Oracle size: a new measure of difficulty for communication tasks

Pierre Fraigniaud¹ David Ilcinkas² Andrzej Pelc³

¹CNRS, LRI, Univ. Paris-Sud, France

²LRI, Univ. Paris-Sud, France

³Dép. d'informatique, Univ. du Québec en Outaouais (UQO), Canada

PODC July 25, 2006

1/22

Oracle

Framework

- Distributed computing
- Mobile computing

Observation

The quality of the algorithmic solutions often depends on the amount of knowledge that is given about the network.

Oracle

Models the amount of knowledge about the network that is given to the nodes and/or to the mobile agents.

2/22

・ロト ・同ト ・ヨト ・ヨト

Problem

Digraph exploration by a robot

[Bender, Fernández, Ron, Sahai, Vadhan, Inf. & Comp. 2002]

No information

Impossible in polynomial time

Knowledge of an upper bound \hat{n} on the number of nodes. Possible in time polynomial in \hat{n}

3/22

(ロ) (同) (E) (E) (E)

Problem

Digraph exploration by a robot

[Bender, Fernández, Ron, Sahai, Vadhan, Inf. & Comp. 2002]

Impossible in polynomial time

Knowledge of an upper bound \hat{n} on the number of nodes. Possible in time polynomial in \hat{n}

3/22

・ロッ ・回 ・ ・ ヨ ・ ・

Problem

Digraph exploration by a robot

[Bender, Fernández, Ron, Sahai, Vadhan, Inf. & Comp. 2002]

No information

Impossible in polynomial time

Knowledge of an upper bound \hat{n} on the number of nodes Possible in time polynomial in \hat{n}

3/22

・ロト ・ 同ト ・ ヨト ・ ヨト

Problem

Digraph exploration by a robot

[Bender, Fernández, Ron, Sahai, Vadhan, Inf. & Comp. 2002]

No information

Impossible in polynomial time

Knowledge of an upper bound \hat{n} on the number of nodes

Possible in time polynomial in \hat{n}

3/22

・ロト ・ 同ト ・ ヨト ・ ヨト

Example 2: Broadcast in radio networks

Problem

Synchronous deterministic broadcast in n-node networks of diameter D

No information (only its own identity)

[Clementi, Monti, Silvestri, SODA 2001]: time $\Omega(n \log D)$

Complete knowledge of the network

[Kowalski, Pelc, Distributed Computing]: time $O(D + \log^2 n)$

4/22

(ロ) (同) (E) (E) (E)

Example 2: Broadcast in radio networks

Problem

Synchronous deterministic broadcast in n-node networks of diameter D

No information (only its own identity)

[Clementi, Monti, Silvestri, SODA 2001]: time $\Omega(n \log D)$

Complete knowledge of the network

[Kowalski, Pelc, Distributed Computing]: time $O(D + \log^2 n)$

4/22

Example 2: Broadcast in radio networks

Problem

Synchronous deterministic broadcast in n-node networks of diameter D

No information (only its own identity)

[Clementi, Monti, Silvestri, SODA 2001]: time $\Omega(n \log D)$

Complete knowledge of the network

[Kowalski, Pelc, Distributed Computing]: time $O(D + \log^2 n)$

4/22

Example 3: Small worlds navigability

Problem

- Expected time of routing in augmented graphs
- (non-oblivious) greedy algorithm

No information (only the direct neighbors) (K_{1})

Knowledge of the contacts of the log *n* nodes closest to the current node in the grid

[Martel, Nguyen, PODC 2004]: time $O(\log^{3/2} n)$

5/22

臣

イロン イヨン イヨン イヨン

Example 3: Small worlds navigability

Problem

- Expected time of routing in augmented graphs
- (non-oblivious) greedy algorithm

No information (only the direct neighbors)

[Kleinberg, STOC 2000]: time $O(\log^2 n)$

Knowledge of the contacts of the log *n* nodes closest to the current node in the grid

[Martel, Nguyen, PODC 2004]: time $O(\log^{3/2} n)$

5/22

Example 3: Small worlds navigability

Problem

- Expected time of routing in augmented graphs
- (non-oblivious) greedy algorithm

