On independent sets of square grids

Mireille Bousquet-Mélou, CNRS, Bordeaux, France Svante Linusson, KTH, Stockholm, Sweden Eran Nevo, Hebrew University, Jerusalem, Israel

http://www.labri.fr/~bousquet

The hard-square model

An independent set of the 7×7 grid, or a hard-square configuration.

Question: find

$$Z_N(t) = \sum_I t^{|I|},$$

where the sum runs over all independent sets of the $N \times N$ grid.

The partition function of the hard-square model at activity t.

Hard squares are indeed hard

Question: find

$$Z_N(t) = \sum_I t^{|I|},$$

where the sum runs over all independent sets of the $N \times N$ grid.

Unsolved!

- \bullet even for t=1,
- even in the thermodynamic limit:

$$\lim_{N} Z_{N}(t)^{1/N^{2}} = ?$$

 \bullet even for t=1 and in the thermodynamic limit:

$$\lim_{N} Z_{N}(1)^{1/N^{2}} \sim 1.503048...$$

is the (mysterious) hard-square constant.

Some conjectures of Fendley, Schoutens and van Eerten (2004)

Hard squares at activity -1

Question: find

$$Z_{M,N} := \sum_{I} (-1)^{|I|},$$

where the sum runs over all independent sets of the $M \times N$ grid.

The alternating number of independent sets.

Independent sets on a torus

Conjecture [Fendley et al. 04]

For a torus with M rows and N columns, with M and N coprime,

$$Z_t(M,N) := \sum_I (-1)^{|I|} = 1.$$

⇒ Not true for a rectangle (with open boundary conditions), nor for a cylinder.

Transfer matrices

For two independent sets C and D on the N-point circle:

$$\mathbb{T}_N(C,D) = \begin{cases} (-1)^{|D|} & \text{if } C \cap D = \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

Example: For N = 4, the independent sets on the 4-point circle are $\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,3\}, \{2,4\},$ and

Transfer matrices

For two independent sets C and D on the N-point circle:

$$\mathbb{T}_N(C,D) = \begin{cases} (-1)^{|D|} & \text{if } C \cap D = \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

Then:

- $(\mathbb{T}_N)^M(C,C)$ is the alternating number of independent sets of the $M\times N$ torus, with boundary condition C on row 1
- ullet tr $(\mathbb{T}_N)^M$ is the alternating number $Z_t(M,N)$ of independent sets of the M imes N torus

Conjectures on transfer matrices [Fendley et al. 04]

ullet For every N, all the eigenvalues of the matrix \mathbb{T}_N are roots of unity

ullet Same conjecture for the transfer matrix \mathbb{O}_N between two N-point segments

Ex.: The characteristic polynomial of the matrix \mathbb{O}_N

$$P_1(x) = \frac{x^3 + 1}{x + 1}, \qquad P_4(x) = (x - 1)(x^3 + 1)(x^4 - 1),$$

$$P_2(x) = (x - 1)(x^2 + 1), \qquad P_5(x) = \frac{(x^{10} - 1)(x^4 + 1)}{x + 1},$$

$$P_3(x) = (x - 1)(x^4 + 1), \qquad P_6(x) = (x - 1)(x^2 + 1)(x^4 - 1),$$

$$P_7(x) = \frac{(x^3+1)(x^4+1)(x^{12}-1)(x^{18}-1)}{(x+1)(x^2+1)},$$

$$P_8(x) = (x+1)(x^4+1)^2(x^8+1)(x^{16}-1)(x^{22}-1).$$

Some bad news

I am not going to prove these conjectures...

... but

Some good news

- (1) Jacob Jonsson has proved some of them:
 - $Z_t(M,N) = 1$ if M and N are coprime
 - All eigenvalues of the transfer matrix from circle to circle are roots of unity

(2) Similar results hold in greater generality for other rectangular shapes

Results

Independent sets of tilted rectangles

Let $\mathcal{R}(M,N)$ be the subgraph of \mathbb{Z}^2 induced by the points (x,y) satisfying

$$y \le x \le y + M - 1$$
 and $-y \le x \le -y + N - 1$.

