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Self-avoiding walks (SAW)

in plane - 1,000,000

®
SAW

Conjectures (d = 2)

e Enumeration: The number of n-step SAW is equivalent to (k) u"?nll/32 for
n large.

e Asymptotic properties: The endpoint lies on average at distance n3/4 from
the starting point.

e Limit process: The scaling limit of SAW is SLEg 3

(proved under an assumption of conformal invariance [LLawler et al. 02])



This is too hard!

. for exact enumeration

= Study of toy models, that should be as general as possible, but still
tractable

e develop new techniques in exact enumeration

e Solve better and better approximations of real SAW



A toy model: Partially directed walks

e Model: Self-avoiding walks with steps N, W, E
=

"Markovian with memory 1"

oJ
e Enumeration: generating function and asymptotics
14¢
a(n)t" = =  an)~(1+V2)"~ (2.41..)"
Xamt" =15 > (n) ~ (1+V2)" ~ (2.41..)

e Asymptotic properties: coordinates of the endpoint

E(|Xn]) ~ v, E(Yn) ~n



I. Prudent self-avoiding walks:

Definition, functional equations

Self-directed walks [Turban-Debierre 86]
Exterior walks [Préa 97]

Outwardly directed SAW [Santra-Seitz-Klein 01]
Prudent walks [Duchi 05], [Dethridge, Guttmann, Jensen 07], [mbm 08]
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Remark: Partially directed walks are prudent




A property of prudent walks




A property of prudent walks

The box of a prudent walk

The endpoint of a prudent walk is always on the border of the box



Recursive construction of prudent walks

Each new step either inflates the box or walks (prudently) along the border.




Recursive construction of prudent walks: Where is the endpoint?

e [ hree more parameters

(catalytic parameters)

\ .

e Generating function of prudent walks ending on the top of their box:

Tt u,v,w) = Zt|w|ui(w)vj(w)wh(w)

w

Series with three catalytic variables u, v, w



Recursive construction of prudent walks: Where is the endpoint?

99— oL
e [ hree more parameters &

(catalytic parameters)

\ .

e Generating function of prudent walks ending on the top of their box:

(1 B vowt(1 — t2)
(u —tv)(v — tu)

) Tt u,v,w) =
T (t;v,w) B tuT(t;u,w)

u — tu v — tu

1+70w,u)+ 7 w,v) —tv

with 7(t; u,v) = toT'(¢; u, tu,v).

e Generating function of all prudent walks, counted by the length and the
half-perimeter of the box:

Ptiu) =14+4T;u,u,uw) —4T(t;0,u,uw)



Simpler families of prudent walks [Préa 97]

j B
:4 _>.< >: .—I_I -
_Ll_ ? ol
N I L o
3-sided 2-sided 1-sided

e The endpoint of a 3-sided walk lies always on the top, right or left side of
the box

e T he endpoint of a 2-sided walk lies always on the top or right side of the box
e The endpoint of a 1-sided walk lies always on the top side of the box (=
partially directed!)



Functional equations for prudent walks:
The more general the class, the more additional variables

(Walks ending on the top of the box)

e General prudent walks: three catalytic variables
T(v,w) T (u,w)
—tu

u — tu v — tu

(1 B vowt(1 — t2)
(u — tv) (v — tu)
with 7 (u,v) = tvT'(t; u, tu,v).

) T w,v,w) =14+7 (w,u)+7 (w,v) —tv

e [ hree-sided walks: two catalytic variables
2 2

wot(1 — t2) t<v t<u
1 — Tt u,v) =14+ .- — T(t, tv,v) — T(t; u,tu
( (u—tv)(v—tu)) ( ) + u — tv ( ) v —tu ( )
e Two-sided walks: one catalytic variable
tu(1l — t2) u — 2t
1 — T(t; = t T(t;t
( (1—tu)(u—t)> (t;w) 1—tu+ u—t (&)



II. Two-sided prudent walks




Two-sided walks: exact enumeration

Proposition The length generating function of 2-sided walks is:

1

P(t) =
(t) 1 — 2t — 2t2 4+ 2¢3

1—|—t—t3—|—t(1—t)J

[Duchi 05]

Proofs
e Kernel method applied to

{ ((1 —tu)(u —t) — tu(l — t2)> T(t: w)
P(t)

u—t+t(u—2t)(1 —tu)T(¢;t)
2T (t: 1) — T(t: 0)

e Context-free grammar

[
J—
S




Two-sided walks: exact enumeration

Proposition The length generating function of 2-sided walks is:

1 1 — ¢4

P(t) =

1 — 2t —t2

1 -2t —2t2 4+ 23 1+t_t3+t(1_t)J




But there He came...
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Two-sided walks: asymptotic enumeration

e [ he length generating function of 2-sided walks is

1

P(t) =
(t) 1 — 2t — 2t2 4+ 2¢3

1—|—t—t3—|—t(1—t)J

e Dominant singularity: a simple pole for 1 — 2t — 2t2 4+ 2¢3 = 0, that is,
te = 0.40303.... Asymptotically,

p(n) ~k(2.48..)"
Compare with 2.41... for partially directed walks.



Two-sided walks: properties of large random walks
(uniform distribution)

e [ he random variables X, Y,, and D,, satisfy

E(X,) = E(Yy) ~n E((Xn — Yn)?) ~ n, E(Dy) ~ 4.15 ...

