Graph Exploration By A Finite Automaton

Pierre FRAIGNIAUD

David ILCINKAS

Guy PEER

Andrzej PELC

David PELEG

Graph exploration

- · Goal
 - A mobile entity has to traverse every edge of an unknown graph

Graph exploration

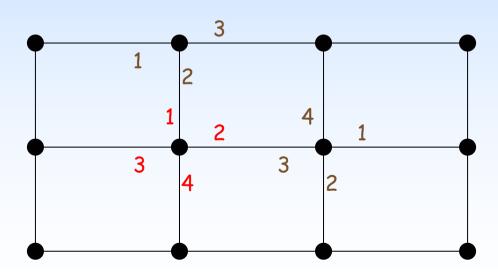
- · Goal
 - A mobile entity has to traverse every edge of an unknown graph
- Motivation
 - exploration of environments unreachable by humans
 - network maintenance
 - map drawing

· Graph of unknown size and of unknown topology

- Graph of unknown size and of unknown topology
- · No node labeling

- Graph of unknown size and of unknown topology
- No node labeling
- · Local edge labeling

- Graph of unknown size and of unknown topology
- · No node labeling
- · Local edge labeling



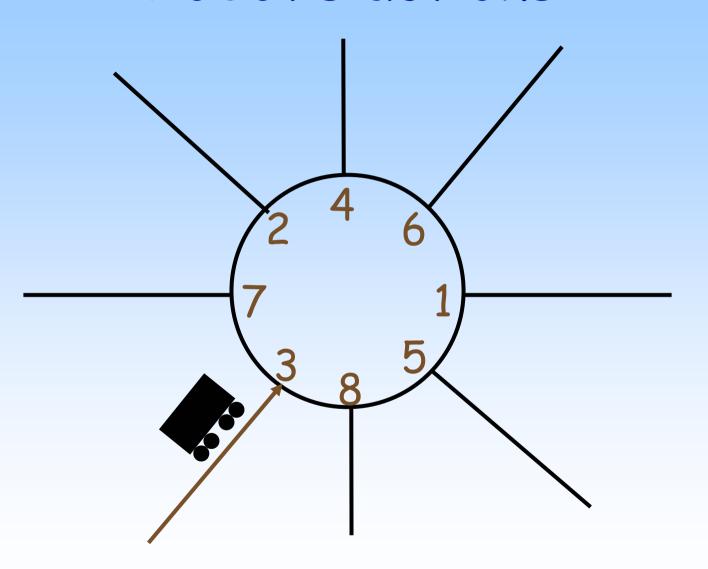
Robot

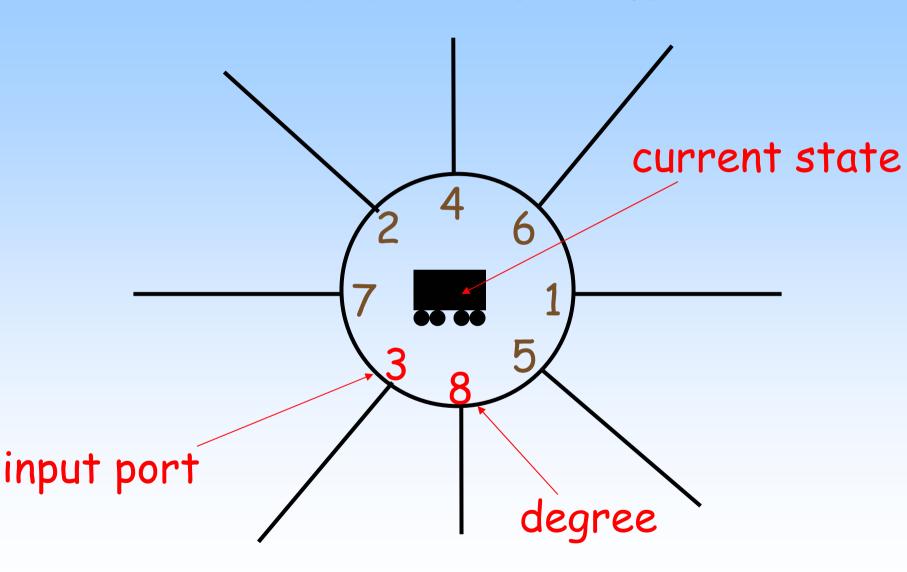
Robot

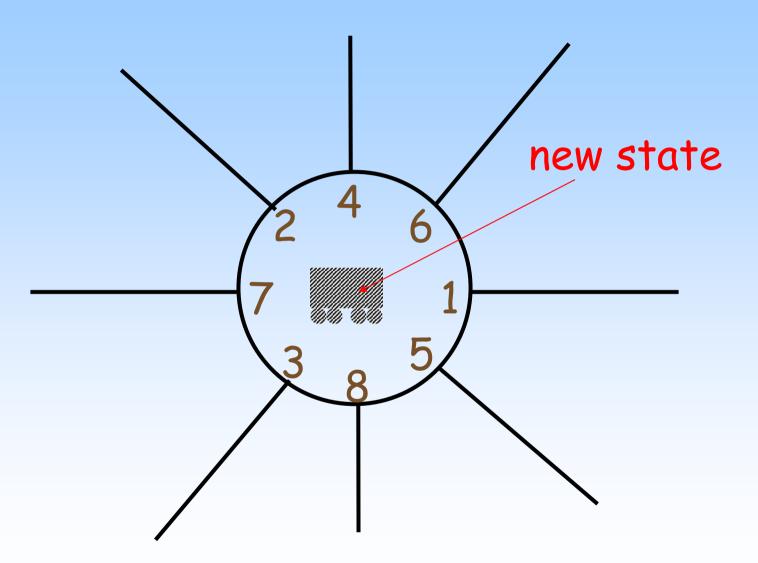
Deterministic automaton with K states
 → robot with [log K] memory bits

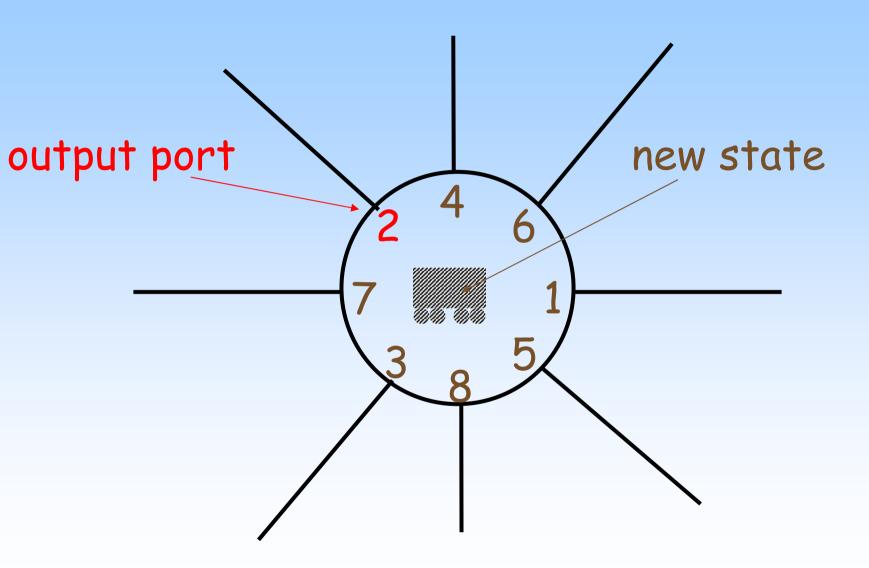
Robot

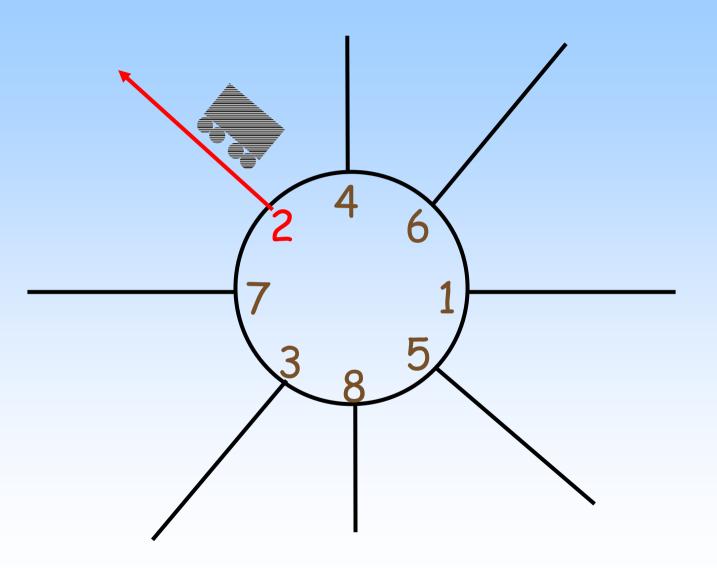
- Deterministic automaton with K states
 → robot with [log K] memory bits
- Moore automaton {I,P,S, δ , π ,s₀}
 - I: input set (degree, port number)
 - P: output set (port number)
 - S: set of states
 - δ : transition function (I x S \rightarrow S)
 - π : output function (S \rightarrow P)
 - s_0 : initial state











