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1This lecture corresponds mainly to the chapters 3 : “Propositions and
Proofs”and 5 : “Everyday Logic”of the book.



Proofs in Proposition Logic and Predicate Logic

In this class, we introduce the reasoning techniques used in Coq,
starting with a very reduced fragment of logic, propositional
intuitonistic logic, then first-order intuitonistic logic.
We shall present :

I The logical formulas and the statements we want to prove,

I How to build proofs interactively.
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Propositions and Types

The Type Prop

In Coq, a predefined type, namely Prop, is inhabited by all logical
propositions. For instance the true and false propositions are simply
constants of type Prop :

Check True.
True : Prop

Check False.
False : Prop

Don’t mistake the proposition True (resp. False) for the boolean
true (resp. false), which belong to the bool datatype.
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Propositions and Types

Since Prop is a type, it is easy to declare propositional variables,
using Coq’s declaration mechanism :

Section Propositional_Logic.
Variables P Q R T : Prop.
P is assumed 2

Q is assumed . . .

Check P.
P : Prop

2read ‘‘P is assumed to be a proposition’’
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Propositions and Types

Propositional Formulas

One can build propositions by using the following rules :

I Each variable of type Prop is a proposition,

I The constants True and False are propositions,
I if A and B are propositions, so are :

I A↔ B (logical equivalence) (in ASCII : A <-> B)
I A→ B (implication) (in ASCII : A -> B)
I A ∨ B (disjunction) (in ASCII : A \/ B )
I A ∧ B (conjunction) (in ASCII : A /\ B)
I ∼ A (negation)

Check ((P → (Q ∧ P)) → (Q → P)).
(P → Q ∧ P) → Q → P : Prop
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Sequents and Goals

The Sequent Notation

In Coq, a frequent activity consists in proving a proposition A
under some set Γ of hypotheses (also called a context.)
For instance, one would like to prove the formula R → P under the
hypotheses R → P ∨ Q and ∼(R ∧ Q).
A structure consisting of a finite set Γ of hypotheses and a
conclusion A is called an (intuitonistic) sequent. Its usual notation
is Γ ` A.
In our example, the sequent we consider is written :

R→P∨Q, ∼(R∧Q)︸ ︷︷ ︸
hypotheses

` R→P︸ ︷︷ ︸
conclusion
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Sequents and Goals

Hypotheses and Goals

The Coq system helps the user to build interactively a proof of
some sequent Γ ` A. We also say that one wants to solve the goal
Γ`? A.
In Coq a goal is shown as below : each hypothesis is given a
distinct name, and the conclusion is displayed under a bar which
separates it from the hypotheses :

H : R → P ∨ Q
H0 : ∼(R ∧ Q)
============================
R → P
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Sequents and Goals

In the proof of some theorem, it is usual to have to prove several
subgoals. In this case, Coq displays in full the first subgoal to solve,
and an abbreviated view of the remaining subgoals.

2 subgoals

P : Prop
Q : Prop
H : P ∨ Q
H0 : P
============================
Q ∨ P

subgoal 2 is:
Q ∨ P
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Sequents and Goals

Rules and Tactics

Let us consider some goal Γ`? A. Solving this goal consists in
building a proof of A under the hypotheses of Γ. Formally, such a
proof is a term of type A, but we won’t explore deeply this aspect
(see the book for more details).
The structure of a proof both depends on the form of A and the
contents of Γ. We will present now some basic rules for building
proofs.
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Sequents and Goals

Goal Directed Proofs

Tactic application can be slightly more complex in some situations
(e.g. shared existential variables, see Coq’s documentation).
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Sequents and Goals

More details

The basic tool for interactively solving a goal G =Γ`? A is called a
tactic, which is a command typed by the user.
In general, at each step of an interactive proof, a finite sequence of
subgoals G1,G2, . . . ,Gn must be solved. An elementary step of an
interactive proof has the following form : The user tries to apply a
tactic to (by default) the first subgoal G1,

I This application may fail, in which case the state of the proof
doesn’t change,

I or this application generates a finite sequence (possibly
empty) of new subgoals, which replace the previous one.
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Sequents and Goals

When is an interactive proof finished ?

