Optimal Exploration of Terrains with Obstacles

Jurek Czyzowicz ${ }^{1}$ David IIcinkas ${ }^{2}$
Arnaud Labourel ${ }^{1,2} \quad$ Andrzej Pelc ${ }^{1}$
${ }^{1}$ Université du Québec en Outaouais, Canada
${ }^{2}$ CNRS \& Univ. de Bordeaux, France

SWAT 2010
June 21, 2010

The problem

Exploration of terrains with obstacles

A mobile robot has to explore/see all points of an unknown bounded terrain, possibly with obstacles.

Vision

Unlimited vision

Vision

Unlimited vision

Limited vision

Motivations

Motivations / Applications

Exploration / searching / map drawing of

- unsafe environments
- unreachable environments

Motivations

Motivations / Applications

Exploration / searching / map drawing of

- unsafe environments
- unreachable environments

Related (off-line) problems

- with unlimited vision
- Gallery tour problem (NP-hard)
- Watchman's route (polynomial)
- with limited vision
- Sweeper problem (NP-hard)
- Pocket milling problem (NP-hard)
- Lawn mowing problem (NP-hard)

Performance measures

Algorithm \mathcal{A} having no a priori knowledge on the terrain.

Performance measures

Algorithm \mathcal{A} having no a priori knowledge on the terrain.
Worst-case complexity
Worst-case length of \mathcal{A} 's trajectory in the family of terrains of bounded parameters

- P : total perimeter
- A : area of the terrain
- k : number of obstacles

Performance measures

Algorithm \mathcal{A} having no a priori knowledge on the terrain.

Worst-case complexity

Worst-case length of \mathcal{A} 's trajectory in the family of terrains of bounded parameters

- P : total perimeter
- A : area of the terrain
- k : number of obstacles

Competitive ratio

\square
length of \mathcal{A} 's trajectory $\max _{\mathcal{T}}$ length of an optimal algorithm knowing the terrain \mathcal{T}

Related work (unlimited vision)

Rectilinear polygon without obstacles

- [Kleinberg, 1994]: (randomized) competitive ratio $\frac{5}{4}$ no deterministic algorithm with competitive ratio $<\frac{5}{4}$
- [Deng, Kameda, Papadimitriou, 1998]: competitive ratio 2
- [Hammar, Nilsson, Schuierer, 2002]: competitive ratio $\frac{5}{3}$
- [Hammar, Nilsson, Persson, 2006]: competitive ratio $\frac{3}{2}$

Related work (unlimited vision)

Rectilinear polygon without obstacles

- [Kleinberg, 1994]: (randomized) competitive ratio $\frac{5}{4}$ no deterministic algorithm with competitive ratio $<\frac{5}{4}$
- [Deng, Kameda, Papadimitriou, 1998]: competitive ratio 2
- [Hammar, Nilsson, Schuierer, 2002]: competitive ratio $\frac{5}{3}$
- [Hammar, Nilsson, Persson, 2006]: competitive ratio $\frac{3}{2}$

Polygonal terrain with obstacles

- [Kalyanasundaram, Pruhs, 1993]: competitive ratio $O(k)$ ($O(\sqrt{k})$ in some special cases)
- [Deng, Kameda, Papadimitriou, 1998]: competitive ratio $\omega(1)$
- [Albers, Kursawe, Schuierer, 2002]: competitive ratio $\Omega(\sqrt{k})$

Related work (limited vision)

Offline problem (sweeper problem)

- S. Ntafos, Comput. Geom. Theory Appl., 1992.

Related work (limited vision)

Offline problem (sweeper problem)

- S. Ntafos, Comput. Geom. Theory Appl., 1992.

Restricted class of polygons

- C. Icking, T. Kamphans, R. Klein, E. Langetepe, European Workshop on Computational Geometry, 2000.
- A. Kolenderska, A. Kosowski, M. Malafiejski, P. Zylinski, SIROCCO, 2009.
- Y. Gabriely, E. Rimon, Int. Conf. of Robotics and Automaton (ICRA), 2001.
- Y. Gabriely, E. Rimon, Computational Geometry: Theory and Applications, 2003.