The alternating number of independent sets on $\mathcal{R}(M,N)$ is

$$Z_{\mathcal{R}}(M,N) = \sum_{I} (-1)^{|I|}.$$

Theorem [MBM-Linusson-Nevo 06]

- If $M \equiv_3 1$ or $N \equiv_3 1$, then $Z_{\mathcal{R}}(M,N) = 0$.
- Otherwise $Z_{\mathcal{R}}(M,N)=(-1)^{mn}$,

with
$$m = \lceil M/3 \rceil$$
 and $n = \lceil N/3 \rceil$.

Proof: Involutions on independent sets

Aim: find an involution σ such that

- there are few fixed points (ideally, 0 or 1)
- if $I \neq \sigma(I)$, then the cardinalities of I and $\sigma(I)$ differ by ± 1 . The sets I and $\sigma(I)$ are said to be matched together.

 $\Rightarrow \sigma$ is sign-reversing on the matched sets.

$$Z = \sum_{I} (-1)^{|I|} = \sum_{I \text{ unmatched}} (-1)^{|I|}$$

Perfect matching

Perfect matching

Independent sets of tilted rectangles

Let $\mathcal{R}(M,N)$ be the subgraph of \mathbb{Z}^2 induced by the points (x,y) satisfying

$$y \le x \le y + M - 1$$
 and $-y \le x \le -y + N - 1$.

The alternating number of independent sets on $\mathcal{R}(M,N)$ is

$$Z_{\mathcal{R}}(M,N) = \sum_{I} (-1)^{|I|}.$$

Theorem [BM-L-N 06]

- If $M \equiv_3 1$ or $N \equiv_3 1$, then $Z_{\mathcal{R}}(M,N) = 0$.
- Otherwise $Z_{\mathcal{R}}(M,N)=(-1)^{mn}$,

with
$$m = \lceil M/3 \rceil$$
 and $n = \lceil N/3 \rceil$.

ullet Graph G

Independence complex $\Sigma(G)$

ullet Graph G

$$Z(G) = 1 - 5 + 6 - 1$$

Independence complex $\Sigma(G)$

• Graph G

$$Z(G) = 1 - 5 + 6 - 1$$

= $-\chi(\Sigma(G)) = 1$

The Euler characteristic of the complex

Independence complex $\Sigma(G)$

• Graph G

$$Z(G) = 1 - 5 + 6 - 1$$

= $-\chi(\Sigma(G)) = 1$

The Euler characteristic of the complex

Independence complex $\Sigma(G)$

Topologic realization

• Graph G

$$Z(G) = 1 - 5 + 6 - 1$$

= $-\chi(\Sigma(G)) = 1$

The Euler characteristic of the complex

Independence complex $\Sigma(G)$

Topologic realization

The independence complex of tilted rectangles

Let $\mathcal{R}(M,N)$ be the subgraph of \mathbb{Z}^2 induced by the points (x,y) satisfying $y \le x \le y + M - 1$ and $-y \le x \le -y + N - 1$.

Theorem

- If $M \equiv_3 1$ or $N \equiv_3 1$, then $\Sigma(\mathcal{R}(M,N))$ is contractible and $Z_{\mathcal{R}}(M,N)=0$.
- Otherwise, $\Sigma(\mathcal{R}(M,N))$ is homotopy equivalent to a sphere of dimension mn-1, and $Z_{\mathcal{R}}(M,N) = (-1)^{mn}$,

with
$$m = \lceil M/3 \rceil$$
 and $n = \lceil N/3 \rceil$.

Proof: Our involution defines a Morse matching of the complex $\Sigma(\mathcal{R}(M,N))$. Discrete Morse theory [Forman 95]

Extension to other shapes

Other shapes

• Shapes with lots of vertices of degree 2

Cylindric boundary conditions

• Does not work for:

Tilted rectangles with cylindric boundary conditions

For M even, let $\mathcal{R}^c(M,N)$ be obtained by wrapping $\mathcal{R}(M+1,N)$ on a cylinder (identifying the vertices (i,i) and (M/2+i,-M/2+i))

Theorem

- If $N \equiv_3 1$, then $\Sigma(\mathcal{R}^c(M,N))$ is contractible and $Z^c_{\mathcal{R}}(M,N) = 0$.
- Otherwise,
 - If $M \equiv_3 0$, then $\Sigma(\mathcal{R}^c(M,N))$ is homotopy equivalent to a wedge of 2^n spheres of dimension mn-1, and $Z^c_{\mathcal{R}}(M,N)=2^n$.
 - If $M \equiv_3 1$ or 2 then $\Sigma(\mathcal{R}^c(M,N))$ is homotopy equivalent to a single sphere of dimension mn-1, and $Z^c_{\mathcal{R}}(M,N)=(-1)^n$.

