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Self-avoiding walks (SAW)

Conje
tures (d = 2)

• Enumeration: The number of n-step SAW is equivalent to (κ)µn n11/32 for

n large.

• Asymptoti
 properties: The endpoint lies on average at distan
e n3/4 fromthe starting point.

• Limit pro
ess: The s
aling limit of SAW is SLE8/3(proved under an assumption of 
onformal invarian
e [Lawler et al. 02℄)



This is too hard!

... for exa
t enumeration
⇒ Study of toy models, that should be as general as possible, but stilltra
table

• develop new te
hniques in exa
t enumeration

• solve better and better approximations of real SAW



A toy model: Partially dire
ted walks

• Model: Self-avoiding walks with steps N, W, E"Markovian with memory 1"

• Enumeration: generating fun
tion and asymptoti
s

∑

n
a(n)tn =

1 + t

1 − 2t − t2
⇒ a(n) ∼ (1 +

√
2)n ∼ (2.41...)n

• Asymptoti
 properties: 
oordinates of the endpoint
E(|Xn|) ∼

√
n, E(Yn) ∼ n



I. Prudent self-avoiding walks:

De�nition, fun
tional equations

Self-dire
ted walks [Turban-Debierre 86℄Exterior walks [Préa 97℄Outwardly dire
ted SAW [Santra-Seitz-Klein 01℄Prudent walks [Du
hi 05℄, [Dethridge, Guttmann, Jensen 07℄, [mbm 08℄
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Prudent self-avoiding walks
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Remark: Partially dire
ted walks are prudent



A property of prudent walks



A property of prudent walks

The box of a prudent walk

The endpoint of a prudent walk is always on the border of the box



Re
ursive 
onstru
tion of prudent walks

Ea
h new step either in�ates the box or walks (prudently) along the border.



Re
ursive 
onstru
tion of prudent walks: Where is the endpoint?

i

h

j
• Three more parameters(
atalyti
 parameters)
• Generating fun
tion of prudent walks ending on the top of their box:

T(t; u, v, w) =
∑

w
t|w|ui(w)vj(w)wh(w)Series with three 
atalyti
 variables u, v, w



Re
ursive 
onstru
tion of prudent walks: Where is the endpoint?

i

h

j
• Three more parameters(
atalyti
 parameters)
• Generating fun
tion of prudent walks ending on the top of their box:

(

1 − uvwt(1 − t2)

(u − tv)(v − tu)

)

T(t; u, v, w) =

1 + T (t;w, u) + T (t;w, v)− tv
T (t; v, w)

u − tv
− tu

T (t;u, w)

v − tuwith T (t;u, v) = tvT(t; u, tu, v).

• Generating fun
tion of all prudent walks, 
ounted by the length and thehalf-perimeter of the box:

P(t; u) = 1 + 4T(t; u, u, u) − 4T(t; 0, u, u)



Simpler families of prudent walks [Préa 97℄

ij i

3-sided 2-sided 1-sided

• The endpoint of a 3-sided walk lies always on the top, right or left side ofthe box

• The endpoint of a 2-sided walk lies always on the top or right side of the box

• The endpoint of a 1-sided walk lies always on the top side of the box (=partially dire
ted!)



Fun
tional equations for prudent walks:The more general the 
lass, the more additional variables(Walks ending on the top of the box)

• General prudent walks: three 
atalyti
 variables

(

1 − uvwt(1 − t2)

(u − tv)(v − tu)

)

T(t; u, v, w) = 1+T (w, u)+T (w, v)−tv
T (v, w)

u − tv
−tu

T (u, w)

v − tuwith T (u, v) = tvT(t; u, tu, v).
• Three-sided walks: two 
atalyti
 variables
(

1 − uvt(1 − t2)

(u − tv)(v − tu)

)

T(t; u, v) = 1 + · · · − t2v

u − tv
T(t; tv, v) − t2u

v − tu
T(t; u, tu)

