-element set I ∈ X(r)
j , assign r pairwise

distinct identities to the nodes of Bj+1 using the r values in I, and respecting
the order of the nodes in Bj+1. Then, define c(I) as the output of Algorithm A
at the center of Bj+1 under this identity assignment to the nodes of Bj+1. By
Ramsey’s Theorem, there exists an infinite set Yj ⊆ Xj such that all r-element

sets I ∈ Y (r)
j are given the same color. We set Xj+1 = Yj . We proceed that way

until we exhaust all balls Bi, i = 1, . . . , N , and we set I = XN .

By construction, the set I satisfies that, for every ball Bi,σ, for i = 1, . . . , β,
and σ ∈ Σni

, the output of A at the center of Bi,σ is the same for all identity
assignments to the nodes of Bi,σ with identities taken from I and assigned to
the nodes in the order σ.

We now define the order-invariant algorithm A′ as follows. Every node v
inspects its radius-t ball BG(v, t) around it in the actual graph G. In particular,
it collects the identities of the nodes in that ball. Let σ be the ordering of the
nodes in BG(v, t) induced by their identities. Node v simulates A by reassigning
identities to the nodes of BG(v, t) using the r = |BG(v, t)| smallest values in I,
in the order specified by σ, and outputs what would have outputted A if nodes
were given these identities.

A′ is well defined, as nodes can be provided with the ν =
∑t
i=0 d

i smallest
integers in the set I. (I.e., nodes do not need to know the entire set I, but only
a finite number of values in I). Also, by construction, A′ is order-invariant. To
establish that A′ is correct, let us consider some n-node input graph G, with
nodes provided with pairwise distinct identities in I, and let out = {out(v), v ∈
V (G)} be the output of A in this context. This output is precisely the multi-
set outputted by A′ in G. Indeed, every node v relabels its radius-t ball with
identities in I, respecting the order induced by the original identities in I, and
I is precisely defined so that the output of v will be the same in both cases. In
other words, the output of A′ is precisely the output of A if nodes were assigned
identities restricted to be in I. Hence, since A is correct, it follows that A′ is
correct as well. ut
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4 Distributedly testing cycle-freeness

In this section, we prove our main result:

Theorem 2. For any positive even integer d, every distributed tester for cycle-
freeness in connected graphs with maximum degree at most d has output size at
least dlog de − 1 bits.

The rest of the section is entirely dedicated to prove this result. The proof is
by contradiction. Let d be a positive even integer. We assume the existence of a
distributed tester (D,S) for cycle-freeness in connected graphs with maximum
degree d, where D runs in t rounds, for some constant t ≥ 0, and outputs at most
dlog de − 2 bits at each node. We first start by shrinking the set of candidate
algorithms D. Indeed, as a direct consequence of Theorem 1, we get the following:

Corollary 1. If there exists a t-round distributed tester (D,S) for cycle-freeness
with k-valued outputs in connected graphs with maximum degree d, then there is
distributed tester (D′,S) satisfying the same, but where D′ is order-invariant.

Based on this latter result, we now show that every distributed tester (D,S)
for cycle-freeness in connected graphs with maximum degree at most d, where
D is order-invariant, has output size at least dlog de − 1 bits.

The intuition is as follows. We will focus our attention on so-called type-i
nodes, with i being an even integer between 2 and d. Intuitively, such nodes are
defined as nodes of degree i that only “see” a tree of nodes of degree i in their
neighborhood up to distance t, and with a particular ordering of their identities.
We will construct two (connected) graphs, with their corresponding identity
assignments, such that only one of this two graphs is a tree, and the multi-set of
the local views gathered by the nodes in the two graphs will only differ by their
numbers of type-i and type-j nodes, for some i 6= j. Any distributed tester for
cycle-freeness has to distinguish the two graphs and has thus to give different
output values to type-i and type-j nodes. This will prove that any distributed
tester for cycle-freeness must have at least d/2 different output values, thus
proving our main theorem.