 \mathcal{R}^c (6,8)

with
$$m = \lfloor \frac{M+1}{3} \rfloor$$
 and $n = \lceil N/3 \rceil$.

Diagonal transfer matrices

$$\mathsf{tr}(\mathbb{R}_N)^M = Z^c_{\mathcal{R}}(M,N)$$

$$\mathbb{R}_{N}(C,D) = \begin{cases} (-1)^{|D|} & \text{if } {}^{c}C \cap^{c}D \cap^{c}(C-1) \cap^{c}(D-1) = \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem [BM-L-N]

- If $N \equiv_3 1$, then \mathbb{R}_N is nilpotent (all its eigenvalues are 0).
- ullet Otherwise, \mathbb{R}_N has eigenvalues:
 - 0 with multiplicity d_N-2^n ,
 - -1 with multiplicity $(2^n + 2(-1)^n)/3$,
 - -j and j^2 with multiplicity $(2^n-(-1)^n)/3$,

where
$$d_N:=2^{\lceil N/2 \rceil}$$
, $n=\lceil N/3 \rceil$, and $j=e^{2i\pi/3}$.

Independent sets of parallelograms $\mathcal{P}(K, N)$

Theorem

- If $K \equiv_3 1$, then
 - if $N \equiv_3 1$ then $Z_{\mathcal{P}}(K, \overline{N}) = 0$,
 - otherwise, $Z_{\mathcal{P}}(K,N) = (-1)^n$ with $n = \lceil N/3 \rceil$.

- If $r \equiv_3 1, 2$, then $Z_{\mathcal{P}}(K, N) = 0$,
- otherwise $Z_{\mathcal{P}}(K, N) = 1$.

- If $K \equiv_3 0$, write N = 2q(K+1) + r with $0 \le r \le 2K+1$.
 - If $r \equiv_3 0$ with $r \ge 1$, or $r \equiv_3 1$ with $r \le 2K$, then $Z_{\mathcal{P}}(K, N) = 0$,
 - Otherwise, $Z_{\mathcal{P}}(K, N) = 1$.

From parallelograms to rectangles

The matrices \mathbb{P}_K and \mathbb{O}_K have the same spectrum, except from the multiplicity of the null eigenvalue

Some eigenvalues of the ordinary transfer matrix \mathbb{O}_K

Theorem [BM-L-N]

- ullet If $K\equiv_3 1$, then $e^{i\pi/3}$ and $e^{-i\pi/3}$ are eigenvalues of \mathbb{O}_K .
- If $K \equiv_3 2$, then all the 2Kth roots of unity, except maybe -1, are eigenvalues of \mathbb{O}_K .
- If $K \equiv_3 0$, then all the (2K + 2)th roots of unity, except maybe -1 and, if K is odd, $\pm i$, are eigenvalues of \mathbb{O}_K .

Perspectives

- (1) Range of application
- Other shapes?
- Fixed boundary conditions \Rightarrow more eigenvalues of the transfer matrix \mathbb{O}_K ?
- (2) Comparizon with J. Jonsson's methods

Transfer matrices

For two independent sets C and D on the N-point circle:

$$\mathbb{T}_N(C,D) = \begin{cases} (-1)^{|D|} & \text{if } C \cap D = \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

Example: For N=3, the independent sets on the 3-point line are \emptyset , $\{1\}$, $\{2\}$, $\{3\}$, $\{1,3\}$, and

$$\mathbb{O}_3 = \left(\begin{array}{ccccc} 1 & -1 & -1 & 1 \\ 1 & 0 & -1 & -1 & 0 \\ 1 & -1 & 0 & -1 & 1 \\ 1 & -1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 \end{array}\right)$$

Hard hexagons are slightly less hard

Question: find

$$Z_N(t) = \sum_I t^{|I|},$$

where the sum runs over all independent sets of the $N \times N \times N$ hexagon.

Solved by Baxter in the thermodynamic limit:

$$\lim_{N} Z_N(t)^{1/N^2} = \dots$$

[Baxter, 1980]

