Space Lower Bounds for Graph Exploration via Reduced Automata

Pierre Fraigniaud¹ David Ilcinkas² Sergio Rajsbaum³ Sébastien Tixeuil²

¹CNRS, LRI, Université Paris-Sud, France

²LRI, Université Paris-Sud, France

³Instituto de Matemáticas, UNAM, D. F. 04510, Mexico

SIROCCO '05 May 24, 2005

1/21

Graph exploration

Goal

A mobile entity has to traverse every edge of an unknown anonymous graph.

Viotivation

exploration of environments unreachable by humans

2/21

- network maintenance
- map drawing

Graph exploration

Goal

A mobile entity has to traverse every edge of an unknown anonymous graph.

Motivation

exploration of environments unreachable by humans

2/21

イロト イヨト イヨト イヨト

- network maintenance
- map drawing

3/21

Unknown, anonymous

Jnknown

- Unknown topology
- Unknown size (no upper bound)

Anonymous

- No node labeling
- Local edge labeling

3/21

3

・ロト ・同ト ・ヨト ・ヨト

Unknown, anonymous

Unknown

- Unknown topology
- Unknown size (no upper bound)

Anonymous

- No node labeling
- Local edge labeling

イロト イヨト イヨト イヨト

3/21

Unknown, anonymous

Unknown

- Unknown topology
- Unknown size (no upper bound)

Anonymous

- No node labeling
- Local edge labeling

4/21

Example of an anonymous graph

Moore automaton

5/21

Moore automaton

5/21

æ

Moore automaton

Plan

1 Introduction

2 Related work

- Perpetual exploration
- Exploration with stop
- Our results

3 Sketch of the proofs

4 Conclusion

6/21

回 と く ヨ と く ヨ と

7/21

Exploration by a single automaton

Budach, Math. Nachrichten, 1978 Automata and Labyrinths

No finite automaton can explore all graphs.

, MFCS 2004

Graph exploration by a finite automaton

・ロン ・回 と ・ヨン ・ヨン

Exploration by a single automaton

Budach, Math. Nachrichten, 1978 Automata and Labyrinths

No finite automaton can explore all graphs.

Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, MFCS 2004 Graph exploration by a finite automaton

- For any *K*-state automaton, there exists a trap of at most *K* + 1 nodes.
- An automaton which can explore all graphs of at most n nodes has at least n states (Ω(log n) memory bits).
- DFS is space optimal: $\Theta(D\log \Delta)$ bits in the family of

graphs with diameter at most D and degree at most Δ

Exploration by a single automaton

Budach, Math. Nachrichten, 1978 Automata and Labyrinths

No finite automaton can explore all graphs.

Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, MFCS 2004 Graph exploration by a finite automaton

- For any *K*-state automaton, there exists a trap of at most *K* + 1 nodes.
- An automaton which can explore all graphs of at most n nodes has at least n states (Ω(log n) memory bits).

◆□ > ◆□ > ◆豆 > ◆豆 >

7/21

(日) (同) (目) (日) (日)

Exploration by a single automaton

Budach, Math. Nachrichten, 1978 Automata and Labyrinths

No finite automaton can explore all graphs.

Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, MFCS 2004 Graph exploration by a finite automaton

- For any *K*-state automaton, there exists a trap of at most *K* + 1 nodes.
- An automaton which can explore all graphs of at most n nodes has at least n states (Ω(log n) memory bits).
- DFS is space optimal: Θ(D log Δ) bits in the family of graphs with diameter at most D and degree at most Δ

7/21

・ロン ・回 と ・ヨン ・ヨン

8/21

Collective exploration

Rollik, Acta Informatica, 1980 Automaten in planaren Graphen

No finite team of finite cooperative automata can explore all graphs.

Our result: Theorem

For any set of *q* non-cooperative *K*-state automata there exists a graph of size *O*(*qK*) that these automata cannot explore.

(Rollik: size $O(K^{O(q)})$ for the same set)

8/21

Collective exploration

Rollik, Acta Informatica, 1980 Automaten in planaren Graphen

No finite team of finite cooperative automata can explore all graphs.

Our result: Theorem 1

For any set of q non-cooperative K-state automata there exists a graph of size O(qK) that these automata cannot explore.

(Rollik: size $O(K^{O(q)})$ for the same set)

9/21

Exploration with stop

The robot is required to stop after completing exploration.

9/21

Exploration with stop

The robot is required to stop after completing exploration.

Observation

A single robot cannot explore the ring and stop.

