Setting Port Numbers for Fast Graph Exploration

David Ilcinkas

LRI, Université Paris-Sud, France

SIROCCO '06 July 3rd, 2006

David Ilcinkas Setting Port Numbers for Fast Graph Exploration

イロン イ団ン イヨン イヨン 三連

Graph exploration

Graph exploration

A mobile entity has to visit every node of an unknown anonymous graph.

Periodic exploration by a finite automaton

A finite automaton has to visit every node infinitely often.

Performance criterion

To minimize the period

・ロト ・回ト ・ヨト ・ヨト

2/23

3

Graph exploration

Graph exploration

A mobile entity has to visit every node of an unknown anonymous graph.

Periodic exploration by a finite automaton

A finite automaton has to visit every node infinitely often.

Performance criterion

To minimize the period

(a)

Graph exploration

Graph exploration

A mobile entity has to visit every node of an unknown anonymous graph.

Periodic exploration by a finite automaton

A finite automaton has to visit every node infinitely often.

Performance criterion

To minimize the period

イロト イヨト イヨト イヨト

Exploration by mobile agents

- Physical robot: exploration of environments unreachable by humans
- Software agent: network maintenance

Equivalence between logic and automata Engelfriet. Hoogeboom. STACS 20061

Through characterization of string, tree or graph languages

- Automata with nested pebbles
- First-order logic with transitive closure

イロン イヨン イヨン イヨン

3/23

3

Exploration by mobile agents

- Physical robot: exploration of environments unreachable by humans
- Software agent: network maintenance

Equivalence between logic and automata [Engelfriet, Hoogeboom, STACS 2006]

Through characterization of string, tree or graph languages

- Automata with nested pebbles
- First-order logic with transitive closure

イロト イヨト イヨト イヨト

USTCON (undirected st-connectivity)

- $G = \{V, E\}$ an undirected graph
- $s, t \in V$ two vertices of G

Are s and t in the same connected component of G?

 L = class of problems solvable by deterministic log-space computations

 SL (⊇ L) = class of problems solvable by symmetric non-deterministic log-space computations

イロン イ団ン イヨン イヨン 三連

USTCON (undirected st-connectivity)

- $G = \{V, E\}$ an undirected graph
- $s, t \in V$ two vertices of G

Are s and t in the same connected component of G?

- L = class of problems solvable by deterministic log-space computations
- SL (⊇ L) = class of problems solvable by symmetric non-deterministic log-space computations

イロト イポト イヨト イヨト 三連

USTCON (undirected st-connectivity) SL-complete

- $G = \{V, E\}$ an undirected graph
- $s, t \in V$ two vertices of G

Are s and t in the same connected component of G?

- L = class of problems solvable by deterministic log-space computations
- SL (⊇ L) = class of problems solvable by symmetric non-deterministic log-space computations

(日) (同) (E) (E) (E)

USTCON (undirected st-connectivity) SL-complete

- $G = \{V, E\}$ an undirected graph
- $s, t \in V$ two vertices of G

Are s and t in the same connected component of G?

- L = class of problems solvable by deterministic log-space computations
- SL (⊇ L) = class of problems solvable by symmetric non-deterministic log-space computations

Reingold, STOC 2005 Undirected ST-Connectivity in Log-Space

 $\mathsf{USTCON} \in \mathsf{L} \Rightarrow \mathsf{SL}=\mathsf{L}$

Unknown, anonymous

Jnknown

- Unknown topology
- Unknown size (no upper bound)

Anonymous

- No node labeling
- Local edge labeling

・ロン ・回 と ・ ヨ と ・ ヨ と

5/23

-33

Unknown, anonymous

Unknown

- Unknown topology
- Unknown size (no upper bound)

Anonymous

- No node labeling
- Local edge labeling

(日) (同) (E) (E) (E)

Unknown, anonymous

Unknown

- Unknown topology
- Unknown size (no upper bound)

Anonymous

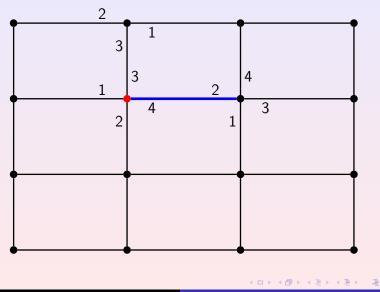
- No node labeling
- Local edge labeling