• Two-sided walks: one 
atalyti
 variable
(

1 − tu(1 − t2)

(1 − tu)(u − t)

)

T(t; u) =
1

1 − tu
+ t

u − 2t

u − t
T(t; t)



II. Two-sided prudent walks

i



Two-sided walks: exa
t enumeration

Proposition The length generating fun
tion of 2-sided walks is:

P(t) =
1

1 − 2t − 2t2 + 2t3





1 + t − t3 + t(1 − t)

√

√

√

√

1 − t4

1 − 2t − t2





[Du
hi 05℄Proofs

• Kernel method applied to
{
(

(1 − tu)(u − t) − tu(1 − t2)
)

T(t; u) = u − t + t(u − 2t)(1 − tu)T(t; t)

P(t) = 2T(t; 1) − T(t; 0)

• Context-free grammar
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
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√

√

√

√

1 − t4

1 − 2t − t2









But there He 
ame...



Asymptoti
 enumeration

random obje
tsProperties of large

Random generation



Two-sided walks: asymptoti
 enumeration

• The length generating fun
tion of 2-sided walks is

P(t) =
1

1 − 2t − 2t2 + 2t3





1 + t − t3 + t(1 − t)

√

√

√

√

1 − t4

1 − 2t − t2







• Dominant singularity: a simple pole for 1 − 2t − 2t2 + 2t3 = 0, that is,

tc = 0.40303.... Asymptoti
ally,
p(n) ∼ κ (2.48...)nCompare with 2.41... for partially dire
ted walks.



Two-sided walks: properties of large random walks(uniform distribution)

• The random variables Xn, Yn and Dn satisfy

E(Xn) = E(Yn) ∼ n E((Xn − Yn)
2) ∼ n, E(Dn) ∼ 4.15 . . .

Dn

Xn

Yn



Two-sided walks: random generation (uniform distribution)
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• Re
ursive step-by-step 
onstru
tion à la Wilf ⇒ 500 steps(pre
omputation of O(n2) large numbers)



Two-sided walks: random generation (uniform distribution)
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• Re
ursive step-by-step 
onstru
tion à la Wilf ⇒ 500 steps(pre
omputation of O(n2) large numbers)
• Boltzmann sampling via the 
ontext-free grammar[Du
hon-Flajolet-Lou
hard-S
hae�er 02℄

E(Xn) = E(Yn) ∼ n E((Xn − Yn)
2) ∼ n, E(Dn) ∼ 4.15 . . .



Another distribution: Kineti
 two-sided walks

At time n, the walk 
hooses one of the admissible steps with uniform probability.[An admissible step is one that gives a two-sided walk℄1/3 1/2

Remark: Walks of length n are no longer uniform
1

4
· 1
31

4
· 1
2



Another distribution: Kineti
 two-sided walks
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• Random generation: Re
ursive step-by-step 
onstru
tion à la Wilf(no pre
omputation)

• Asymptoti
 properties (from exa
t enumeration)
E(Xn) = E(Yn) ∼ n E((Xn − Yn)

2) ∼ n2, E(Dn) ∼
√

n



III. Three-sided prudent walks

ij



Three-sided walks: two 
atalyti
 variables

(

1 − uvt(1 − t2)

(u − tv)(v − tu)

)

T(t; u, v) = 1 + · · · − t2v

u − tv
T(t; tv, v) − t2u

v − tu
T(t; u, tu)

• Can
el the kernel by an appropriate 
hoi
e of v ≡ v(t;u)

• This kernel is homogeneous in u and v

...



