
Simple proofs about recursive functions

Simple proofs about recursive functions

Yves Bertot

August 2009

Simple proofs about recursive functions

At this point, we have seen how to program algorithms in Coq and
how to perform basic proofs. We shall now concentrate on proving
properties about the algorithms we were able to program. We will
concentrate on :

I Specifying properties of functions

I Reasoning by cases on function inputs

I Eliminating inconsistent assumptions

I Using the injectivity of datatype constructors

I Using induction hypotheses

Simple proofs about recursive functions

Specifying properties of functions

Properties of functions

We already know how to write formulas in higher-order logic

I We can quantify over input data, functions, predicates

I We can express relations between input and outputs

I We can restrict the conditions of application

I We can only assert consistency with other functions

Examples :

forall m n, n <= m -> (m - n) + n = m

forall m, 0 < n -> prime n = true ->
~exists x, exists y, 1 < x < n ∧ 1 < y < n
∧ n = x * y

Simple proofs about recursive functions

Reasoning by induction

Main guideline

Reason on executions of functions

I Perform the same case analyses as in the function
I Use induction when the function is recursive

I Induction on the principal argument of the recursive function
I Make the statement proved as general as possible

Print minus.
minus = fix minus (n m : nat) : nat :=

match n with

| 0 => n

| S k =>

match m with | 0 => n | S l => minus k l end

end : nat -> nat -> nat

Simple proofs about recursive functions

Reasoning by induction

Making statements as general as possible

Example on subtraction

Lemma ex1 : forall m n, n <= m -> (m - n) + n = m.
intros m n.

===================

n <= m -> (m - n) + n = m

induction m.
focus on second goal
IHm : n <= m -> (m - n) + n = m

====================

n <= S m -> (S m - n) + n = S m

The induction hypothesis IHn can only be used for one fixed value

Simple proofs about recursive functions

Reasoning by induction

Making statements as general as possible (2)

Lemma ex1 : forall m n, n <= m -> (m - n) + n = m.
intros m.

===================

forall n, n <= m -> (m - n) + n = m

induction m.
focus on second goal
IHm : forall n, n <= m -> (m - n) + n = m

====================

forall n, n <= S m -> (S m - n) + n = S m

Simple proofs about recursive functions

Reasoning by induction

Following the structure of functions

A proof by induction step usually takes care of one of the
pattern-matching constructs
Other pattern-matching constructs must be followed in the proof
too.
Use the case or destruct tactics for this.

Simple proofs about recursive functions

Reasoning by induction

More pattern-matching in subtraction

intros n; case n.
==================

0 <= S m -> (S m - 0) + 0 = S m

subgoal 2 is;

===========================

forall n0, S n0 <= S m -> (S m - S n0) + S n0 = S m

Simple proofs about recursive functions

Reasoning by induction

Use the definition of functions

When enough pattern-matching is performed, we can give a value
to a function call
The value can be stated precisely by hand using a tactic change
It can also be computed automatically by a tactic simpl

Simple proofs about recursive functions

Reasoning by induction

Computing by hand

==================

0 <= S m -> (S m - 0) + 0 = S m
change (S m - 0) with (S m).
==================

0 <= S m -> S m + 0 = S m

Accepts the change only if it is a consequence of the definition
The final statement can be proved automatically
We can also look for a theorem working on S m + 0

SearchRewrite (_ + 0).
plus_0_r: forall n : nat, n + 0 = 0

Simple proofs about recursive functions

Reasoning by induction

Completing one goal

==================

0 <= S m -> S m + 0 = S m

rewrite plus_0_r.
==================

0 <= S m -> S m = S m

reflexivity.

Simple proofs about recursive functions

Reasoning by induction

Solving a recursive case

==================

forall n0, S n0 <= S m -> S m - S n0 + S n0 = S m

intros p plem; simpl.
IHm : forall n, n <= m -> m - n + n = m

...

==================

m - p + S p = S m

SearchRewrite (_ + S _).
plus_n_Sm : forall n m, S (n + m) = n + S m

rewrite <- plus_n_Sm.
==================

S (m - p + p) = S m

Simple proofs about recursive functions

Reasoning by induction

Solving a recursive case (2)

rewrite IHm.
==================

S m = S m

subgoal 2 is:

p <= m

reflexivity.
SearchPattern (_ <= _).
...

le_S_n : forall n m, S n <= S m -> n <= m

apply le_S_n; exact plem.

Simple proofs about recursive functions

Reasoning by induction

Looking at the base case

forall n, n <= 0 -> 0 - n + n = 0

simpl.
forall n, n <= 0 -> n = 0

The statement we get does not mention subtraction, but it is still
true
It can be proved by cases on n

SearchPattern (~S _ <= 0).
le_Sn_O : forall n, ~ S n <= 0

intros n; case n.
==================

0 <= 0 -> 0 = 0

Simple proofs about recursive functions

Reasoning by induction

Absurd case

When n is non-zero the hypothesis n <= 0 is contradictory.

==================

forall n0, S n0 <= 0 -> S n0 = 0

SearchPattern (~S _ <= 0).
le_Sn_O : forall n, ~ S n <= 0
intros p Sple0; case (le_Sn_O p).
Sple0 : S p <= 0

==================

S p <= 0

exact Sple0.