Our results

We consider the worst-case trajectory length measure.

- P: total perimeter
- D: diameter of the (convex hull of the) terrain
- A: area of the terrain
- k : number of obstacles

Our results

We consider the worst-case trajectory length measure.

- P: total perimeter
- D: diameter of the (convex hull of the) terrain
- A: area of the terrain
- k : number of obstacles

Unlimited vision

- $\Omega(P+D \sqrt{k})$, even if the terrain is a priori known
- $O(P+D \sqrt{k})$, constructive proof (algorithm)

Our results

We consider the worst-case trajectory length measure.

- P : total perimeter
- D: diameter of the (convex hull of the) terrain
- A: area of the terrain
- k: number of obstacles

Unlimited vision

- $\Omega(P+D \sqrt{k})$, even if the terrain is a priori known
- $O(P+D \sqrt{k})$, constructive proof (algorithm)

Limited vision

- $\Omega(P+A+\sqrt{A k})$, even if the terrain is a priori known
- $O(P+A+\sqrt{A k})$, if k or A is known (algorithm)
- $O(\min \{\log A, \log k\}(P+A+\sqrt{A k}))$, nothing known

Outline

(1) Introduction

(2) Unlimited vision

- Lower bound
- Upper bound

3 Limited vision
4. Conclusion

Lower bound

Lower bound $\Omega(P+D \sqrt{k})$, even if the terrain is known. (Reminder: $P=$ perimeter; $D=$ diameter; $k=\#$ obstacles)

Lower bound

Lower bound $\Omega(P+D \sqrt{k})$, even if the terrain is known. (Reminder: $P=$ perimeter; $D=$ diameter; $k=\#$ obstacles)

Lower bound $\Omega(P)$

Lower bound

Lower bound $\Omega(P+D \sqrt{k})$, even if the terrain is known. (Reminder: $P=$ perimeter; $D=$ diameter; $k=\#$ obstacles)

Lower bound $\Omega(P)$

Lower bound $\Omega(D \sqrt{k})$

Upper bound (naive)

Upper bound $O(P+D \cdot k)$, without a priori knowledge.
(Reminder: $P=$ perimeter; $D=$ diameter; $k=\#$ obstacles)

Naive algorithm

- While unvisited obstacles
- Approach an unvisited obstacle
- Go around it once to explore it
- Go around it again to look at other unvisited obstacles and to explore them recursively

Upper bound (optimal)

Upper bound $O(P+D \sqrt{k})$, without a priori knowledge. (Reminder: $P=$ perimeter; $D=$ diameter; $k=\#$ obstacles)

Our algorithm

- Apply the naive algorithm but only approaching "close" obstacles

Upper bound (optimal)

Upper bound $O(P+D \sqrt{k})$, without a priori knowledge. (Reminder: $P=$ perimeter; $D=$ diameter; $k=\#$ obstacles)

Our algorithm

- Apply the naive algorithm but only approaching "close" obstacles

Upper bound (optimal)

Upper bound $O(P+D \sqrt{k})$, without a priori knowledge. (Reminder: $P=$ perimeter; $D=$ diameter; $k=\#$ obstacles)

Our algorithm

- Apply the naive algorithm but only approaching "close" obstacles

Upper bound (optimal)

Upper bound $O(P+D \sqrt{k})$, without a priori knowledge. (Reminder: $P=$ perimeter; $D=$ diameter; $k=\#$ obstacles)

Our algorithm

- Apply the naive algorithm but only approaching "close" obstacles

Upper bound (optimal)

Upper bound $O(P+D \sqrt{k})$, without a priori knowledge. (Reminder: $P=$ perimeter; $D=$ diameter; $k=\#$ obstacles)

Our algorithm

- Apply the naive algorithm but only approaching "close" obstacles

Upper bound (optimal)

Upper bound $O(P+D \sqrt{k})$, without a priori knowledge. (Reminder: $P=$ perimeter; $D=$ diameter; $k=\#$ obstacles)