No information (only the direct neighbors)

[Kleinberg, STOC 2000]: time $O(\log^2 n)$

Knowledge of the contacts of the $\log n$ nodes closest to the current node in the grid

[Martel, Nguyen, PODC 2004]: time $O(\log^{3/2} n)$

5/22

・ロト ・ 同ト ・ ヨト ・ ヨト

Example 4: Wakeup

Problem

- Wakeup in arbitrary networks
- Knowledge of the topology within radius ρ

Results

[Awerbuch, Goldreich, Peleg, Vainish, J. of ACM, 1990]: ⊖(min{*m*, *n*^{1+⊖(1)/ρ}}) messages of bounded length

6/22

(ロ) (同) (E) (E) (E)

Example 4: Wakeup

Problem

- Wakeup in arbitrary networks
- $\bullet\,$ Knowledge of the topology within radius $\rho\,$

Results

[Awerbuch, Goldreich, Peleg, Vainish, J. of ACM, 1990]: $\Theta(\min\{m, n^{1+\Theta(1)/\rho}\})$ messages of bounded length

6/22

・ロン ・四 と ・ ヨ と ・ ヨ と

Drawback of the qualitative approach

Difficult to compare

- Algorithms knowing n
- Algorithms knowing D
- Algorithms knowing the neighborhood

A need for a quantitative approach

7/22

・ 同 ト ・ ヨ ト ・ ヨ ト

Drawback of the qualitative approach

Difficult to compare

- Algorithms knowing n
- Algorithms knowing D
- Algorithms knowing the neighborhood

A need for a quantitative approach

7/22

Outline

Introduction

2 Our results

3 Sketch of the proofs

4 Conclusion and perspectives

8/22

크

▲ □ → ▲ 三 → ▲ 三 →

Definition of a quantitative measure

Definition

- An oracle distributes a binary string O(G) to the nodes (and/or to the mobile agents)
- Size of an oracle: $|\mathcal{O}(G)|$

Related questions

What is the minimum size of an oracle permitting to solve problem \mathcal{P} ?

Quantitative questions about the required knowledge, regardless of what kind of knowledge is supplied.

9/22

(ロ) (同) (E) (E) (E)

Definition of a quantitative measure

Definition

- An oracle distributes a binary string O(G) to the nodes (and/or to the mobile agents)
- Size of an oracle: $|\mathcal{O}(G)|$

Related questions

What is the minimum size of an oracle permitting to solve problem $\mathcal{P}?$

Quantitative questions about the required knowledge, regardless of what kind of knowledge is supplied.

9/22

イロト イポト イヨト イヨト 三国

Definition of a quantitative measure

Definition

- An oracle distributes a binary string O(G) to the nodes (and/or to the mobile agents)
- Size of an oracle: $|\mathcal{O}(G)|$

Related questions

What is the minimum size of an oracle permitting to solve problem \mathcal{P} ?

Quantitative questions about the required knowledge, regardless of what kind of knowledge is supplied.

9/22

(D) (A) (A) (A) (A)

Application to distributed computing

Two fundamental tasks

Disseminating a message M from a source to all the nodes of a network

- Wakeup: a node cannot communicate before it has received the message *M*
- Broadcast: a node can communicate at any time

Problem

Achieving these tasks using a number of messages linear in *n*

10/22

(4月) (三) (三)

Application to distributed computing

Two fundamental tasks

Disseminating a message M from a source to all the nodes of a network

- Wakeup: a node cannot communicate before it has received the message *M*
- Broadcast: a node can communicate at any time

Problem

Achieving these tasks using a number of messages linear in n

10/22

(D) (A) (A) (A)

Our results

Wakeup

Minimum oracle size is $\Theta(n \log n)$ bits.

BroadCast Minimum oracle size is $\Theta(n)$ bits

11/22

< □ > < □ > < □ > < □ > < □ > < □ > = □

Our results

Wakeup

Minimum oracle size is $\Theta(n \log n)$ bits.

Broadcast

Minimum oracle size is $\Theta(n)$ bits.