The number of subgoals that remain to be solved decreases only
when some tactic application generates 0 new subgoals.
The interactive search of a proof is finished when there remain no
subgoals to solve. The Qed command makes Coq do the following
actions :

1. build a proof term from the history of tactic invocations,

2. check whether this proof is correct,

3. register the proven theorem.
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Sequents and Goals

Introduction and Elimination Tactics

Let us consider again the goal below :

H : R → P ∨ Q
H0 : ∼(R ∧ Q)
============================
R → P

We colored in blue the main connective of the conclusion, and in
red the main connective of each hypothesis.
To solve this goal, we can use an introduction tactic associated to
the main connective of the conclusion, or an elimination tactic on
some hypothesis.
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Minimal Propositional Logic

Minimal Propositional Logic

Minimal propositional logic is a very simple fragment of
mathematical logic :

I Formulas are built only with propositional variables and the
implication connective →.

I There are only three simple inference rules.

It is a good framework for learning basic concepts on tactics in
Coq.
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Minimal Propositional Logic

The rule of assumption

The following rule builds a proof of any sequent Γ ` A, whenever
the conclusion A is already assumed in Γ.

A ∈ Γ
Γ ` A

assumption

In an interactive proof with Coq, the tactic assumption solves any
goal Γ`? A, where the context Γ contains an hypothesis assuming A.

H : R → P → Q
H0 :(R → Q)→ T
============================
R → P → Q
assumption.
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Minimal Propositional Logic

Elimination rule for the implication (modus ponens)

. . .
Γ ` B→A

. . .
Γ ` B

Γ ` A
mp

Applying several times the mp rule, we get the following derived
rule :

. . .
Γ ` A1→A2→ . . .→An→A

. . .
Γ ` A1

. . .
Γ ` A2 . . .

. . .
Γ ` An

Γ ` A

Let us consider a goal of the form Γ`? A. If H : A1→A2→ . . .An→A
is an hypothesis of Γ or an already proven theorem, then the tactic
apply H generates n new subgoals, Γ`? A1, . . ., Γ`? An.
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Minimal Propositional Logic

Introduction rule for the implication

. . .
Γ,A ` B

Γ ` A→B
imp i

Let us consider a goal Γ`? A→B. The tactic intro H (where H is
not the name of an hypothesis in Γ) transforms this goal into
Γ,H : A`? B.
The multiple introduction tactic intros H1 H2 . . .Hn is a shortand
for intro H1 ; intro H2 ; . . . ; intro Hn.
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Minimal Propositional Logic

A simple example

The following proof tree represents a proof of the sequent
` (P→Q→R)→(P→Q)→(P→R). The leaves of this tree are
instances of rule assumption. For simplicity’s sake, we use Γ as an
abbreviation of the context P→Q→R, P→Q.

Γ,P ` P→Q→R Γ,P ` P

Γ,P ` Q→R
mp

Γ,P ` P→Q Γ,P ` P

Γ,P ` Q
mp

Γ,P ` R
mp

Γ ` P→R
imp i

P→Q→R ` (P→Q)→(P→R)
imp i

` (P→Q→R)→(P→Q)→(P→R)
imp i
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Minimal Propositional Logic

The same proof using tactics

Section Propositional_Logic.
Variables P Q R : Prop.

Lemma imp_dist : (P → (Q → R)) → (P → Q) → P → R.
Proof.
1 subgoal

P : Prop
Q : Prop
R : Prop
============================
(P → Q → R) → (P → Q) → P → R

intros H H0 p.
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Minimal Propositional Logic

1 subgoal:
P : Prop
Q : Prop
R : Prop
H : P → Q → R
H0 : P → Q
p : P
============================
R

apply H.
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Minimal Propositional Logic

2 subgoals:
P : Prop
Q : Prop
R : Prop
H : P → Q → R
H0 : P → Q
p : P
============================
P

subgoal 2 is:
Q
assumption.
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Minimal Propositional Logic

1 subgoal:
P : Prop
Q : Prop
R : Prop
T : Prop
H : P → Q → R
H0 : P → Q
p : P
============================
Q
apply H0;assumption.
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Minimal Propositional Logic

Proof completed
Qed.
imp dist is defined
Check imp_dist.

imp dist
: (P → Q → R) → (P → Q) → P → R

Print imp_dist.
imp dist =
fun (H : P → Q → R) (H0 : P → Q) (H1 : P) ⇒ H H1 (H0 H1)

: (P → Q → R) → (P → Q) → P → R

We notice that the internal representation of the proof we have
just built is a term whose type is the theorem statement.
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Minimal Propositional Logic

It is possible, but not usual, to build directly proof terms,
considering that a proof of A→B is just a function which maps any
proof of A to a proof of B.