The robot can drop a pebble in a node and later identify it and pick it up.

, IEEE TRA 1991

Robotic exploration as graph construction

Map drawing with one pebble in time O(mn)

() < </p>

9/21

Exploration with stop

The robot is required to stop after completing exploration.

Observation

A single robot cannot explore the ring and stop.

The robot can drop a **pebble** in a node and later identify it and pick it up.

Robotic exploration as graph construction

Map drawing with one pebble in time O(mn)

() < </p>

9/21

Exploration with stop

The robot is required to stop after completing exploration.

Observation

A single robot cannot explore the ring and stop.

The robot can drop a **pebble** in a node and later identify it and pick it up.

Dudek, Jenkin, Milios, Wilkes, IEEE TRA 1991 Robotic exploration as graph construction

• Map drawing with one pebble in time O(mn)

Our results

Theorem 2 (implied by Theorem 1)

For any *K*-state automaton with one pebble there exists a trap of size $O(K^3)$.

Corollary

An automaton which performs exploration with stop in all graphs of at most *n* nodes has at least $\Omega(\log n)$ bits of memory.

Theorem 3

There exists an exploration with stop algorithm wich requires $O(D \log \Delta)$ bits of memory when performed in the family of graphs with diameter at most D and degree at most Δ .

3

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Our results

Theorem 2 (implied by Theorem 1)

For any *K*-state automaton with one pebble there exists a trap of size $O(K^3)$.

Corollary

An automaton which performs exploration with stop in all graphs of at most n nodes has at least $\Omega(\log n)$ bits of memory.

・ロト ・回ト ・ヨト ・ヨト

Our results

Theorem 2 (implied by Theorem 1)

For any *K*-state automaton with one pebble there exists a trap of size $O(K^3)$.

Corollary

An automaton which performs exploration with stop in all graphs of at most n nodes has at least $\Omega(\log n)$ bits of memory.

Theorem 3

There exists an exploration with stop algorithm wich requires $O(D \log \Delta)$ bits of memory when performed in the family of graphs with diameter at most D and degree at most Δ .

P. Fraigniaud, D. Ilcinkas, S. Rajsbaum, S. Tixeuil

イロン イヨン イヨン イヨン

10/21

・ロン ・回 ・ ・ ヨン ・ ヨン

11/21

Perpetual vs. With stop

Both models: $\Omega(\log n)$ lower bound

- Perpetual: without pebble
- With stop: with pebble

SODA 2002

Tree exploration with little memory

- Perpetual: $\Theta(\log \Delta)$ bits
- With stop: $\Omega(\log \log \log n)$ bits

(ロ) (同) (三) (三)

11/21

Perpetual vs. With stop

Both models: $\Omega(\log n)$ lower bound

- Perpetual: without pebble
- With stop: with pebble

Diks, Fraigniaud, Kranakis, Pelc, SODA 2002

Tree exploration with little memory

- Perpetual: Θ(log Δ) bits
- With stop: $\Omega(\log \log \log n)$ bits

Plan

1 Introduction

2 Related work

3 Sketch of the proofs

- Reduced automaton
- Non-cooperative: O(qK)
- With stop: $\Omega(\log n)$
- With stop: $O(D \log \Delta)$

4) Conclusion

12/21

(< ∃) < ∃)</p>

A ■

(日) (同) (E) (E) (E)

13/21

Homogeneous graphs

d-homogeneous graph

- *d*-regular
- edge-colored (same label at both extremities)

n *d*-homogeneous graphs:

- S' = f(S, i, d) (Moore automaton)
- S' = f(S, g(S), d) (edge-colored)
- S' = h(S) (d-regular)

(日) (同) (E) (E) (E)

13/21

Homogeneous graphs

d-homogeneous graph

- *d*-regular
- edge-colored (same label at both extremities)

In *d*-homogeneous graphs:

- S' = f(S, i, d) (Moore automaton)
- S' = f(S, g(S), d) (edge-colored)
- S' = h(S) (d-regular)

In d-homogeneous graphs the transition graph of the automaton is a 1-factor.

14/21

Footprint of the automaton: $231(244121)^{\infty}$

In d-homogeneous graphs the transition graph of the automaton is a 1-factor.

14/21

Footprint of the automaton: $231(244121)^{\infty}$

In d-homogeneous graphs the transition graph of the automaton is a 1-factor.