11/22

크

・ロト ・同ト ・ヨト ・ヨト

Our results

Wakeup

Minimum oracle size is $\Theta(n \log n)$ bits.

Broadcast

Minimum oracle size is $\Theta(n)$ bits.

- Broadcast protocol using an oracle of size O(n) bits
- No oracle of size o(n) bits can solve linear broadcasting

11/22

Strength of our results

Lower bounds

- Synchronous environment
- Node identifiers between 1 and n
- Arbitrary long messages
- A unique fixed source

pper bounds

- Asynchronous environment
- No identifiers
- Bounded-length messages
- An arbitrary set of sources

All our upper bounds are constructive

12/22

・ロト ・日ト ・ヨト ・ヨト

Strength of our results

Lower bounds

- Synchronous environment
- Node identifiers between 1 and n
- Arbitrary long messages
- A unique fixed source

Upper bounds

- Asynchronous environment
- No identifiers
- Bounded-length messages
- An arbitrary set of sources

All our upper bounds are constructive

12/22

Strength of our results

Lower bounds

- Synchronous environment
- Node identifiers between 1 and n
- Arbitrary long messages
- A unique fixed source

Upper bounds

- Asynchronous environment
- No identifiers
- Bounded-length messages
- An arbitrary set of sources

All our upper bounds are constructive

12/22

Outline

Introduction

2 Our results

3 Sketch of the proofs

4 Conclusion and perspectives

13/22

E

・ 回 ・ ・ ヨ ・ ・ ヨ ・ ・

Wakeup: upper bound

Theorem

There exists an oracle of size $O(n \log n)$ bits permitting the wakeup with a linear number of messages.

Proof

- Spanning tree of the network
- The oracle gives to each node the port numbers of the edges of the spanning tree that are incident to that node

14/22

・ロト ・同ト ・ヨト ・ヨト

Wakeup: upper bound

Theorem

There exists an oracle of size $O(n \log n)$ bits permitting the wakeup with a linear number of messages.

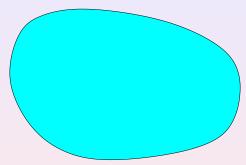
Proof

- Spanning tree of the network
- The oracle gives to each node the port numbers of the edges of the spanning tree that are incident to that node

14/22

- 4 回 ト - モト - モト

Without oracle \Longrightarrow all instances are possible



Tool

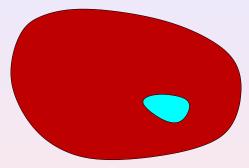
Design of an adversary that depends on the oracle

15/22

臣

・ロン ・四 と ・ ヨ と ・ ヨ と

With oracle \implies only a subset of instances is possible



Tool

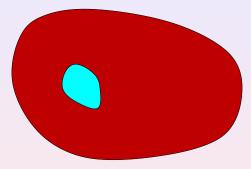
Design of an adversary that depends on the oracle

15/22

臣

・ロン ・四 と ・ ヨ と ・ ヨ と

With oracle \implies only a subset of instances is possible



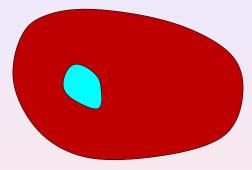
Tool

Design of an adversary that depends on the oracle

15/22

・ロト ・同ト ・ヨト ・ヨト

With oracle \implies only a subset of instances is possible



Tool

Design of an adversary that depends on the oracle

15/22

<ロ> (日) (日) (日) (日) (日)

Wakeup: lower bound (1)

Theorem

The minimum oracle size permitting the wakeup with a linear number of messages is $\Omega(n \log n)$ bits.

Sketch of the proof

Complete graph K_n with n subdivided edges

16/22

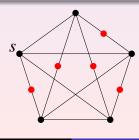
イロン イヨン イヨン イヨン

Theorem

The minimum oracle size permitting the wakeup with a linear number of messages is $\Omega(n \log n)$ bits.

Sketch of the proof

• Complete graph K_n with n subdivided edges

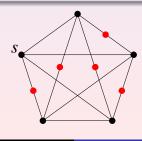


Theorem

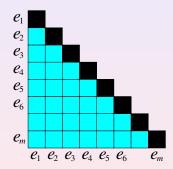
The minimum oracle size permitting the wakeup with a linear number of messages is $\Omega(n \log n)$ bits.