Our algorithm

- Apply the naive algorithm but only approaching "close" obstacles

Upper bound (optimal)

Upper bound $O(P+D \sqrt{k})$, without a priori knowledge. (Reminder: $P=$ perimeter; $D=$ diameter; $k=\#$ obstacles)

Our algorithm

- Apply the naive algorithm but only approaching "close" obstacles

Outline

(1) Introduction

(2) Unlimited vision
(3) Limited vision

- Lower bound
- Upper bound

4. Conclusion

Lower bound

Lower bound $\Omega(P+A+\sqrt{A \cdot k})$, even if the terrain is known. (Reminder: $P=$ perimeter; $A=$ area; $k=\#$ obstacles)

Lower bound $\Omega(P)$

Lower bound $\Omega(\sqrt{A \cdot k})$

Lower bound

Lower bound $\Omega(P+A+\sqrt{A \cdot k})$, even if the terrain is known. (Reminder: $P=$ perimeter; $A=$ area; $k=\#$ obstacles)

Lower bound $\Omega(P)$

Lower bound $\Omega(A)$

$\downarrow \frac{\sqrt{A}}{\sqrt{k}}$
$\begin{array}{llllll}\square & \square & \square & \square & \square & \square \\ \square & \square & \square & \square & \square & \square\end{array}$

Lower bound $\Omega(\sqrt{A \cdot k})$

Upper bound (1)

Basic idea: re-use the unlimited vision algorithm
$F \leq 1$: length of square side Algorithm LET (F)

- Reach the boundary
- Follow/explore the boundary
- Partition the terrain in cells
- \forall cell in DFS order
- Explore the cell

Upper bound (1)

Basic idea: re-use the unlimited vision algorithm
$F \leq 1$: length of square side Algorithm LET (F)

- Reach the boundary
- Follow/explore the boundary
- Partition the terrain in cells
- \forall cell in DFS order
- Explore the cell

Upper bound (1)

Basic idea: re-use the unlimited vision algorithm
$F \leq 1$: length of square side Algorithm LET (F)

- Reach the boundary
- Follow/explore the boundary
- Partition the terrain in cells
- \forall cell in DFS order
- Explore the cell

Upper bound (1)

Basic idea: re-use the unlimited vision algorithm
$F \leq 1$: length of square side Algorithm LET (F)

- Reach the boundary
- Follow/explore the boundary
- Partition the terrain in cells
- \forall cell in DFS order
- Explore the cell

Upper bound (1)

Basic idea: re-use the unlimited vision algorithm
$F \leq 1$: length of square side Algorithm LET (F)

- Reach the boundary
- Follow/explore the boundary
- Partition the terrain in cells
- \forall cell in DFS order
- Explore the cell

Cell exploration

Basic idea: use the unlimited vision naive algorithm

Naive algorithm

- Reach the boundary of cell c
- Follow/explore the boundary
- While unvisited obstacles
- Go to an unvisited obstacle
- Go around it to explore it
- Go around it again to look at other unvisited obstacles and to explore them recursively

Cell exploration

Basic idea: use the unlimited vision naive algorithm

Naive algorithm

- Reach the boundary of cell c
- Follow/explore the boundary
- While unvisited obstacles
- Go to an unvisited obstacle
- Go around it to explore it
- Go around it again to look at other unvisited obstacles and to explore them recursively

Local complexity: $O\left(P_{c}+A_{c} / F+k_{c} \cdot F\right)$
($P_{c}=$ perimeter; $A_{c}=$ area; $k_{c}=\#$ obstacles $)$

Upper bound (2)

Complexity of LET $(F): O(P+A / F+k \cdot F)$
Goal (lower bound): $\Omega(P+A+\sqrt{A \cdot k})$

Upper bound (2)

Complexity of LET $(F): O(P+A / F+k \cdot F)$
Goal (lower bound): $\Omega(P+A+\sqrt{A \cdot k})$
Solution's intuition: choose $F=\min \left\{1, \sqrt{\frac{A}{k}}\right\}$

Upper bound (2)

