
Programming with Coq

Programming with Coq

Yves Bertot

August 2009



Programming with Coq

In this class, we introduce the basic commands for defining new
values and programs. We shall present :

I The defining commands

I The typing discipline : how to construct a well-formed value

I A collection of basic types and functions



Programming with Coq

Defining commands

The Definition command

Attach a name to an expression

Definition three := 3.
three is defined

Verify that an expression is well-formed

Check three.
three : nat

Compute a value

Eval compute in three.
= 3 : nat



Programming with Coq

Defining commands

Defining functions

Expressions that depend on a variable

Check 2 + 3.
2 + 3 : nat

Check 5 + 3.
5 + 3 : nat

Definition add3 (x : nat) := x + 3.
add3 is defined



Programming with Coq

Defining commands

The type of values

The command Check is used to verify that an expression is
well-formed

I It returns the type of this expression

I The type says in which context the expression can be used

Check 2 + 3.
2 + 3 : nat

Check 2.
2 : nat

Check (2 + 3) + 3.
(2 + 3) + 3 : nat



Programming with Coq

Defining commands

The type of functions

The value add3 is not a natural number

Check add3.
add3 : nat -> nat

The value add3 is a function

I It expects a natural number as input

I It outputs a natural number

Check add3 + 3.
Error the term "add3" has type "nat -> nat"

while it is expected to have type "nat"



Programming with Coq

Defining commands

Applying functions

Function application is written only by juxtaposition

I Parentheses are not mandatory

Check add3 2.
add3 2 : nat

Eval compute in add3 2.
= 5 : nat

Check add3 (add3 2).
add3 (add3 2) : nat

Eval compute in add3 (add3 2).
= 8 : nat



Programming with Coq

Defining commands

Functions with several arguments

At definition time, just use several variables

Definition s3 (x y z : nat) := x + y + z.
s3 is defined

Check s3.
s3 : nat -> nat -> nat -> nat

Functions with one argument that return functions.

Check s3 2.
s3 2 : nat -> nat -> nat

Check s3 2 1.
s3 2 1 : nat -> nat



Programming with Coq

Defining commands

Functions are values

I The value add3 2 is a natural number,

I The value s3 2 1 is a function, like add3

I Functions can also expect functions as argument

Definition rep2 (f : nat -> nat)(x:nat) := f (f x).
rep2 is defined

Check rep2.
rep2 : (nat -> nat) -> nat -> nat



Programming with Coq

Defining commands

Anonymous functions

Abstraction : remove a sub-expression from another expression,
make it a variable

Check 2 + 3.
2 + 3 : nat

Check fun (x : nat) => x + 3.
fun x : nat => x + 3 : nat -> nat

The new expression is a function, usable like add3 or s3 2 1.



Programming with Coq

Defining commands

Type verification strategy (function application)

Function application is well-formed if types match :

I Assume a function f has type A -> B

I Assume a value a has type A

I then the expression f a is well-formed and has type B

Check rep2.
rep2 : (nat -> nat) -> nat -> nat

Check add3.
add3 : nat -> nat

Check rep2 add3.
rep2 add3 : nat -> nat



Programming with Coq

Defining commands

Type verification strategy (abstraction)

An anonymous function is well-formed if the body is well formed

I add the assumption that the variable has the input type

I add the argument type in the result

I Example, verify : fun x : nat => x + 3

I x + 3 is well-formed when x has type nat, and has type nat

I Result : fun x : nat => x + 3 has type nat -> nat



Programming with Coq

Defined datatypes and notations

Putting data together

I Grouping several pieces of data : tuples,

I fetching individual components : pattern-matching,

Check (3,4).
(3, 4) : nat * nat

Check
fun v : nat * nat =>
match v with (x, y) => x + y end.

fun v : nat * nat => let (x, y) := v in x + y

: nat * nat -> nat



Programming with Coq

Defined datatypes and notations

Numbers

As in programming languages, several types to represent numbers

I natural numbers (non-negative), relative integers,
more efficient reprentations

I Need to load the corresponding libraries

I Same notations for several types of numbers : need to choose
a scope

I By default : natural numbers
I Good properties to learn about proofs
I Not adapted for efficient computation



Programming with Coq

Defined datatypes and notations

Focus on natural numbers

Require Import Arith.
Open Scope nat_scope.

Check (3, O, S, S (S O)).
(3, 0, S, 2) : nat * nat * (nat -> nat) * nat

Fixpoint fact (x : nat) :=
match x with O => 1 | S p => x * fact p end.

fact is recursively defined (...)

Eval compute in fact 6.
= 720 : nat



Programming with Coq

Defined datatypes and notations

Recursive programming with natural numbers

I Recursive definition keyword : Fixpoint

I Choice of a principal argument

I Recursive calls allowed only on numbers that are smaller than
the initial argument

I Smaller numbers found by pattern-matching

Fixpoint fact (x:nat) : nat :=
match x with 0 => 1 | S p => x * fact p end

This simple schema only for natural numbers ! More complex
schemas for other datatypes.



Programming with Coq

Defined datatypes and notations

Focus on integers

Require Import ZArith.
Open Scope Z_scope.

Check (3, Z0, xH, xI, xO, Zpos (xO xH)).
(3, 0, 1%positive, xI, xO, 2)

: Z * Z * positive * (positive -> positive) *

(positive -> positive) * Z

Eval compute in
iter 6

(Z*Z)
(fun p => let (x,r) := p in (x+1, (x+1)*r))
(0, 1).

= (6, 720) : Z * Z



Programming with Coq

Defined datatypes and notations

Mathematical notations

I Depending on top opened scope

I Numbers read as natural numbers or integers

I Force the scope with %nat or %Z

I Infix notation for usual binary operations

I Understand notations with the command Locate



Programming with Coq

Defined datatypes and notations

Understanding notations

Locate "_ * _".
Notation Scope
"x * y" := prod x y : type_scope

"x * y" := Pmult x y : positive_scope

"n * m" := mult n m : nat_scope

"x * y" := Zmult x y : Z_scope (default interpretation)
"x * y" := Nmult x y : N_scope



Programming with Coq

Defined datatypes and notations

Large collections of data

I If A is a datatype then list A is also a datatype

I Theoretically no size limit,

I Written a1::a2::...::nil

I a1::l adds the element a1 in front of l

I nil is an empty list

I Need to load a package to use this, provides many functions



Programming with Coq

Defined datatypes and notations

Examples using lists

Require Import List.

Check 1::2::3::nil.
1::2::3::nil : list Z

Eval compute in (1::2::3::nil) ++ (4::5::nil).
= 1::2::3::4::5::nil : list Z

Eval compute in length (1::2::nil).
= 2 : nat

Eval compute in map (fun x => x + 1) (1::2::3::nil).
= 2::3::4::nil : list Z

Eval compute in
fold_right (fun x y => x + y) 0 (1::2::3::nil).

= 6 : Z



Programming with Coq

Defined datatypes and notations

Boolean values

I Values true and false

I Usable in if .. then .. else .. statements

I comparison function provided for numbers

I To find them : use the command Search


	Defining commands
	Defined datatypes and notations

