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Graph exploration

Goal

A mobile entity has to traverse every edge of an unknown
anonymous graph.

Motivation

exploration of environments unreachable by humans

network maintenance

map drawing
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Unknown, anonymous

Unknown

Unknown topology

Unknown size (no upper bound)

Anonymous

No node labeling

Local edge labeling
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Moore automaton
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Exploration by a single automaton

Budach, Math. Nachrichten, 1978
Automata and Labyrinths

No finite automaton can explore all graphs.

Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, MFCS 2004
Graph exploration by a finite automaton

For any K -state automaton, there exists a trap of at most
K + 1 nodes.

An automaton which can explore all graphs of at most n
nodes has at least n states (Ω(log n) memory bits).

DFS is space optimal: Θ(D log ∆) bits in the family of
graphs with diameter at most D and degree at most ∆
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Collective exploration

Rollik, Acta Informatica, 1980
Automaten in planaren Graphen

No finite team of finite cooperative automata can explore all
graphs.

Our result: Theorem 1

For any set of q non-cooperative K -state automata there exists
a graph of size O(qK ) that these automata cannot explore.

(Rollik: size O(KO(q)) for the same set)
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Exploration with stop

The robot is required to stop after completing exploration.

Observation

A single robot cannot explore the ring and stop.

The robot can drop a pebble in a node and later identify it
and pick it up.

Dudek, Jenkin, Milios, Wilkes, IEEE TRA 1991
Robotic exploration as graph construction

Map drawing with one pebble in time O(mn)
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Our results

Theorem 2 (implied by Theorem 1)

For any K -state automaton with one pebble there exists a trap
of size O(K 3).

Corollary

An automaton which performs exploration with stop in all
graphs of at most n nodes has at least Ω(log n) bits of
memory.

Theorem 3

There exists an exploration with stop algorithm wich requires
O(D log ∆) bits of memory when performed in the family of
graphs with diameter at most D and degree at most ∆.
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Perpetual vs. With stop

Both models: Ω(log n) lower bound

Perpetual: without pebble

With stop: with pebble

Diks, Fraigniaud, Kranakis, Pelc, SODA 2002
Tree exploration with little memory

Perpetual: Θ(log ∆) bits

With stop: Ω(log log log n) bits
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Homogeneous graphs

d -homogeneous graph

d -regular

edge-colored (same label at both extremities)

In d -homogeneous graphs:

S ′ = f (S , i , d) (Moore automaton)

S ′ = f (S , g(S), d) (edge-colored)

S ′ = h(S) (d -regular)
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Reduced automaton (1)

In d -homogeneous graphs the transition graph of the
automaton is a 1-factor.
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Footprint of the automaton: 231(244121)∞
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Reduced automaton (2)

In edge-colored graphs the two moves i , i form a closed walk.
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Induction

u0

Trap for q non-cooperative K -state automata: O(qK ) nodes.
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Exploration with stop (1)

Goal

To design a trap for a K -state automaton A with the help of a
pebble.

Notations

A0: A without pebble is equivalent to a basic K -state
automaton A0

A1: A always with its pebble is equivalent to a basic
K -state automaton A1
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Exploration with stop (2)

If the automaton is far from the pebble

Traps for basic automata (like A0)
The automaton may enter the traps with different states
Trap for the K different automata with the same
transition function as A0 =⇒ O(K 2) nodes

If the pebble is always close to the automaton

Not really more powerful as a basic automaton
Trap for A1 as a meta-structure =⇒ O(K ) nodes

Total size of the trap: O(K 3) nodes
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Exploration with stop algorithm

Based on DFS

The pebble stays at the root

A node is at distance at least x from the pebble iff the
pebble is unreachable by a DFS at depth x − 1

r
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Conclusion

Trap for a set of q non-cooperative K -state automata:
size O(qK ) nodes

Ω(log n) lower bound for exploration with stop

O(D log ∆) exploration with stop algorithm

Open problems

Optimality of the Ω(log n) lower bounds (perpetual and
with stop)

Is O(D log ∆) optimal for exploration with stop as it is for
perpetual exploration?
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