Complexity of LET $(F): O(P+A / F+k \cdot F)$ Goal (lower bound): $\Omega(P+A+\sqrt{A \cdot k})$

Solution's intuition: choose $F=\min \left\{1, \sqrt{\frac{A}{k}}\right\}$
If only A is known (case when k known is similar):
Algorithm LET $_{A}$

- Set $F=1$
- Apply LET (F) until the error is "too" large
- Decrease F appropriately
- Restart the algorithm with the new F

Complexity analysis of LET_{A} (A known)

P^{*}, k^{*} : current discovered values of P and k P_{j}, k_{j} : values of P^{*}, k^{*} at the end of Phase j

- $F_{1}=1$
- Stopping condition: $\left\{k^{*} F_{j} \geq 2 \frac{A}{F_{j}}\right.$ and $\left.k^{*} F_{j} \geq P^{*}\right\}$
- F 's update: $F_{j+1}=\frac{A}{k_{j} F_{j}}$

Complexity analysis of LET_{A} (A known)

P^{*}, k^{*} : current discovered values of P and k P_{j}, k_{j} : values of P^{*}, k^{*} at the end of Phase j

- $F_{1}=1$
- Stopping condition: $\left\{k^{*} F_{j} \geq 2 \frac{A}{F_{j}}\right.$ and $\left.k^{*} F_{j} \geq P^{*}\right\}$
- F 's update: $F_{j+1}=\frac{A}{k_{j} F_{j}}$

Complexity analysis of LET_{A} (A known)

P^{*}, k^{*} : current discovered values of P and k P_{j}, k_{j} : values of P^{*}, k^{*} at the end of Phase j

- $F_{1}=1$
- Stopping condition: $\left\{k^{*} F_{j} \geq 2 \frac{A}{F_{j}}\right.$ and $\left.k^{*} F_{j} \geq P^{*}\right\}$
- F 's update: $F_{j+1}=\frac{A}{k_{j} F_{j}}$

Complexity analysis of LET_{A} (A known)

P^{*}, k^{*} : current discovered values of P and k P_{j}, k_{j} : values of P^{*}, k^{*} at the end of Phase j

- $F_{1}=1$
- Stopping condition: $\left\{k^{*} F_{j} \geq 2 \frac{A}{F_{j}}\right.$ and $\left.k^{*} F_{j} \geq P^{*}\right\}$
- F 's update: $F_{j+1}=\frac{A}{k_{j} F_{j}}$

Complexity analysis of LET_{A} (A known)

P^{*}, k^{*} : current discovered values of P and k P_{j}, k_{j} : values of P^{*}, k^{*} at the end of Phase j

- $F_{1}=1$
- Stopping condition: $\left\{k^{*} F_{j} \geq 2 \frac{A}{F_{j}}\right.$ and $\left.k^{*} F_{j} \geq P^{*}\right\}$
- F 's update: $F_{j+1}=\frac{A}{k_{j} F_{j}}$

Complexity analysis of LET_{A} (A known)

P^{*}, k^{*} : current discovered values of P and k P_{j}, k_{j} : values of P^{*}, k^{*} at the end of Phase j

- $F_{1}=1$
- Stopping condition: $\left\{k^{*} F_{j} \geq 2 \frac{A}{F_{j}}\right.$ and $\left.k^{*} F_{j} \geq P^{*}\right\}$
- F 's update: $F_{j+1}=\frac{A}{k_{j} F_{j}}$

Complexity analysis of LET_{A} (A known)

P^{*}, k^{*} : current discovered values of P and k P_{j}, k_{j} : values of P^{*}, k^{*} at the end of Phase j

- $F_{1}=1$
- Stopping condition: $\left\{k^{*} F_{j} \geq 2 \frac{A}{F_{j}}\right.$ and $\left.k^{*} F_{j} \geq P^{*}\right\}$
- F 's update: $F_{j+1}=\frac{A}{k_{j} F_{j}}$

Complexity analysis of $\mathrm{LET}_{A}(A$ known $)$

P^{*}, k^{*} : current discovered values of P and k P_{j}, k_{j} : values of P^{*}, k^{*} at the end of Phase j

