Distributed Computing with Advice: Information Sensitivity of Graph Coloring

Pierre Fraigniaud¹ Cyril Gavoille² David Ilcinkas³ Andrzej Pelc³

¹CNRS and Université Paris 7, France

²LaBRI, Université Bordeaux 1, France

³Département d'informatique, Université du Québec en Outaouais, Canada

ICALP '07 July 10, 2007

1/19

・ 同 ト ・ ヨ ト ・ ヨ ト

Node's knowledge

Local knowledge

Global knowledge

- number of nodes
- network diameter
- maximum degree
- genus, girth, treewidth,etc.

- ∢ ⊒ →

2/19

Global knowledge given by an oracle

Advice for node x of graph G = a string of bits $\mathcal{O}(G, x)$.

P. Fraigniaud, C. Gavoille, D. Ilcinkas, and A. Pelc

Distributed Computing with Advice

3/19

Design of both

the oracle \mathcal{O}

- takes the whole graph G as input
- returns advice $\mathcal{O}(G, x)$ to every node x

the algorithm \mathcal{A}

- executed locally by every node
- using the pieces of advice given by the oracle

4/19

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Size of advice = total amount of advice given to the nodes
- Size of advice given by \mathcal{O} on graph G:

$$\sum_{x \in V(G)} |\mathcal{O}(G, x)|$$

5/19

高 と く ヨ と く ヨ と

• Worst case over all *n*-node graphs

Quantitative tradeoffs

Size of advice versus Performance of the algorithm regardless of what kind of knowledge is supplied.

Observation

The quality of the algorithmic solutions often depends on the amount of knowledge that is given about the network.

- [Lynch, PODC 1989]: A hundred impossibility proofs for distributed computing.
- [Fich, Ruppert, Distributed Computing, 2003]: Hundreds of impossibility results for distributed computing.

Information sensitivity

7/19

Э

・ロト ・日ト ・ヨト ・ヨト

Computing with advice project

Distributed computing

- Broadcast and wakeup [Fraigniaud, I., Pelc, PODC 2006]
- Minimum spanning tree [Fraigniaud, Korman, Lebhar, SPAA 2007]

Mobile computing

• Graph exploration [Fraigniaud, I., Pelc, MFCS 2006]

8/19

• Graph searching [Nisse, Soguet, SIROCCO 2007]

Related work: Information labelings

f-labeling (L, D)

Assign short labels to nodes so that f can be computed based solely on the labels:

$$f(x,y) = D(L(x), L(y))$$

9/19

Examples: routing, distance, adjacency, connectivity,...

Linial's model [Linial, SIAM J. Comp., 1992] (a.k.a., *LOCAL* model [Peleg, 2000])

- At each round, a node
 - sends a message to each of its neighbors
 - receives a message from each of its neighbors
 - performs some local computations
- No restrictions on
 - the message size
 - the local computations

Designed to estimate limitations of Local computing.

10/19

(4回) (三) (三)

Related work: Local computing

Local computing

- What can be computed Locally? [Naor, Stockmeyer, STOC 1993]
- What cannot be computed Locally? [Kuhn, Moscibroda, Wattenhofer, PODC 2004]
- If not, what amount of information (advice) must be given so that Local computing becomes doable?

11/19

イロト イヨト イヨト イヨト

Distributed coloring

Goal

Obtain a proper node-coloring in a distributed way.

Known results [Linial, SIAM J. Comp., 1992] (and [Goldberg, Plotkin, STOC 1987])

Time of 3-coloring

- of rings: $\Theta(\log^* n)$
- of rooted trees: $\Theta(\log^* n)$
- of "unoriented" trees: $\Theta(D)$

12/19

Theorem 1

3-coloring of all rings of size *n* in time $o(\log^* n)$ requires advice for $\Omega(n/\log^{(k)} n)$ nodes, for any constant *k*.

Corollary

3-coloring of rings is information insensitive

Theorem 2

3-coloring of all rings of size n in constant time requires advice for $\Omega(n)$ nodes.

13/19

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Theorem 3

3-coloring of all *n*-node unoriented trees in time $O(\log^* n)$ requires advice for $\Omega(n/\log^{(k)} n)$ nodes, for any constant *k*.

Theorem 4

3-coloring of all *n*-node trees in constant time requires advice for $\Omega(n)$ nodes.

14/19

・ロン ・回 と ・ ヨン ・ ヨン

Neighborhood graph

Neighborhood graph $N_t(G)$ of G for t rounds

- Vertices: map gathered by some node of (a labeled version of) *G* in *t* rounds
- Edges: between two nodes whith "compatible" maps

Property

The minimum number c such that there exists a c-coloring algorithm for graph G working in t rounds is the chromatic number of $N_t(G)$.

Example of the ring [Linial, SIAM J. Comp., 1992]

 $\chi(N_t(C_n)) \geq \log^{(2t)}(n)$

16/19

・ロン ・回 と ・ヨン ・ヨン

 \implies time of 3-coloring rings is $\Omega(\log^* n)$

Neighborhood graph with advice

- Any uninformed segment of length 2t + 2 contributes to a "classical" edge.
- t is small.
- If the number of informed nodes is small, then there are a lot of "classical" edges.
- Thus there exists a structured subgraph of high chromatic number.

18/19

(4月) (4日) (4日)

What is the information sensitivity of distributed $(\Delta + 1)$ -coloring of arbitrary graphs?

- What is the size of advice for Θ(log* n) time ? Conjecture: Θ(n) bits
- What is the size of advice for constant time ? Conjecture: Θ(n log(Δ)) bits

19/19

・ロト ・回ト ・ヨト ・ヨト