14/21

Footprint of the automaton: $231(244121)^{\infty}$

15/21

Footprint of the automaton: $231(244121)^{\infty}$ Footprint of the reduced automaton: $231(244121)^{\infty}$

15/21

Footprint of the automaton: $231(244121)^{\infty}$ Footprint of the reduced automaton: $231(244121)^{\infty}$

15/21

Footprint of the automaton: $231(244121)^{\infty}$ Footprint of the reduced automaton: $231(2121)^{\infty}$

15/21

Footprint of the automaton: $231(244121)^{\infty}$ Footprint of the reduced automaton: $231(2121)^{\infty}$

15/21

Footprint of the automaton: $231(244121)^{\infty}$ Footprint of the reduced automaton: $23(1212)^{\infty}$

15/21

Footprint of the automaton: $231(244121)^{\infty}$ Footprint of the reduced automaton: $23(1212)^{\infty}$

15/21

Footprint of the automaton: $231(244121)^{\infty}$ Footprint of the reduced automaton: $23(1212)^{\infty}$

Induction

Trap for q non-cooperative K-state automata: O(qK) nodes.

16/21

イロト イヨト イヨト イヨト

Reduction O(qK) **Stop:** $\Omega(\log n)$ **Stop:** $O(D \log \Delta)$

・ロト ・回ト ・ヨト ・ヨト

17/21

Exploration with stop (1)

Goal

To design a trap for a K-state automaton A with the help of a pebble.

Notations

- A₀: A without pebble is equivalent to a basic K-state automaton A₀
- A₁: A always with its pebble is equivalent to a basic K-state automaton A₁

18/21

Exploration with stop (2)

• If the automaton is far from the pebble

- Traps for basic automata (like A₀)
- The automaton may enter the traps with different states
- Trap for the K different automata with the same transition function as $A_0 \implies O(K^2)$ nodes

If the pebble is always close to the automaton
Not really more powerful as a basic automaton
Trap for A₁ as a meta-structure ⇒ O(K) nodes

18/21

Exploration with stop (2)

• If the automaton is far from the pebble

- Traps for basic automata (like A₀)
- The automaton may enter the traps with different states
- Trap for the K different automata with the same transition function as $A_0 \implies O(K^2)$ nodes
- If the pebble is always close to the automaton
 - Not really more powerful as a basic automaton
 - Trap for A_1 as a meta-structure $\implies O(K)$ nodes

Total size of the trap: $O(K^3)$ nodes

18/21

Exploration with stop (2)

• If the automaton is far from the pebble

- Traps for basic automata (like A₀)
- The automaton may enter the traps with different states
- Trap for the K different automata with the same transition function as $A_0 \implies O(K^2)$ nodes
- If the pebble is always close to the automaton
 - Not really more powerful as a basic automaton
 - Trap for A_1 as a meta-structure $\implies O(K)$ nodes

Total size of the trap: $O(K^3)$ nodes

18/21

Exploration with stop (2)

• If the automaton is far from the pebble

- Traps for basic automata (like A₀)
- The automaton may enter the traps with different states
- Trap for the K different automata with the same transition function as $A_0 \implies O(K^2)$ nodes
- If the pebble is always close to the automaton
 - Not really more powerful as a basic automaton
 - Trap for A_1 as a meta-structure $\implies O(K)$ nodes

Total size of the trap: $O(K^3)$ nodes

19/21

Exploration with stop algorithm

- Based on DFS
- The pebble stays at the root
- A node is at distance at least x from the pebble *iff* the pebble is unreachable by a DFS at depth x 1

Plan

1 Introduction

2 Related work

3 Sketch of the proofs

20/21

크

・ロン ・回 と ・ ヨ と ・ ヨ と …

Conclusion

Conclusion

- Trap for a set of q non-cooperative K-state automata: size O(qK) nodes
- $\Omega(\log n)$ lower bound for exploration with stop
- $O(D \log \Delta)$ exploration with stop algorithm

Open problems

- Optimality of the Ω(log n) lower bounds (perpetual and with stop)
- Is O(D log Δ) optimal for exploration with stop as it is for perpetual exploration?

21/21

・ロト ・同ト ・ヨト ・ヨト

Conclusion

Conclusion

- Trap for a set of q non-cooperative K-state automata: size O(qK) nodes
- $\Omega(\log n)$ lower bound for exploration with stop
- $O(D \log \Delta)$ exploration with stop algorithm

Open problems

- Optimality of the Ω(log n) lower bounds (perpetual and with stop)
- Is O(D log Δ) optimal for exploration with stop as it is for perpetual exploration?

() < </p>