Check fun p:P ⇒ p.
fun p:P ⇒ p

: P → P

Check fun (H : P → Q → R)(q: Q)(p:P) ⇒ H p q.
fun (H : P → Q → R) (q : Q) (p : P) ⇒ H p q

: (P → Q → R) → Q → P → R

Check fun (p:P)(H: P → False) ⇒ H p.
fun (p : P) (H : P → False) ⇒ H p

: P → (P → False) → False
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Minimal Propositional Logic

Using the section mechanism

Another way to prove an implication A→B is to prove B inside a
section which contains a hypothesis assuming A, if the proof of B
uses truely the hypothesis assuming A. This scheme generalizes to
any number of hypotheses A1, . . . ,An.

Section Imp_trans.
Hypothesis H : P → Q.
Hypothesis H0 : Q → R.

Lemma imp_trans: P → R.
(* Proof skipped, uses H and H0 *)

End Imp_trans.
Check imp_trans.
imp trans : (P → Q) → (Q → R) → P → R
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Propositional Intuitionistic Logic

Propositional Intuitionistic Logic

We will now add to Minimal Propositional Logic introduction and
elimination rules and tactics for the constants True and False, and
the connectives and (∧), or (∨), iff (↔) and not (∼).
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Propositional Intuitionistic Logic

Introduction rule for True

In any context Γ the proposition True is immediately provable
(thanks to a predeclared constant I :True).
Practically, any goal Γ`? True can be solved by the tactic trivial :

H : R → P ∨ Q
H0 : ∼(R ∧ Q)
============================
True
trivial.

There is no useful elimination rule for True.
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Propositional Intuitionistic Logic

Falsity

The elimination rule for the constant False implements the
so-called principle of explosion, according to which“any proposition
follows from a contradiction”.

Γ ` False
Γ ` A

False e

There is an elimination tactic for False : Let us consider a goal of
the form Γ`? A , and an hypothesis H :False. Then the tactic
destruct H solves this goal immediately.

In order to avoid to prove contradictions, there is no introduction
rule nor introduction tactic for False.
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Propositional Intuitionistic Logic

Introduction rule and tactic for conjunction

A proof of a sequent Γ ` A∧B is composed of a proof of Γ ` A
and a proof of Γ ` B.

. . .
Γ ` A

. . .
Γ ` B

Γ ` A∧B
conj

Coq’s tactic split, splits a goal Γ`? A∧B into two subgoals Γ`? A
and Γ`? B.
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Propositional Intuitionistic Logic

Conjunction elimination

Rule :

. . .
Γ ` A∧B

. . .
Γ, A, B ` C

Γ ` C
and e

Associated tactic :
Let us consider a goal Γ`? C , and H :A∧B. Then the tactic
destruct H as [H1 H2] generates the new goal

Γ,H1 : A, H2 : B `? C
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Propositional Intuitionistic Logic

Example

Lemma and_comm : P ∧ Q → Q ∧ P.
Proof.
intro H.

1 subgoal

P : Prop
Q : Prop
H : P ∧ Q
============================
Q ∧ P
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Propositional Intuitionistic Logic

destruct H as [H1 H2].
1 subgoal

P : Prop
Q : Prop
H1 : P
H2 : Q
============================
Q ∧ P
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Propositional Intuitionistic Logic

split.
2 subgoals

P : Prop
Q : Prop
H1 : P
H2 : Q
============================
Q

subgoal 2 is:
P
...
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Propositional Intuitionistic Logic

Introduction rules and tactics for disjunction

There are two introduction rules for ∨ :

. . .
Γ ` A

Γ ` A∨B
or intro l

. . .
Γ ` B

Γ ` A∨B
or intro r

The tactic left is associated to or intro l, and the tactic right to
or intro r.
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Propositional Intuitionistic Logic