Outline

- Related work
- · Our results
- Trap construction (lower bound)
 - trap for the automaton A = graph that the automaton A cannot explore
- Optimal algorithm (upper bound)

Related work (1)

- First publication on labyrinths
 - Wiener, 1873
- · The mouse of Shannon
 - Shannon, Presentation of a maze-solving machine, 1951
- Seminar talk
 - Rabin, Berkeley, 1966

No finite automaton with a finite number of pebbles can explore all graphs

Related work (2)

- Formal arguments
 - Müller, Endliche Automaten und Labyrinthe, 1971
 - Coy, Automata in labyrinths, 1977
- First trap (labyrinths)
 - Budach, Automata and Labyrinths, Math. Nachrichten, 1978
- Trap for a team of automata
 - Rollik, Automaten in planaren Graphen, Acta informatica, 1980
 - No finite set of finite automata can cooperatively perform exploration of all cubic planar graphs

Our results (1)

Theorem 1

For every K-state robot and every d≥3, there exists a planar graph of maximum degree d, with at most K+1 nodes, that the robot cannot explore.

· Corollary

A robot that explores all n-node planar graphs requires at least \[\log n \] memory bits.

Our results (2)

Theorem 2

All graphs of diameter D and maximum degree d can be explored by a robot using O(D log d) memory bits.

Theorem 3

A robot that explores all graphs of diameter D and maximum degree d requires at least $\Omega(D \log d)$ memory bits.

· Corollary

DFS-exploration is space optimal

- Pseudo-palindrome
 - \emptyset , L= $a_1a_2...a_k \Rightarrow a_1a_2...a_ibba_{i+1}...a_k$

- Pseudo-palindrome
 - \emptyset , L= $a_1a_2...a_k \Rightarrow a_1a_2...a_ibba_{i+1}...a_k$
 - Example: 122331

- Pseudo-palindrome
 - \emptyset , L= $a_1a_2...a_k \Rightarrow a_1a_2...a_ibba_{i+1}...a_k$
 - Example: 122331

- Pseudo-palindrome
 - \emptyset , L= $a_1a_2...a_k \Rightarrow a_1a_2...a_ibba_{i+1}...a_k$
 - Example: 122331

- Pseudo-palindrome
 - \emptyset , L= $a_1a_2...a_k \Rightarrow a_1a_2...a_ibba_{i+1}...a_k$
 - Example: 122331 1331

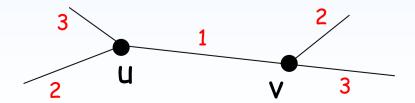
- Pseudo-palindrome
 - \emptyset , L= $a_1a_2...a_k \Rightarrow a_1a_2...a_ibba_{i+1}...a_k$
 - Example: 122331 122331

- Pseudo-palindrome
 - \emptyset , L= $a_1a_2...a_k \Rightarrow a_1a_2...a_ibba_{i+1}...a_k$
 - Example: 122331
 - Palindrome of even length: 2112

· Pseudo-palindrome

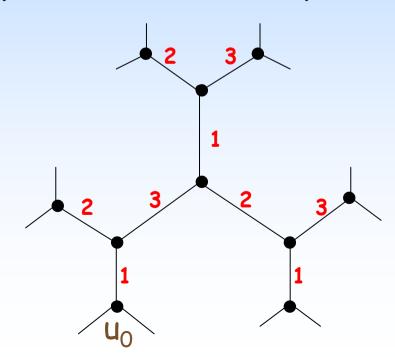
- \emptyset , L= $a_1a_2...a_k \Rightarrow a_1a_2...a_ibba_{i+1}...a_k$
- Example: 122331
- Palindrome of even length: 2112
- pp-reduction : 3121123122331 → 313