(日) (同) (三) (三)

5/23

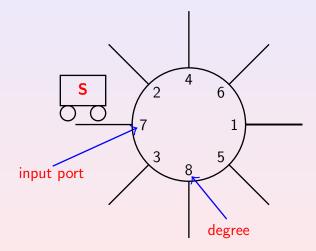
3

Example of an anonymous graph



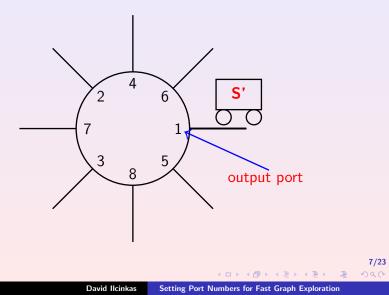
David Ilcinkas Setting Port Numbers for Fast Graph Exploration

Mealy automaton (1)



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

Mealy automaton (1)



Mealy automaton (2)

Input • S : current state • i : input port number • d : node's degree Output

- S' : new state
- *j* : output port number

Transition function

•
$$f(S, i, d) = (S', j)$$

イロト イヨト イヨト イヨト

3

Outline

1 Introduction

2 Related work

- Impossibility results
- Exploration of trees
- Exploration with assistance

3 Our model and results

4 Algorithm/automaton

5 Conclusion

9/23

크

Impossibility results (1)

Budach, Math. Nachrichten, 1978 Automata and Labyrinths

No finite automaton can explore all graphs.

A pebble is a node-marker that can be dropped at and

removed from nodes.

, Seminar talk at Berkeley, 1967

Maze threading automata

No finite automaton with a finite number of pebbles can explore all graphs.

・ロン ・回 と ・ ヨ と ・ ヨ と

10/23

3

Impossibility results (1)

Budach, Math. Nachrichten, 1978 Automata and Labyrinths

No finite automaton can explore all graphs.

A **pebble** is a node-marker that can be dropped at and removed from nodes.

Seminar talk at Berkeley, 196

Maze threading automata

No finite automaton with a finite number of pebbles can explore all graphs.

・ロン ・回 と ・ ヨン ・ ヨン

Impossibility results (1)

Budach, Math. Nachrichten, 1978 Automata and Labyrinths

No finite automaton can explore all graphs.

A **pebble** is a node-marker that can be dropped at and removed from nodes.

Rabin, Seminar talk at Berkeley, 1967 Maze threading automata

No finite automaton with a finite number of pebbles can explore all graphs.

イロト イヨト イヨト イヨト

Impossibility results (2)

Rollik, Acta Informatica, 1980 Automaten in planaren Graphen

No finite team of finite cooperative automata can explore all (cubic planar) graphs.

A JAG (Jumping Automaton for Graphs) is a team of finite automata that cooperate constantly. Moreover an automaton can jump to a vertex occupied by another automaton.

, SIAMJC, 1980 Space lower bounds for maze threadability on restricted machines

No JAG can explore all graphs.

イロン イヨン イヨン イヨン

Impossibility results (2)

Rollik, Acta Informatica, 1980 Automaten in planaren Graphen

No finite team of finite cooperative automata can explore all (cubic planar) graphs.

A JAG (Jumping Automaton for Graphs) is a team of finite automata that cooperate constantly. Moreover an automaton can jump to a vertex occupied by another automaton.

Space lower bounds for maze threadability on restricted machines

No JAG can explore all graphs.

イロト イヨト イヨト イヨト

Impossibility results (2)

Rollik, Acta Informatica, 1980 Automaten in planaren Graphen

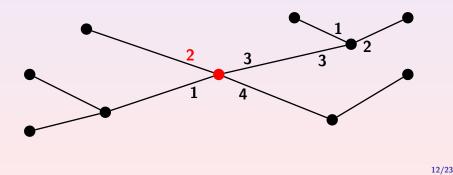
No finite team of finite cooperative automata can explore all (cubic planar) graphs.

A JAG (Jumping Automaton for Graphs) is a team of finite automata that cooperate constantly. Moreover an automaton can jump to a vertex occupied by another automaton.