Elimination rule and tactic for disjunction

. . .
Γ ` A∨B

. . .
Γ,A ` C

. . .
Γ,B ` C

Γ ` C
or e

Let us consider a goal Γ`? C , and H :A∨B. Then the tactic
destruct H as [H1 | H2] generates two new subgoals :

Γ,H1 : A`? C

Γ,H2 : B `? C

This tactic implements the proof by cases paradigm.
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Propositional Intuitionistic Logic

A combination of left, right and destruct

Consider the following goal :

P : Prop
Q : Prop
H : P ∨ Q
============================

Q ∨ P

We have to choose between an introduction tactic on the
conclusion Q ∨ P, or an elimination tactic on the hypothesis H.
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Propositional Intuitionistic Logic

If we start with an introduction tactic, we have to choose between
left and right. Let us use left for instance :

left.
P : Prop
Q : Prop
H : P ∨ Q
============================

P

This is clearly a dead end. Let us come back to the previous step
(with command Undo).
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Propositional Intuitionistic Logic

destruct H as [H0 | H0].
two subgoals

P : Prop
Q : Prop
H : P ∨ Q
H0 : P
============================

Q ∨ P

subgoal 2 is :
Q ∨ P
right;assumption.
left;assumption.
Qed.
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Propositional Intuitionistic Logic

Negation

In Coq, the negation of a proposition A is represented with the
help of a constant not, where not A (also written ∼A) is defined as
the implication A→False.
The tactic unfold not allows to expand the constant not in a goal,
but is seldom used.
The introduction tactic for ∼A is the introduction tactic for
A→False, i.e. intro H where H is a fresh name. This tactic pushes
the hypothesis H : A into the context and leaves False as the
proposition to prove.



Proofs in Proposition Logic and Predicate Logic

Propositional Intuitionistic Logic

Elimination tactic for the negation

The elimination tactic for negation implements some kind of
reasoning by contradiction (absurd).
Let us consider a goal Γ,H : ∼B `? A. Then the tactic destruct H
generates a new subgoal Γ`? B.
Justification (by a derived rule) :

. . .
Γ ` B

Γ,H : ∼B ` B

Γ,H : ∼B ` ∼B

Γ,H : ∼B ` B→False

Γ,H : ∼B ` False

Γ,H : ∼B ` A
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Propositional Intuitionistic Logic

Logical equivalence

Let A and B be two propositions. Then the formula A↔ B (read
“A iff B”) is defined as the conjunction (A→B)∧(A→B).
The introduction tactic for ↔ is split, which associates to any goal
Γ`? A↔ B tho subgoals Γ`? A→B and Γ`? B→A.

The elimination tactic for ↔ is destruct H as [H1 H2] where H is
an hypothesis of type A↔ B and H1 and H2 are“fresh”names.
This tactic adds to the current context the hypotheses H1 : A →B
and H2 : B →A.
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More on tactics

Simple tactic composition

Let tac and tac’ be two tactics.
The tactic tac ;tac’ applies tac’ to each subgoal generated by the
application of tac to the first subgoal.
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More on tactics

Lemma and_comm’ : P ∧ Q → Q ∧ P.
Proof.
intro H;destruct H as [H1 H2].
H1 : P
H2 : Q
============================
Q ∧ P
split;assumption.
(* assumption has been applied to each one of the
two subgoals generated by split *)

Qed.
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More on tactics

Another composition operator

The tactic composition tac ;[tac1|tac2|. . .] is a generalization of the
simple composition operator, in situations where the same tactic
cannot be applied to each generated new subgoal.
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More on tactics

The assert tactic (forward chaining)

Let us consider some goal Γ`? A, and B be some proposition.
The tactic assert (H :B), generates two subgoals :

1. Γ`? B

2. Γ,H : B `? A

This tactic can be useful for avoiding proof duplication inside some
interactive proof. Notice that the scope of the declaration H :B is
limited to the second subgoal. If a proof of B is needed elsewhere,
it would be better to prove a lemma stating B.
Remark : Sometimes the overuse of assert may lead to verbose
developments (remember that the user has to type the statement
B !)
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More on tactics

Section assert.
Hypotheses (H : P → Q)

(H0 : Q → R)
(H1 : (P → R) → T → Q)
(H2 : (P → R) → T).