Sketch of the proof

- Complete graph K_n with n subdivided edges
- $\Omega(n \log n)$ bits are necessary to reduce the $\binom{n^2}{n}$ choices

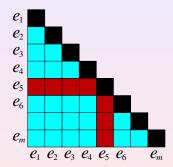


Example with two subdivided edges Without oracle \implies all instances are possible



17/22

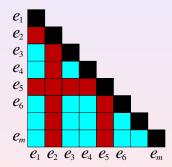
Example with two subdivided edges Without oracle \implies all instances are possible



17/22

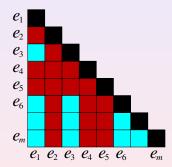
I ∃ ≥

Example with two subdivided edges Without oracle \implies all instances are possible



17/22

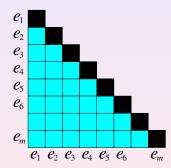
Example with two subdivided edges Without oracle \implies all instances are possible



17/22

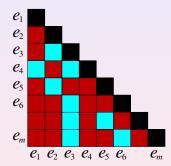
I ∃ ≥

Example with two subdivided edges With oracle \implies only a subset of instances is possible



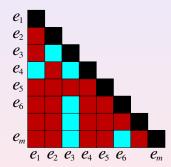
18/22

Example with two subdivided edges With oracle \implies only a subset of instances is possible



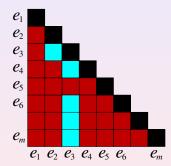
18/22

Example with two subdivided edges With oracle \implies only a subset of instances is possible



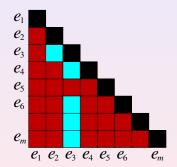
18/22

Example with two subdivided edges With oracle \implies only a subset of instances is possible



18/22

Example with two subdivided edges With oracle \implies only a subset of instances is possible



Greedy adversary: maximize the number of remaining instances

18/22

Broadcast: upper bound

Theorem

There exists an oracle of size O(n) bits permitting the broadcast with a linear number of messages.

Sketch of the proof

- Spanning tree of the network
- Oracle: informs one of the two extremities of a tree edge

Technical arguments $\Rightarrow O(n)$ bits are sufficient

19/22

・ロン ・四 と ・ ヨ と ・ ヨ と

Broadcast: upper bound

Theorem

There exists an oracle of size O(n) bits permitting the broadcast with a linear number of messages.

Sketch of the proof

- Spanning tree of the network
- Oracle: informs one of the two extremities of a tree edge

Technical arguments $\Rightarrow O(n)$ bits are sufficient

19/22

Broadcast: lower bound

Theorem

No oracle of size o(n) bits can permit to broadcast efficiently.

Sketch of the proof

- Complete graph K_n with n/k special edges
- A k-node complete graph in each special edge

20/22

・ロト ・日ト ・ヨト ・ヨト

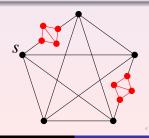
Broadcast: lower bound

Theorem

No oracle of size o(n) bits can permit to broadcast efficiently.

Sketch of the proof

- Complete graph K_n with n/k special edges
- A k-node complete graph in each special edge



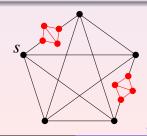
Broadcast: lower bound

Theorem

No oracle of size o(n) bits can permit to broadcast efficiently.

Sketch of the proof

- Complete graph K_n with n/k special edges
- A k-node complete graph in each special edge
- Size O(n/k) bits implies $\Omega(nk)$ messages



Outline

1 Introduction

- 2 Our results
- 3 Sketch of the proofs
- 4 Conclusion and perspectives

21/22

크

▲ □ → ▲ 三 → ▲ 三 →

Conclusion

Our results

Wakeup and broadcast

- Constraint: linear number of messages
 - Wakeup: $\Theta(n \log n)$ bits
 - Broadcast: $\approx \Theta(n)$ bits

• Quantitative comparison between similar tasks

22/22

< □ > < □ > < □ >