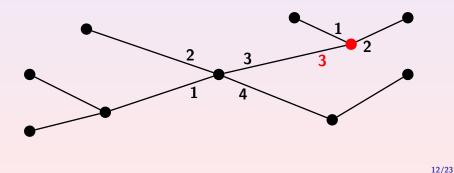
Cook, Rackoff, SIAMJC, 1980 Space lower bounds for maze threadability on restricted machines
No JAG can explore all graphs.

伺 ト イヨ ト イヨト

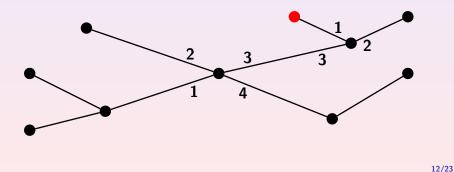
An oblivious automaton (one single state) using the right-hand-on-the-wall rule $(i \mapsto i + 1)$ explores all the trees.



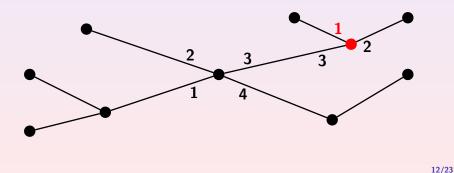
An oblivious automaton (one single state) using the right-hand-on-the-wall rule $(i \mapsto i + 1)$ explores all the trees.



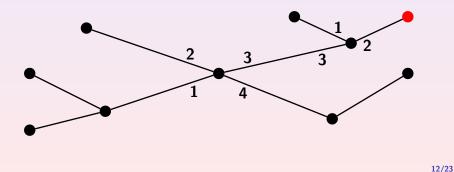
An oblivious automaton (one single state) using the right-hand-on-the-wall rule $(i \mapsto i + 1)$ explores all the trees.



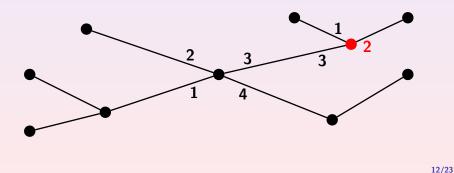
An oblivious automaton (one single state) using the right-hand-on-the-wall rule $(i \mapsto i + 1)$ explores all the trees.



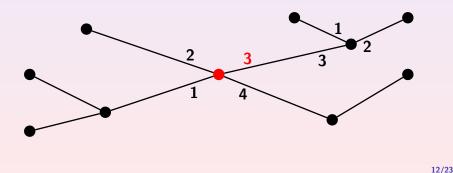
An oblivious automaton (one single state) using the right-hand-on-the-wall rule $(i \mapsto i + 1)$ explores all the trees.



An oblivious automaton (one single state) using the right-hand-on-the-wall rule $(i \mapsto i + 1)$ explores all the trees.



An oblivious automaton (one single state) using the right-hand-on-the-wall rule $(i \mapsto i + 1)$ explores all the trees.



Coloring nodes

Model

- An oracle colors (labels) the graph to help the automaton.
- The finite automaton can read the color of the node as an input of its transition function.

, ICALP, 2005

- There exist a finite automaton and an algorithm coloring in three colors such that the automaton can explore all graphs.
- There exist a automaton of O(log Δ) memory bits and an algorithm coloring in only two colors such that the automaton can explore all graphs of maximum degree Δ.

Coloring nodes

Model

- An oracle colors (labels) the graph to help the automaton.
- The finite automaton can read the color of the node as an input of its transition function.

Cohen, Fraigniaud, Ilcinkas, Korman, Peleg, ICALP, 2005 Label-Guided Graph Exploration by a Finite Automaton

- There exist a finite automaton and an algorithm coloring in three colors such that the automaton can explore all graphs.
- There exist a automaton of O(log Δ) memory bits and an algorithm coloring in only two colors such that the automaton can explore all graphs of maximum degree Δ.

Setting port numbers

Model

- Port numbers are set to help the automaton.
- The automaton is ultimately simple : it is memoryless

Finding Short Right-Hand-on-the-Wall Walks in Graphs

There exist an algorithm for setting the port numbers, and an oblivious automaton using them, such that the automaton explores all graphs of size *n* within the period 10*n*.