Lemma L8 : Q.
(* A direct backward proof would need to prove twice
the proposition (P → R) *)

The tactic assert (PR : P → R) generates two subgoals :
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More on tactics

2 subgoals

H : P → Q
H0 : Q → R
H1 : (P → R) → T → Q
H2 : (P → R) → T
============================
P → R

Q
intro p;apply H0;apply H;assumption.
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More on tactics

H : P → Q
H0 : Q → R
H1 : (P → R) → T → Q
H2 : (P → R) → T
PR : P → R
============================
Q
apply H1; [ assumption | apply H2;assumption].

Qed.
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More on tactics

A more clever use of destruct
The tactic destruct H works also when H is an hypothesis (or
axiom , or already proven theorem), of type A1→A2 . . .→An→A
where the main connective of A is ∨, ∧, ∼, ↔ or False.
In this case, new subgoals of the form Γ`? Ai are also generated (in
addition to the behaviour we have already seen).

In fact, this use of destruct H replaces a composition of calls to
assert, applications, and destruct. Notice the use of H as a
function that receives as arguments proofs of A1, A2, . . . , An.

assert (H1:A1);[auto |
assert(H2:A2);[auto|
...
assert (Hn:An);[auto |

destruct (H H1 H2 ... Hn)]]]
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More on tactics

Section Ex5.
Hypothesis H : T → R → P ∨ Q.
Hypothesis H0 : ∼ (R ∧ Q).
Hypothesis H1 : T.

Lemma L5 : R → P.
Proof.
intro r.

Destructuring H will produce four subgoals :

I prove T

I prove R

I assuming P, prove P,

I assuming Q, prove P.
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More on tactics

(* Let us try to apply assumption
to each of these four subgoals *)
destruct H as [H2 | H2] ;try assumption.

1 subgoal

H : T → R → P ∨ Q
H0 : ∼ (R ∧ Q)
H1 : T
r : R
H2 : Q
============================
P

destruct H0; split;assumption.
Qed.
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More on tactics

An automatic tactic for intuitionistic propositional logic

The tactic tauto solves goals which are instances of intuitionnistic
propositional tautologies.

Lemma L5’ : (R → P ∨ Q) → ∼(R ∧ Q) → R → P.
Proof.
tauto.
Qed.

The tactic tauto doesn’t solve goals that are only provable in
classical propositional logic (i.e. intuitionnistic + the rule of
excluded middle ` A∨∼A). Here are some examples :

P ∨ ∼ P
(P → Q) ↔ (∼ P ∨ Q)
∼(P ∧ Q) ↔ ∼ P ∨ ∼ Q
((P→ Q) → P) → P (Peirce’s formula)
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First Order Intuitionistic Logic

Formulas of First-Order Logic : 1

I Terms : we can build terms according to the declarations of
constants and variables, using Coq’s typing rules.

I Predicates : a Predicate is just any function of type
A1→A2 . . .An→Prop where Ai : Set for each i . Predicates are
declared as any other function symbol.

I Atomic propositions : let P : A1→A2 . . .An→Prop and
ti : Ai (i = 1 . . . n). Then the term f t1 t2 . . . tn of sort Prop
is an atomic proposition.
If t1 and t2 are terms of the same type, then t1 = t2 is an
atomic proposition.
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First Order Intuitionistic Logic

First Order formulas : 2

According to the declarations of the current context :

I Any atomic formula is a formula,

I True and False are formulas,

I If F and G are formulas, then F↔G , F→G , F∧G , F∨G and
∼F are formulas,

I let x be a variable, then ∀ x:A, F and ∃ x : A,F are formulas.
x is said to be bound in F .

ASCII notation : The symbol ∀ is typed forall and ∃ is typed exists.
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First Order Intuitionistic Logic

Examples

Section First_Order.
Variable A : Type.
Variable R : A → A → Prop.
Variable f : A → A.
Variable a : A.

Check f (f a).
(f (f a)) : A
Check R a (f (f a)).