We now define formally two families of trees, which will be used as building
blocks in our constructions. (See Fig. 1). Let i, 1 ≤ i ≤ d, be an even integer.
We define the trees Ti and T ′i as follows. For Ti, we start from one single node,
called the downtown node (this node is considered as a leaf). For T ′i , we start
from i+ 1 nodes organized as a star (i.e., with one center and i leaves), and also
called downtown nodes. Then, we replace each of the leaves of these two “seeds”
by a (i− 1)-ary tree of height t. As a consequence, all the internal nodes of the
resulting two trees are of degree i. Moreover, the downtown node closest to every
leaf is at distance exactly t + 1. The internal nodes of the resulting trees that
are not downtown nodes are called suburb nodes. For the ease of description of
our constructions, and for simplifying our arguments, we assign numbers to the
edges incident to the internal nodes of these two trees. More specifically, for each
internal node v, a distinct label between 1 and deg(v) is assigned to every edge e
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Fig. 1. The trees T2, for t = 3, and T ′
4, for t = 1. The downtown, suburb, and country-

side nodes are depicted as black, grey, and white nodes respectively. Port numbers are
only indicated for the central downtown node. The other port numbers can be inferred
using the same cyclic ordering of port numbers around the nodes.

incident to v. This label is called the port number of the edge e at node v. The
port numbers are assigned in such a way that, for each edge whose extremities
are two nodes with the same degree i, if p ∈ [1, i] is one of the port numbers
assigned to the edge, then i − p + 1 is the other port number assigned to this
edge. Then, we apply another transformation, which consists in replacing every
edge of these two trees that is incident to a leaf by a path of length 2t+ 1. The
trees Ti and T ′i are the trees resulting from this second transformation. In these
two trees, all the nodes that are neither downtown nodes, nor suburb nodes, are
called countryside nodes.

Before describing the identity assignments for these trees, let us make the
following observations. An infinite regular tree of degree i can be viewed as the
Cayley graph of the free group of rank i/2. More precisely, let {a1, a2, . . . , ai/2}
be the set of the i/2 generators of the free group (F, ?) of rank i/2. The Cayley
graph associated to this group is a directed arc-labeled graph with the following
properties: the set of nodes is the set F , and there is an arc with label ap, with
1 ≤ p ≤ i/2 from node g to node g′ if and only if g′ = g ? ap. If each arc
(g, g′) with label ap is replaced by an (undirected) edge {u, v} with port label p
at u and i − p + 1 at v, then we get the infinite regular tree of degree i with a
port-labeling similar to the one we have described for Ti and T ′i . More precisely,
for each node in this infinite tree, the edges incident to it are assigned a local
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port number from 1 to i such that if p is one of the port numbers assigned to
an edge, then i− p+ 1 is the other port number assigned to this edge. Besides,
any finitely generated free group is bi-ordered, i.e., admits a total order � such
that, for any three elements a, b, and c of the group, if a � b, then a ? c � b ? c
and c ? a � c ? b.

Let us now describe the identity assignments for the trees Ti and T ′i . The
construction is similar in both cases. The countryside nodes will receive the lower
identities, while the suburb and downtown nodes will receive the larger identities.
More specifically, to every countryside node u, we associate its distance j to
the closest leaf, and the sequence s of the t + 1 port numbers describing the
path going from the closest downtown node to u. The countryside nodes are
assigned identities respecting the lexicographic order of their pair (s, j), with
ties broken arbitrarily. The suburb and downtown nodes are assigned identities
that are compatible with the total order � of the corresponding free group.
Again, see Fig. 1 for examples of these identity assignments.

A node having the same local view up to distance t as the local view up
to distance t of a downtown node of Ti, except for actual identity values but
respecting the order of these identities, is called a type-i node.

For the purpose of contradiction, assume that there exists an order-invariant
distributed tester for cycle-freeness using less than d/2 output values. Therefore
there must exist two even integers i, j with i < j ≤ d, such that the distributed
tester outputs the same value for type-i and type-j nodes. Hence, let G′1 be the
graph formed by the disjoint union of one copy of T ′i and j−1 copies of Tj , with
disjoint ranges of identity values assigned to the nodes in these copies. Connect
j−1 disjoint pairs of leaves by an edge to make the graph connected. We denote
by G1 the resulting graph. Note that G1 is a tree. Similarly, let G′2 be the graph
formed by the disjoint union of i−1 copies of Ti and one copy of T ′j , with disjoint
ranges of identities assigned to the nodes in these copies. Connect i− 1 disjoint
pairs of leaves by as many edges to make the graph connected. Further, connect
j− i other pairs of leaves to create cycles. We denote by G2 the resulting graph.
Note that G2 is connected but is not a tree.

The multiset of local views up to distance t, ignoring the identity values but
taking into account their relative order, is exactly the same in both graphs G1

and G2, with the only exception that G1 has two more type-i nodes than G2,
and two less type-j nodes than G2. The distributed tester (D,S) will thus take
the same decision for both graphs, which contradicts the fact that it is a correct
distributed tester for cycle-freeness. This contradiction completes the proof of
the theorem. ut
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