・ロト ・回ト ・ヨト ・ヨト

Setting port numbers

Model

- Port numbers are set to help the automaton.
- The automaton is ultimately simple : it is memoryless

Dobrev, Jansson, Sadakane, Sung, SIROCCO, 2005 Finding Short Right-Hand-on-the-Wall Walks in Graphs

There exist an algorithm for setting the port numbers, and an oblivious automaton using them, such that the automaton explores all graphs of size n within the period 10n.

・ロト ・回ト ・ヨト ・ヨト

Outline

2 Related work

Our model and results
 Our model
 Results

5 Conclusion

イロン イヨン イヨン イヨン

15/23

3

Model Results

Our model

Model

- An algorithm sets the port numbers to help the automaton.
- The automaton is restricted to be finite (but not necessarily oblivious).

Question

What is the mimimum function $\pi(n)$ such that there exist an algorithm for setting the local orientation, and a finite automaton using it, such that the automaton explores all graphs of size *n* within the period $\pi(n)$?

Dobrev et a

 $\pi(n) \leq 10n$

16/23 ১৭.৫

Our model

Model

- An algorithm sets the port numbers to help the automaton.
- The automaton is restricted to be finite (but not necessarily oblivious).

Question

What is the minimum function $\pi(n)$ such that there exist an algorithm for setting the local orientation, and a finite automaton using it, such that the automaton explores all graphs of size *n* within the period $\pi(n)$?

Dobrev et a

Our model

Model

- An algorithm sets the port numbers to help the automaton.
- The automaton is restricted to be finite (but not necessarily oblivious).

Question

What is the minimum function $\pi(n)$ such that there exist an algorithm for setting the local orientation, and a finite automaton using it, such that the automaton explores all graphs of size *n* within the period $\pi(n)$?

Dobrev et al.

 $\pi(n) \leq 10n$

Our results

Theorem

$$\pi(n) \leq 4n-2$$

Viore precisely

- Very simple algorithm based on a spanning tree
- Three-state automaton
- Performance independent from the initial state and initial position of the automaton

Additional properties

- Distributed algorithm
- Dynamic environment

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Our results

Theorem

$$\pi(n) \leq 4n-2$$

More precisely

- Very simple algorithm based on a spanning tree
- Three-state automaton
- Performance independent from the initial state and initial position of the automaton

Additional properties

- Distributed algorithm
- Dynamic environment

・ロン ・四マ ・ヨン ・ヨン

Our results

Theorem

$$\pi(n) \leq 4n-2$$

More precisely

- Very simple algorithm based on a spanning tree
- Three-state automaton
- Performance independent from the initial state and initial position of the automaton

Additional properties

- Distributed algorithm
- Dynamic environment

イロト イヨト イヨト イヨト

Outline

Introduction

- 2 Related work
- 3 Our model and results
- Algorithm/automaton

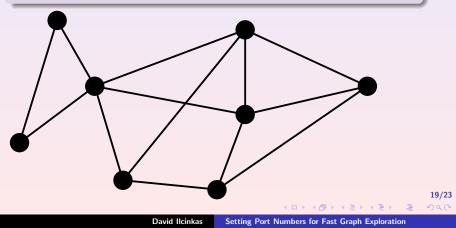
5 Conclusion

・ロト ・同ト ・ヨト ・ヨト

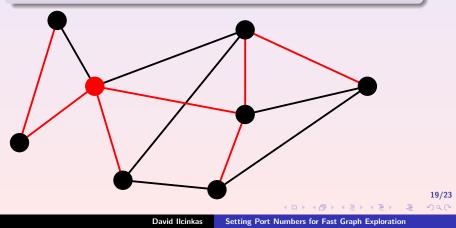
18/23

3

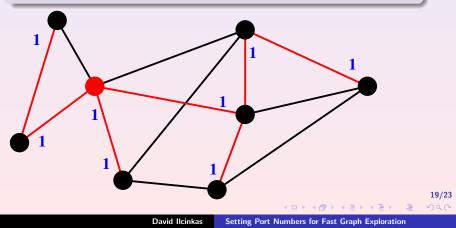
- edge e is in $T \iff$ at least one of its port numbers is 1;
- the edges belonging to T have the smallest port numbers.