Simple proofs about recursive functions

Absurd cases on data

An example on lists

Lemma ex2 : forall A B (f:A->B) l l1 l2 y,
map f l = l1++y::l2 ->
exists l1’, exists l2’, exists x,
l1 = map f l1’ ∧ l2 = map f l2’ ∧ y = f x.

intros A B f; induction l as [| a l IHl].
===================

forall l1 l2 y, map f nil = l1++y::l2 -> exists ...

intros l1 l2 y; destruct l1 as [| a’ l1]; simpl.
===================

nil = y::l2 -> ...

intros H’; discriminate H’.

Simple proofs about recursive functions

Absurd cases on data

Second absurd case on data

===================

nil = a’::l1++y::l2 -> ...

intros H’; discriminate H’.

In general, Discriminate H succeeds as soon as H is an equality
between two different constructors of a datatype.

Simple proofs about recursive functions

Decomposing equalities

Proof on lists continued

IHl : forall l1 l2 y,

map f l = l1++y ::l2 -> exists l1’ ...

===================

forall l1 l2 y, map f (a::l) = l1 ++ y :: l2 -> exists ...

intros l1 l2 y; destruct l1 as [| a’ l1]; simpl.
===================

f a :: map f l = y :: l2 ->

exists l1’, exists l2’, exists x,

nil = map f l1’ ∧ l2 = map f l2’ ∧ y = f x

We can choose nil for l1’, l for l’2, and a for x

Simple proofs about recursive functions

Decomposing equalities

Decomposing an equality

intros q; injection q.
==================

map f l = l2 -> f a = y ->

exists l1’, exists l2’, exists x,

nil = map f l1’ ∧ l2 = map f l2’ ∧ y = f x

intros; exists nil; exists l; exists a; auto.

Simple proofs about recursive functions

Decomposing equalities

Proof on lists continued

IHl : forall l1 l2 y,

map f l = l1 ++y::l2 ->

exists l1’, ..., l1 = map f l1’ ∧ ...

==================

f a :: map f l = a’ :: l1 ++ y :: l2 ->

exists l1’, ...

intros q; injection q; intros ql qa.
ql : map f l = l1 ++ y :: l2

qa : f a = a’

==================

exists l1’, exists l2’, exists x, a’::l1 = map f l’1 ∧ ...

Simple proofs about recursive functions

Decomposing equalities

Using the induction hypothesis

IHl : forall l1 l2 y, map f l = l1 ++ y ::l2 ->

exists l1’, exists l2’, exists x, ... ∧ ... ∧ ...

ql : map f l = l1 ++ y :: l2

destruct (IHl _ _ _ ql) as [l1’ [l2’ [x [q1 [q2 q3]]]]].
qa : f a = a’

q1 : l1 = map f l1’

...

=======================

exists l1’0, exists l2’0, exists x0,

a’ :: l1 = map f l1’0 ∧ ...

exist (a::l1’); exists l2’; exists x; subst; auto.

Simple proofs about recursive functions

the Function command and functional induction

The Function command

The discipline for recursive programming imposes that recursive
calls go down in the structure of terms

I Not easy for programming on integers : need to master the
representation of numbers

I The Function command makes it possible to add artificial
structure, but hide it from the user

I Popular approach : measuring with a natural number

Simple proofs about recursive functions

the Function command and functional induction

Example using the Function command

Require Import ZArith Recdef.
Open Scope Z_scope.

Function fact (x:Z) measure Zabs_nat x :Z :=
if Zle_bool x 0 then 1 else x * fact (x - 1).

forall x, Zle_bool x 0 = false ->

Zabs_nat (x - 1) < Zabs_nat x

intros x xp.
assert (xp’ : 1 <= x)
by (apply Zle_bool_imp_le; apply Zone_min_pos; assumption).
apply Zabs_nat_lt.
Defined.

Eval compute in fact 3.
= 6 : Z

Simple proofs about recursive functions

the Function command and functional induction

Auxiliary theorems

The Function command generates a collection of auxiliary
theorems and relations

I An equation to unroll the definition

I An induction principle on bouts of recursive execution

I Induction on trees of recursive calls instead of input data

Simple proofs about recursive functions

the Function command and functional induction

Example functional induction

Lemma fact_pos : forall x, 0 < fact x.
intros x; functional induction fact x.
x : Z

e : Zle_bool x 0 = true

============================

0 < 1

subgoal 2 is:

0 < x * fact (x - 1)

omega.

Simple proofs about recursive functions

the Function command and functional induction

Functional induction continued

e : Zle_bool x 0 = false

IHz : 0 < fact (x - 1)

============================

0 < x * fact (x - 1)

assert (xp’ : 1 <= x)
by (apply Zle_bool_imp_le; apply Zone_min_pos; assumption).

apply Zmult_lt_0_compat; omega.
Proof completed.

Qed.

	Specifying properties of functions
	Reasoning by induction
	Absurd cases on data
	Decomposing equalities
	Using the induction hypothesis
	the Function command and functional induction