- Pseudo-palindrome
 - \emptyset , L= $a_1a_2...a_k \Rightarrow a_1a_2...a_ibba_{i+1}...a_k$
 - Example: 122331
 - Palindrome of even length: 2112
 - pp-reduction : 3121123122331 → 313
- Edge-colored graph
 - same label at each extremity of the edge



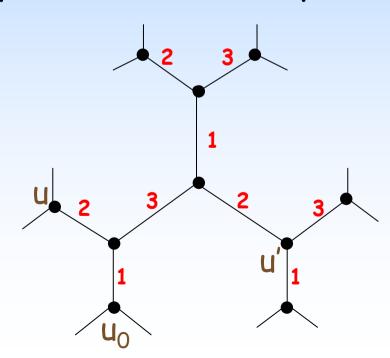
Skeleton of the trap (1)

- Trap based on a 3-regular edge-colored infinite tree
- · Goal: trap the robot in a cycle



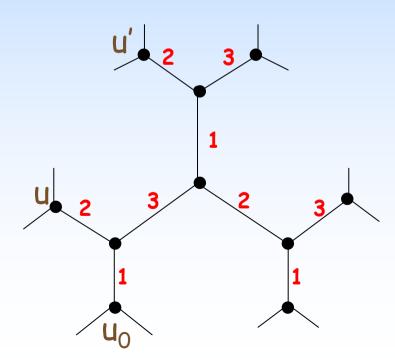
Skeleton of the trap (1)

- Trap based on a 3-regular edge-colored infinite tree
- · Goal: trap the robot in a cycle



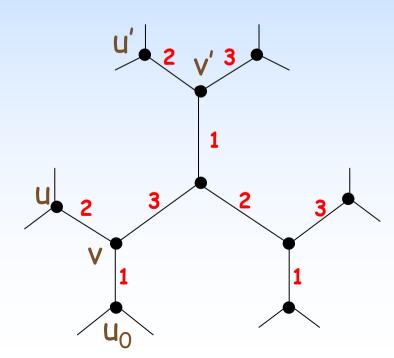
Skeleton of the trap (2)

- · General case: the pp-reduction is not a palindrome
- Example: $1332-(23233212)^{\infty} \rightarrow 2312 \rightarrow 31$



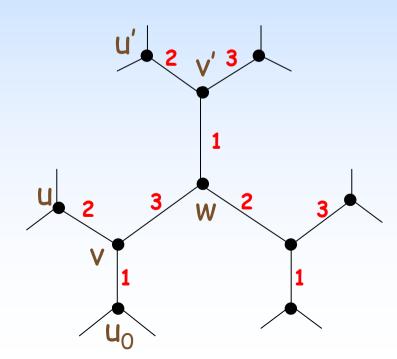
Skeleton of the trap (2)

- · General case: the pp-reduction is not a palindrome
- Example: $1332-(23233212)^{\infty} \rightarrow 2312 \rightarrow 31$

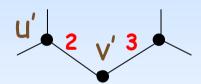


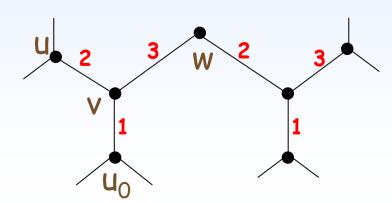
Skeleton of the trap (2)

- · General case: the pp-reduction is not a palindrome
- Example: $1332-(23233212)^{\infty} \rightarrow 2312 \rightarrow 31$

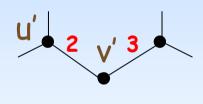


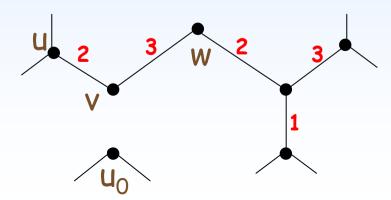
- · General case: the pp-reduction is not a palindrome
- Example: $1332-(23233212)^{\infty} \rightarrow 2312 \rightarrow 31$



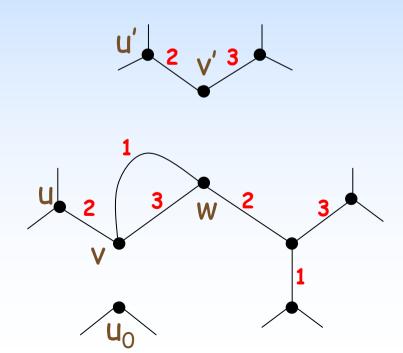


- · General case: the pp-reduction is not a palindrome
- Example: $1332-(23233212)^{\infty} \rightarrow 2312 \rightarrow 31$