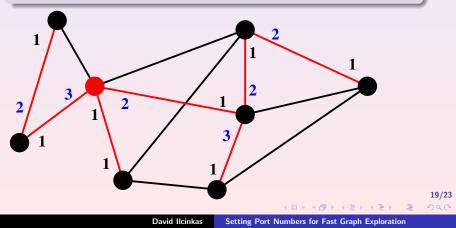
- edge e is in $T \iff$ at least one of its port numbers is 1;
- the edges belonging to T have the smallest port numbers.



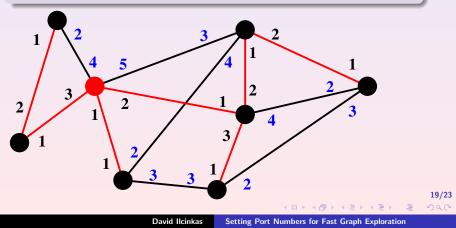
- edge e is in $T \iff$ at least one of its port numbers is 1;
- the edges belonging to T have the smallest port numbers.



- edge e is in $T \iff$ at least one of its port numbers is 1;
- the edges belonging to T have the smallest port numbers.



- edge e is in $T \iff$ at least one of its port numbers is 1;
- the edges belonging to T have the smallest port numbers.



Automaton

States

- N: Normal
- T: Test
- B: Backtrack

Transition function

 $f(N, i, d) = \begin{cases} (N, 1) & \text{if } i = d \\ (T, i + 1) & \text{if } i \neq d \end{cases}$ $f(T, i, d) = \begin{cases} (N, 1) & \text{if } i = 1 \text{ and } d = 1 \\ (T, i + 1) & \text{if } i = 1 \text{ and } d \neq 1 \\ (B, i) & \text{if } i \neq 1 \end{cases}$ f(B, i, d) = (N, 1)

20/23 ৩ ৭ ৫

Automaton

States

- N: Normal
- T: Test
- B: Backtrack

Transition function

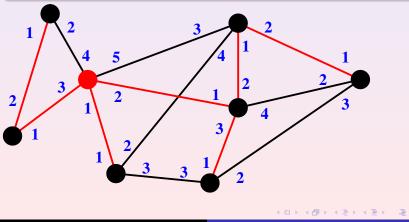
$$f(N, i, d) = \begin{cases} (N, 1) & \text{if } i = d \\ (T, i + 1) & \text{if } i \neq d \end{cases}$$

$$f(T, i, d) = \begin{cases} (N, 1) & \text{if } i = 1 \text{ and } d = 1 \\ (T, i + 1) & \text{if } i = 1 \text{ and } d \neq 1 \\ (B, i) & \text{if } i \neq 1 \end{cases}$$

$$f(B, i, d) = (N, 1)$$

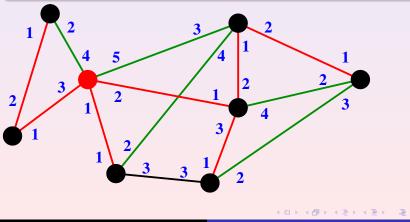
Example

- If on a tree-edge: right-hand-on-the-wall
- If not on a tree-edge: backtrack



Example

- If on a tree-edge: right-hand-on-the-wall
- If not on a tree-edge: backtrack



Outline

Introduction

- 2 Related work
- 3 Our model and results
- 4 Algorithm/automaton

(日) (同) (E) (E) (E)

Open problem

Conclusion

$$\pi(n) \leq 4n-2$$

Conjecture $\pi(n) = 4n - O(n)$

Open problems

- $\pi(n)$ when the automaton is restricted to be oblivious?
- Find a fully self-stabilizing pair algorithm/automaton

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

Open problem

Conclusion

$$\pi(n) \leq 4n-2$$

Conjecture

$$\pi(n)=4n-O(1)$$

Open problems

π(n) when the automaton is restricted to be oblivious?
 Find a fully self-stabilizing pair algorithm/automaton

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

Open problem

Conclusion

$$\pi(n) \leq 4n-2$$

Conjecture

$$\pi(n)=4n-O(1)$$

Open problems

- $\pi(n)$ when the automaton is restricted to be oblivious?
- Find a fully self-stabilizing pair algorithm/automaton

・ロン ・回 と ・ ヨン ・ ヨン