Space Lower Bounds for Graph Exploration via Reduced Automata

Pierre Fraigniaud ${ }^{1}$

David Ilcinkas² Sébastien Tixeuil ${ }^{2}$

Sergio Rajsbaum ${ }^{3}$
${ }^{1}$ CNRS, LRI, Université Paris-Sud, France
${ }^{2}$ LRI, Université Paris-Sud, France
${ }^{3}$ Instituto de Matemáticas, UNAM, D. F. 04510, Mexico
SIROCCO '05
May 24, 2005

Graph exploration

Goal

A mobile entity has to traverse every edge of an unknown anonymous graph.

Graph exploration

Goal

A mobile entity has to traverse every edge of an unknown anonymous graph.

Motivation

- exploration of environments unreachable by humans
- network maintenance
- map drawing

Unknown, anonymous

Unknown, anonymous

Unknown

- Unknown topology
- Unknown size (no upper bound)

Unknown, anonymous

Unknown

- Unknown topology
- Unknown size (no upper bound)

Anonymous

- No node labeling
- Local edge labeling

Example of an anonymous graph

Moore automaton

Moore automaton

Moore automaton

(1) Introduction
(2) Related work

- Perpetual exploration
- Exploration with stop
- Our results
(3) Sketch of the proofs
(4) Conclusion

Exploration by a single automaton

Budach, Math. Nachrichten, 1978
 Automata and Labyrinths
 No finite automaton can explore all graphs.

Exploration by a single automaton

Budach, Math. Nachrichten, 1978
 Automata and Labyrinths
 No finite automaton can explore all graphs.

Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, MFCS 2004

Graph exploration by a finite automaton

- For any K-state automaton, there exists a trap of at most $K+1$ nodes.

Exploration by a single automaton

Budach, Math. Nachrichten, 1978

Automata and Labyrinths

No finite automaton can explore all graphs.

Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, MFCS 2004

Graph exploration by a finite automaton

- For any K-state automaton, there exists a trap of at most $K+1$ nodes.
- An automaton which can explore all graphs of at most n nodes has at least n states $(\Omega(\log n)$ memory bits).

Exploration by a single automaton

Budach, Math. Nachrichten, 1978

Automata and Labyrinths

No finite automaton can explore all graphs.

Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, MFCS 2004

Graph exploration by a finite automaton

- For any K-state automaton, there exists a trap of at most $K+1$ nodes.
- An automaton which can explore all graphs of at most n nodes has at least n states $(\Omega(\log n)$ memory bits).
- DFS is space optimal: $\Theta(D \log \Delta)$ bits in the family of graphs with diameter at most D and degree at most Δ

Collective exploration

Rollik, Acta Informatica, 1980
 Automaten in planaren Graphen
 No finite team of finite cooperative automata can explore all graphs.

Collective exploration

> Rollik, Acta Informatica, 1980
> Automaten in planaren Graphen
> No finite team of finite cooperative automata can explore all graphs.

Our result: Theorem 1

For any set of q non-cooperative K-state automata there exists a graph of size $O(q K)$ that these automata cannot explore.
(Rollik: size $O\left(K^{O(q)}\right)$ for the same set)

Exploration with stop

The robot is required to stop after completing exploration.

Exploration with stop

The robot is required to stop after completing exploration.

Observation

A single robot cannot explore the ring and stop.

Exploration with stop

The robot is required to stop after completing exploration.

Observation

A single robot cannot explore the ring and stop.
The robot can drop a pebble in a node and later identify it and pick it up.

Exploration with stop

The robot is required to stop after completing exploration.

Observation

A single robot cannot explore the ring and stop.
The robot can drop a pebble in a node and later identify it and pick it up.

Dudek, Jenkin, Milios, Wilkes, IEEE TRA 1991

Robotic exploration as graph construction

- Map drawing with one pebble in time $O(m n)$

Our results

> Theorem 2 (implied by Theorem 1)
> For any K-state automaton with one pebble there exists a trap of size $O\left(K^{3}\right)$.

Our results

Theorem 2 (implied by Theorem 1)

For any K-state automaton with one pebble there exists a trap of size $O\left(K^{3}\right)$.

Corollary

An automaton which performs exploration with stop in all graphs of at most n nodes has at least $\Omega(\log n)$ bits of memory.

Our results

Theorem 2 (implied by Theorem 1)

For any K-state automaton with one pebble there exists a trap of size $O\left(K^{3}\right)$.

Corollary

An automaton which performs exploration with stop in all graphs of at most n nodes has at least $\Omega(\log n)$ bits of memory.

Theorem 3

There exists an exploration with stop algorithm wich requires $O(D \log \Delta)$ bits of memory when performed in the family of graphs with diameter at most D and degree at most Δ.

Perpetual vs. With stop

Both models: $\Omega(\log n)$ lower bound

- Perpetual: without pebble
- With stop: with pebble

Perpetual vs. With stop

Both models: $\Omega(\log n)$ lower bound

- Perpetual: without pebble
- With stop: with pebble

, SODA 2002
 Tree exploration with little memory
 - Perpetual: $\Theta(\log \Delta)$ bits
 - With stop: $\Omega(\log \log \log n)$ bits

Plan

(1) Introduction

(2) Related work

(3) Sketch of the proofs

- Reduced automaton
- Non-cooperative: $O(q K)$
- With stop: $\Omega(\log n)$
- With stop: $O(D \log \Delta)$

4. Conclusion

Homogeneous graphs

d-homogeneous graph

- d-regular
- edge-colored (same label at both extremities)

Homogeneous graphs

d-homogeneous graph

- d-regular
- edge-colored (same label at both extremities)

In d-homogeneous graphs:

- $S^{\prime}=f(S, i, d)$ (Moore automaton)
- $S^{\prime}=f(S, g(S), d)$ (edge-colored)
- $S^{\prime}=h(S)(d$-regular)

Reduced automaton (1)

In d-homogeneous graphs the transition graph of the automaton is a 1 -factor.