Three-sided prudent walks: exa
t enumeration

• The length generating fun
tion of three-sided prudent walks is:

P(t) =
1

1 − 2t − t2

(

1 + 3t + tq(1 − 3t − 2t2)

1 − tq
+ 2t2q T(t; 1, t)

)

where

T(t; 1, t) =
∑

k≥0

(−1)k

∏k−1
i=0

(

t
1−tq − U(qi+1)

)

∏k
i=0

(

tq
q−t − U(qi)

)

(

1 +
U(qk) − t

t(1 − tU(qk))
+

U(qk+1) − t

t(1 − tU(qk+1))

)

with

U(w) =
1 − tw + t2 + t3w −

√

(1 − t2)(1 + t − tw + t2w)(1 − t − tw − t2w)

2t
,and

q = U(1) =
1 − t + t2 + t3 −

√

(1 − t4)(1 − 2t − t2)

2t
.



Three-sided prudent walks: asymptoti
 enumeration and singularities

• The length generating fun
tion of three-sided prudent walks is:

P(t) =
1

1 − 2t − t2

(

1 + 3t + tq(1 − 3t − 2t2)

1 − tq
+ 2t2q T(t; 1, t)

)

T(t; 1, t) =
∑

k≥0

(−1)k

∏k−1
i=0

(

t
1−tq − U(qi+1)

)

∏k
i=0

(

tq
q−t − U(qi)

)

(

1 +
U(qk) − t

t(1 − tU(qk))
+

U(qk+1) − t

t(1 − tU(qk+1))

)

• Asymptoti
 enumeration: The dominant singularity is (again) a simple polefor 1 − 2t − 2t2 + 2t3 = 0. Asymptoti
ally,
p(n) ∼ κ (2.48...)n

• Singularity analysis: The series P(t) has in�nitely many poles, satisfying

tq
q−t = U(qi) for some i ≥ 0. Hen
e it is neither algebrai
, nor even D-�nite.



Three-sided prudent walks:random generation and asymptoti
 properties
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• Random generation: Re
ursive method à la Wilf ⇒ 400 steps(pre-
omputation of O(n3) numbers)
• Asymptoti
 properties: The average width of the box is ∼ n



IV. Four-sided (i.e. general) prudent walks

i

h

j



General prudent walks: three 
atalyti
 variables

(

1 − uvwt(1 − t2)

(u − tv)(v − tu)

)

T(u, v, w) = 1+ T (w, u)+ T (w, v)− tv
T (v, w)

u − tv
− tu

T (u, w)

v − tuwith T (u, v) = tvT(u, tu, v).
?



Random prudent walks

• Uniform model: re
ursive generation, 195 steps (si
! O(n4) numbers)
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• Kineti
 model: re
ursive generation with no pre
omputation
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Conje
tures, and summary of the results

Nature of the g.f. Asympt. growth End-to-end distan
e1-sided (part. dir) Rat. (2.41...)n n2-sided Alg. [Du
hi 05℄ (2.48...)n n3-sided not D-�nite (2.48...)n n4-sided (general) not D-�nite (2.48...)n n

square latti
e SAW ? (2.63...)n n11/32 n3/4

Conje
tures: [Dethridge, Guttmann, Jensen 07℄



What's next?

• Exa
t enumeration: General prudent walks on the square latti
e � Growth
onstant?
• Uniform random generation: better algorithms (maximal length 200 for gen-eral prudent walks...)Uniform Kineti
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• Kineti
 models

• Limit pro
esses?

• More general walks (with A. Ba
her), with growth 
onstant 2.54...



Triangular prudent walksThe length generating fun
tion of triangular prudent walks is

P(t; 1) =
6t(1 + t)

1 − 3t − 2t2

(

1 + t (1 + 2t)R(t; 1, t)
)

with

R(t; 1, t) = (1 + Y )(1 + tY )
∑

k≥0

t(
k+1
2 )

(

Y (1 − 2t2)
)k

(Y (1 − 2t2); t)k+1

(

Y t2

1 − 2t2
; t

)

kand

Y =
1 − 2t − t2 −

√

(1 − t)(1 − 3t − t2 − t3)

2t2Notation:

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1).

• The series P(t; 1) is neither algebrai
, nor even D-�nite (in�nitely many polesat Y tk(1 − 2t2) = 0)