- $F_{1}=1$
- Stopping condition: $\left\{k^{*} F_{j} \geq 2 \frac{A}{F_{j}}\right.$ and $\left.k^{*} F_{j} \geq P^{*}\right\}$
- F 's update: $F_{j+1}=\frac{A}{k_{j} F_{j}}$

Complexity analysis of $\mathrm{LET}_{A}(A$ known $)$

P^{*}, k^{*} : current discovered values of P and k P_{j}, k_{j} : values of P^{*}, k^{*} at the end of Phase j

- $F_{1}=1$
- Stopping condition: $\left\{k^{*} F_{j} \geq 2 \frac{A}{F_{j}}\right.$ and $\left.k^{*} F_{j} \geq P^{*}\right\}$
- F 's update: $F_{j+1}=\frac{A}{k_{j} F_{j}}$

Complexity analysis of LET_{A} (A known)

P^{*}, k^{*} : current discovered values of P and k P_{j}, k_{j} : values of P^{*}, k^{*} at the end of Phase j

- $F_{1}=1$
- Stopping condition: $\left\{k^{*} F_{j} \geq 2 \frac{A}{F_{j}}\right.$ and $\left.k^{*} F_{j} \geq P^{*}\right\}$
- F 's update: $F_{j+1}=\frac{A}{k_{j} F_{j}}$

Complexity analysis of $\mathrm{LET}_{A}(A$ known $)$

P^{*}, k^{*} : current discovered values of P and k P_{j}, k_{j} : values of P^{*}, k^{*} at the end of Phase j

- $F_{1}=1$
- Stopping condition: $\left\{k^{*} F_{j} \geq 2 \frac{A}{F_{j}}\right.$ and $\left.k^{*} F_{j} \geq P^{*}\right\}$
- F 's update: $F_{j+1}=\frac{A}{k_{j} F_{j}}$

Complexity analysis of $\mathrm{LET}_{A}(A$ known $)$

P^{*}, k^{*} : current discovered values of P and k P_{j}, k_{j} : values of P^{*}, k^{*} at the end of Phase j

- $F_{1}=1$
- Stopping condition: $\left\{k^{*} F_{j} \geq 2 \frac{A}{F_{j}}\right.$ and $\left.k^{*} F_{j} \geq P^{*}\right\}$
- F 's update: $F_{j+1}=\frac{A}{k_{j} F_{j}}$

Outline

(1) Introduction

2 Unlimited vision
(3) Limited vision
(4) Conclusion

Conclusion and perspectives

(Reminder: $P=$ perimeter; $A=$ area; $k=\#$ obstacles)

Limited vision

- $\Omega(P+A+\sqrt{A k})$, even if the terrain is a priori known
- $O(P+A+\sqrt{A k})$, if k or A is known (algorithm)
- $O(\min \{\log A, \log k\}(P+A+\sqrt{A k}))$, nothing known
- Competitive ratio in any polygonal terrain with polygonal obstacles (limited and unlimited)?

Conclusion and perspectives

(Reminder: $P=$ perimeter; $A=$ area; $k=\#$ obstacles)

Limited vision

- $\Omega(P+A+\sqrt{A k})$, even if the terrain is a priori known
- $O(P+A+\sqrt{A k})$, if k or A is known (algorithm)
- $O(\min \{\log A, \log k\}(P+A+\sqrt{A k}))$, nothing known

Open problem

- Worst-case complexity without knowledge?

Conclusion and perspectives

(Reminder: $P=$ perimeter; $A=$ area; $k=\#$ obstacles)

Limited vision

- $\Omega(P+A+\sqrt{A k})$, even if the terrain is a priori known
- $O(P+A+\sqrt{A k})$, if k or A is known (algorithm)
- $O(\min \{\log A, \log k\}(P+A+\sqrt{A k}))$, nothing known

Open problem

- Worst-case complexity without knowledge?
- Competitive ratio in any polygonal terrain with polygonal obstacles (limited and unlimited)?

Thank You for your attention