—~

= IV ]|,
\



Two-sided walks: random generation (uniform distribution)

500 steps

e Recursive step-by-step construction a la Wilf = 500 steps
(precomputation of O(n?) large numbers)



Two-sided walks: random generation (uniform distribution)

00000

500 steps 730 steps 1354 steps 3148 steps

e Recursive step-by-step construction a la Wilf = 500 steps
(precomputation of O(n?) large numbers)

e Boltzmann sampling via the context-free grammar
[Duchon-Flajolet-Louchard-Schaeffer 02]

E(X,) = E(Y,) ~n E((Xp — Yn)?) ~ n, E(Dy) ~ 4.15. ..



Another distribution: Kinetic two-sided walks

At time n, the walk chooses one of the admissible steps with uniform probability.

[An admissible step is one that gives a two-sided walk]

—— T 2

< <

1 1
1 1 4 3
5 ___1_.

I



500 steps

00000

00000

00000

00000

1000 steps

5000 steps

00000

00000

00000

Another distribution: Kinetic two-sided walks

—

1

0000 steps

e Random generation: Recursive step-by-step construction a la Wilf
(no precomputation)

e Asymptotic properties (from exact enumeration)

E(X,) = E(Yy) ~ n E((Xpn — Yn)2) ~ n?, E(Dy) ~ /n



III. T hree-sided prudent walks




Three-sided walks: two catalytic variables

29 t2
T(t; tv,v) —
u — tv v — tu

Uu

C(u—t) (v — tu) T, tu)

(1 uvt(l—tz) )T(t;u,v)=1—|—---—

e Cancel the kernel by an appropriate choice of v = v(t; uw)

e [ his kernel is homogeneous in v and v



Three-sided prudent walks: exact enumeration

e [ he length generating function of three-sided prudent walks is:

B 1 14 3t 4+ tq(1 — 3t — 2t2) 5 |
P(t)_l_zt_t2< > + 2t qT(t,l,t))
where
125 (12 — U(gt) U(qF) —t U(gF+1) — ¢
= go( ) | (tﬁ — U(g )) +t(1—tU(qk)) +t(1—tU(qk+1))
with
1—tw 4 12 4 3w — /(1 = 2) (1 + t — tw + 2w) (1 — t — tw — t2w)
Ulw) = 2t ’
and

1—t—|—t2—|—t3—\/(1—t4)(1—2t—t2)

q="U(1) = >




T hree-sided prudent walks: asymptotic enumeration and singularities

e [ he length generating function of three-sided prudent walks is:

1 (1—|—3t—|—tq(1—3t—2t2)

P(t) =

2t%q T(t:1,¢
1—2t—1t2 1 —tq 2% T )>

T(t;1,t) = > (-1

= Mo (4% — U@)) "

i 1(1ttq U(qz+1>> (1_|_ U(q*) —t

U(ghFt1) —t
t(1 —tU(g*)) >

t(1 —tU(gk 1))

e Asymptotic enumeration: The dominant singularity is (again) a simple pole
for 1 — 2t — 2t2 + 2t3 = 0. Asymptotically,

p(n) ~ k(2.48...)"

e Singularity analysis: The series P(t) has infinitely many poles, satisfying

% = U(qi) for some ¢ > 0. Hence it is neither algebraic, nor even D-finite.



T hree-sided prudent walks:
random dgeneration and asymptotic properties

e Random generation: Recursive method a la Wilf = 400 steps
(pre-computation of O(n3) numbers)

e Asymptotic properties: The average width of the box is ~n



IV. Four-sided (i.e. general) prudent walks




General prudent walks: three catalytic variables

T (v,w) B tuT(u,w)

B vowt(1 — t2)
(-

u—tv) (v —tu)
with 7 (u,v) = tvT (u, tu,v).

)T(u,v,w) =147 (w,u)+7T(w,v) —tv

u — tv v — tu



Random prudent walks

e Uniform model: recursive generation, 195 steps (sic! O(n?*) numbers)

o A A A A = L70
e Kinetic model: recursive generation with no precomputation

% 1000 - o
—290y =T —100 50 5007 ~1000 §

1
000 1500 2000 2500
o
—2000
—50
—500 |
—3000
F—100
—~1000
—4000
—150

—1500 +

500 steps 1000 steps 10000 steps 20000 steps



Conjectures, and summary of the results

Nature of the g.f.

Asympt. growth

End-to-end distance

1-sided (part. dir)
2-sided
3-sided

4-sided (general)

Rat.
Alg. [Duchi 05]

not D-finite

(2.41..)"
(2.48...)"

(2.48..)"

square lattice SAW

[Dethridge, Guttmann, Jensen 07]




What's next?

e Exact enumeration: General prudent walks on the square lattice — Growth
constant?

e Uniform random generation: better algorithms (maximal length 200 for gen-
eral prudent walks...)

Uniform ] Kinetic

O L U L = L= )

e Kinetic models
e Limit processes?

e More general walks (with A. Bacher), with growth constant 2.54...



Triangular prudent walks

The length generating function of triangular prudent walks is

P(t; 1) = 16_75(3115_'__ ;)tQ (1 + ¢t (1 + 2t) R(¢; 1,t))
with
("3 (v(1- 2t2)>k V42
Rlti1,8) = 1+ Y)(L+ ) ,;Z:O (Y(1 —2t2); )41 (1 — 22’ >k
and
1—2t— 12— /(1 —t)(1 =3t — 12 —13)
Y =
22

Notation:

(a;)n=(1—a)(1 —aq)--- (1 —ag" ).

e The series P(t; 1) is neither algebraic, nor even D-finite (infinitely many poles
at Y¢F(1 — 2¢t2) = 0)