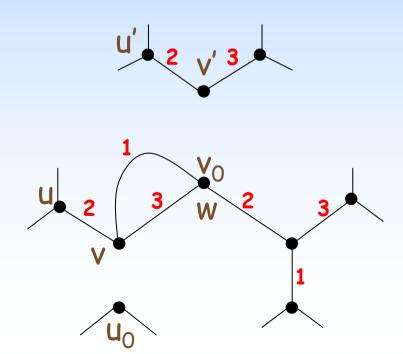




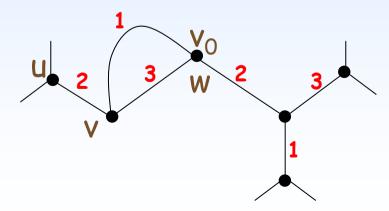
- · General case: the pp-reduction is not a palindrome
- Example: $1332-(23233212)^{\infty} \rightarrow 2312 \rightarrow 31$



- · General case: the pp-reduction is not a palindrome
- Example: $1332-(23233212)^{\infty} \rightarrow 2312 \rightarrow 31$

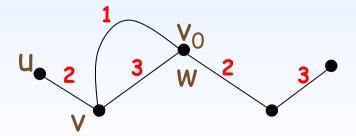


- · General case: the pp-reduction is not a palindrome
- Example: $1332-(23233212)^{\infty} \rightarrow 2312 \rightarrow 31$

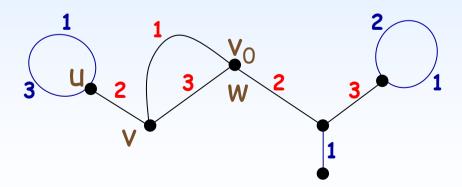


There exists a trap of at most K+1 vertices

- There exists a trap of at most K+1 vertices
- Example: 1332-(23233212)∞



- There exists a trap of at most K+1 vertices
- Example: 1332-(23233212)∞



Exploration algorithm

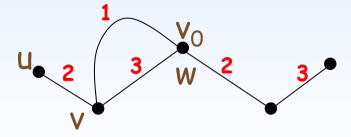
Recall of Theorem 2

All graphs of diameter D and maximum degree d can be explored by a robot using O(D log d) memory bits.

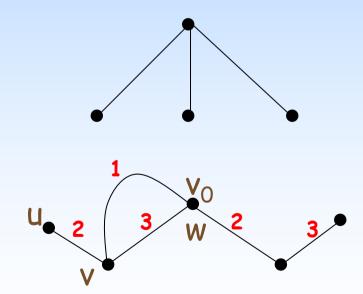
- Proof 2
 - Depth-First Search (DFS) of increasing depth
 - Memory cost: stack of port numbers leading to the root → D log(d) bits

• There exists a trap of diameter at most $4\lceil \log_{d-1}(K)\rceil+2$

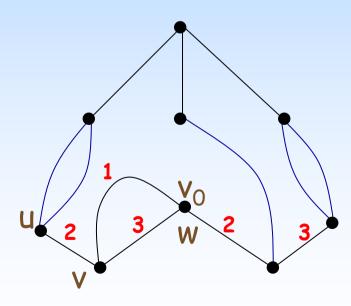
- There exists a trap of diameter at most $4\lceil \log_{d-1}(K)\rceil+2$
- Example: 1332-(23233212)∞



- There exists a trap of diameter at most $4\lceil \log_{d-1}(K)\rceil+2$
- Example: 1332-(23233212)∞



- There exists a trap of diameter at most $4\lceil \log_{d-1}(K)\rceil+2$
- Example: 1332-(23233212)∞



Lemma

For every K-state automaton and for every degree $d \ge 3$, there exists a trap of diameter at most $4 \lceil \log_{d-1}(K) \rceil + 2$.

Recall of Theorem 3

A robot that explores all graphs of diameter D and maximum degree d requires at least $\Omega(D \log d)$ memory bits.

Summary

- Our results
 - Trap of at most K+1 vertices for d≥3
 - Optimal bound for memory: Θ(D log d)
 - Holds even for planar graphs