R a (f (f a)): Prop
Check forall x :A, R a x → R a (f (f (f x))).

forall x :A, R a x → R a (f (f (f x))) : Prop.
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First Order Intuitionistic Logic

Introduction rule for the universal quantifier

Γ, x : A ` F

Γ ` ∀ x:A,F
x not bound in Γ

The tactic associated with this rule is the same as for the
introduction of implication : intro x.
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First Order Intuitionistic Logic

It is very usual to use intros on nested universal quantifications and
implications :

. . .
===================
forall x :A, P x → forall y: A, R x y → R x (f (f (f y))).

intros x Hx y Hy.
. . .
x: A
Hx: P x
y: A
H: R x y
======================
R x (f (f (f y)))
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First Order Intuitionistic Logic

Elimination rule for the universal quantifier

t : A
. . .

Γ ` ∀ x:A, F
Γ ` F{x/t} ∀e

The associated tactic is apply H, where H has type ∀ x:A, F . This
tactic is generalized to the case of nested implications and
universal quantifications, like, for instance :

H : ∀ x:A, P x → ∀ y:A, R x y → R x (f y)

On a goal like R a (f (f a)), the tactic apply H will generate two
subgoals : P a and R a (f a).
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First Order Intuitionistic Logic

A Small Example

Hypothesis Hf : forall x y:A, R x y → R x (f y).
Hypothesis R_refl : forall x:A, R x x.

Lemma Lf : forall x :A, R x (f (f (f x))).
Proof.
intro x;apply Hf.

1 subgoal

Hf : forall x y : A, R x y → R x (f y)
R refl : forall x : A, R x x
x : A
============================
R x (f (f x))
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First Order Intuitionistic Logic

Helping apply

Let us use the following theorems from the library Arith :

lt n Sn : forall n : nat, n < S n

lt_trans : forall n m p : nat, n < m → m < p → n < p

Lemma lt_n_SSn : forall i:nat, i < S (S i).
Proof.
intro i;apply lt_trans.

Error: Unable to find an instance for the variable m.
intro i;apply lt_trans with (S i);apply lt_n_Sn.

Another possibility : use eapply (see the documentation).
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First Order Intuitionistic Logic

Introduction rule for the existential quantifier

Γ ` F{x/t} t : A

Γ ` ∃ x : A,F
∃i

The associated tactic is exists t.

========
exists p, 3 < p.

exists 4.
==============
3 < 4
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First Order Intuitionistic Logic

Elimination rule for the existential quantifier

. . .
Γ, x : A,Hx : F ` G Γ ` ∃x : A, F

Γ ` G
x not bound in Γ

The associated tactic is destruct H as [x Hx], where H :∃ x : A, F
w.r.t. Γ.

H : exists n:nat, forall p: nat, p < n
===================
False
destruct H as [n Hn].
n : nat
Hn : forall p : nat, p < n
============================
False
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First Order Intuitionistic Logic

Rules and tactics for the equality

Introduction rule.

a : A
a = a refl equal

Associated tactics : reflexivity, trivial, auto.

Lemma L36 : 9 * 4 = 3 * 12.
Proof.
reflexivity.
Qed.
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First Order Intuitionistic Logic

Elimination tactics for the equality

Γ, e : a = b ` A[a]

Γ, e : a = b ` A[b]

The associated tactic is rewrite → e.

Γ, e : a = b ` A[b]

Γ, e : a = b ` A[a]

The associated tactic is rewrite ← e.
See also : tactics symmetry, transitivity, replace, etc.
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First Order Intuitionistic Logic

Example

Lemma eq_trans_on_A :
forall x y z:A, x = y → y = z → x = z.

Proof.
intros x y z e.
. . .
e : x = y
============================
y = z → x = z
rewrite → e.
. . .
e : x = y
============================
y = z → y = z
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Autres tactiques pour l’égalité

I symmetry transforme un but t1 = t2 en t2 = t1
I transitivity t3 transforme un but t1 = t3 en les deux sous-buts

t2 = t3 et t3 = t2

Voir aussi replace, subst, etc.
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Utilisation de l’application

Require Import Omega.
Lemma L : forall n:nat, n < 2 -> n = 0 ∨ n = 1.
Proof.
intros;omega.
Qed.

Lemma L2 : forall i:nat, i < 2 -> i*i = i.
Proof.
intros i H; destruct (L _ H); subst i; trivial.
Qed.


	Propositions and Types
	Sequents and Goals
	Minimal Propositional Logic
	Propositional Intuitionistic Logic
	More on tactics
	First Order Intuitionistic Logic