Footprint of the automaton: $231(244121)^{\infty}$

Reduced automaton (1)

In d-homogeneous graphs the transition graph of the automaton is a 1 -factor.

Footprint of the automaton: $231(244121)^{\infty}$

Reduced automaton (1)

In d-homogeneous graphs the transition graph of the automaton is a 1 -factor.

Footprint of the automaton: $231(244121)^{\infty}$

Reduced automaton (2)

In edge-colored graphs the two moves i, i form a closed walk.

Footprint of the automaton: 231(244121) ${ }^{\infty}$
Footprint of the reduced automaton: 231(244121) ${ }^{\infty}$

Reduced automaton (2)

In edge-colored graphs the two moves i, i form a closed walk.

Footprint of the automaton: 231(244121) ${ }^{\infty}$
Footprint of the reduced automaton: 231(244121) ${ }^{\infty}$

Reduced automaton (2)

In edge-colored graphs the two moves i, i form a closed walk.

Footprint of the automaton: 231(244121) ${ }^{\infty}$
Footprint of the reduced automaton: 231(2121) ${ }^{\infty}$

Reduced automaton (2)

In edge-colored graphs the two moves i, i form a closed walk.

Footprint of the automaton: 231(244121) ${ }^{\infty}$
Footprint of the reduced automaton: $231(2121)^{\infty}$

Reduced automaton (2)

In edge-colored graphs the two moves i, i form a closed walk.

Footprint of the automaton: 231(244121) ${ }^{\infty}$
Footprint of the reduced automaton: $23(1212)^{\infty}$

Reduced automaton (2)

In edge-colored graphs the two moves i, i form a closed walk.

Footprint of the automaton: $231(244121)^{\infty}$
Footprint of the reduced automaton: $23(1212)^{\infty}$

Reduced automaton (2)

In edge-colored graphs the two moves i, i form a closed walk.

Footprint of the automaton: 231(244121) ${ }^{\infty}$
Footprint of the reduced automaton: $23(1212)^{\infty}$

Induction

Trap for q non-cooperative K-state automata: $O(q K)$ nodes.

Exploration with stop (1)

Goal

To design a trap for a K-state automaton A with the help of a pebble.

Notations

- $A_{0}: A$ without pebble is equivalent to a basic K-state automaton A_{0}
- A_{1} : A always with its pebble is equivalent to a basic K-state automaton A_{1}

Exploration with stop (2)

- If the automaton is far from the pebble
- Traps for basic automata (like A_{0})
- The automaton may enter the traps with different states
- Trap for the K different automata with the same transition function as $A_{0} \Longrightarrow O\left(K^{2}\right)$ nodes

Exploration with stop (2)

- If the automaton is far from the pebble
- Traps for basic automata (like A_{0})
- The automaton may enter the traps with different states
- Trap for the K different automata with the same transition function as $A_{0} \Longrightarrow O\left(K^{2}\right)$ nodes
- If the pebble is always close to the automaton
- Not really more powerful as a basic automaton
- Trap for A_{1} as a meta-structure $\Longrightarrow O(K)$ nodes

Exploration with stop (2)

- If the automaton is far from the pebble
- Traps for basic automata (like A_{0})
- The automaton may enter the traps with different states
- Trap for the K different automata with the same transition function as $A_{0} \Longrightarrow O\left(K^{2}\right)$ nodes
- If the pebble is always close to the automaton
- Not really more powerful as a basic automaton
- Trap for A_{1} as a meta-structure $\Longrightarrow O(K)$ nodes

Exploration with stop (2)

- If the automaton is far from the pebble
- Traps for basic automata (like A_{0})
- The automaton may enter the traps with different states
- Trap for the K different automata with the same transition function as $A_{0} \Longrightarrow O\left(K^{2}\right)$ nodes
- If the pebble is always close to the automaton
- Not really more powerful as a basic automaton
- Trap for A_{1} as a meta-structure $\Longrightarrow O(K)$ nodes

Total size of the trap: $O\left(K^{3}\right)$ nodes

Exploration with stop algorithm

- Based on DFS
- The pebble stays at the root
- A node is at distance at least x from the pebble iff the pebble is unreachable by a DFS at depth $x-1$

(2) Related work

(3) Sketch of the proofs
(4) Conclusion

Conclusion

Conclusion

- Trap for a set of q non-cooperative K-state automata: size $O(q K)$ nodes
- $\Omega(\log n)$ lower bound for exploration with stop
- $O(D \log \Delta)$ exploration with stop algorithm

Conclusion

Conclusion

- Trap for a set of q non-cooperative K-state automata: size $O(q K)$ nodes
- $\Omega(\log n)$ lower bound for exploration with stop
- $O(D \log \Delta)$ exploration with stop algorithm

Open problems

- Optimality of the $\Omega(\log n)$ lower bounds (perpetual and with stop)
- Is $O(D \log \Delta)$ optimal for exploration with stop as it is for perpetual exploration?

