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1This lecture corresponds mainly to the chapters : “Dependent Products or
Pandora’s Box”and 5 : “Everyday Logic”of the book.



Inside Coq’s Type System

In this class, we shall present some important aspects of Coq’s
type system, and how it allows us to express such concepts as :

I Logical (basic and derived) rules of inference,

I Properties of programs (and their proof)

I Specifications of programs

I Advanced type paradigms : polymorphism, dependent types,
higher order types, etc.

This class is mainly based on examples. For more precise
definitions, please refer to Coq’s user manual or/and Coq’Art book.
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Types and Sorts

It is important to know that Coq’s type system (the Calculus of
Inductive Constructions) has the following properties (necessary to
its soundness) :

I Every well-formed term has (at least) a type,

I Every well-formed type is also a term of the calculus

One quickly infers that every well-formed type has also a type,
which in turns has a type, and so on . . . The type of a type is
always a constant, which is called a sort.
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Types and Sorts

Some types and their sort

nat : Set
bool : Set

nat→nat : Set
True : Prop

∀ n :nat, n < n+1 : Prop
Set : Type0

Prop : Type0

Prop→Prop : Type0

nat→Prop : Type0

Typei : Typei+1

The universe levels (in green) are used internally for avoiding
inconsistencies like Type :Type. They are not available to the user,
and not printed.
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Types and Sorts

Typing judgements

The heart of the Coq system is a type checker, i.e. an algorithm
which checks whether some expression is well formed according to
some set of declarations. This kind of algorithm is part of almost
every programming language’s compiler.

The main difference is that Coq’s typing system is much more
powerful than“ordinary”programming languages such as C, Java,
and even Standard ML, OCaml, etc.
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Types and Sorts

Let Γ be a context (set of variable declarations, constant
definitions,. . .), t be some term and A some type . A typing
judgement is a formula Γ ` t : A which is read“ Taking into
account the declarations of Γ, the term t is well-formed and its
type is A ”.
For instance, if the context Γ contains the declarations :

S : nat → nat
plus : nat → nat → nat
f : list nat → nat
l : list nat
i : nat

Then the judgement Γ ` S(f l) + i : nat expresses that the term
S(f l)+i is well formed in the context Γ, and that its type is nat.
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Types and Sorts

Sequents and typing judgements

Let us consider some judgement Γ ` t : A, where Γ ` A : Prop.
We say that in the context Γ, the term t is a proof (a proof term)
of the proposition A in the context Γ.
For example, let us consider the following context :

P : Prop
Q : Prop
H : P → Q → R
H0 : P → Q

Then the term fun (p :P) ⇒ H p (H0 p) is a term of type P → R
(i.e. a proof [term] of the proposition P → R under the hypotheses
H and H0).
The implication A→B appears to be the type of functions which
associate to any proof of A some proof of B.
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Types and Sorts

A first look at the Curry-Howard correspondance

Concept Programming Logic

v : A Variable declaration hypothesis
Γ Variable declarations hypotheses
Γ ` t : A t has type A (under Γ) t is a proof of A (assuming Γ)
A→B functional type implication

type checking proof verification

This is the real way Coq :

I checks whether a given proof of A is correct (with a type
checking algorithm),

I stores the proofs of theorems in the form of well-typed terms.
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Dependent products

The dependent product construct provides a unified formalism for
implication, universal quantification, types of programming
languages (including polymorphism and much more).

A dependent product is a type of the form ∀ v : A, B where A and
B are types and v is a bound variable whose scope covers B.
Thus, the variable v may have free occurrences in B.

For instance, in the type ∀ n:nat, 0<n→∀ p:nat, 0 < n+p, the
green occurrences of n are bound by the most external ∀ , whereas
they are free in the term 0<n→∀ p:nat, 0 < n+p
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Dependent Products

Dependent product and functional types

We have already seen some types of the form A→B during
previous lectures. In fact A→B is just an abbreviation for the
product ∀ v:A,B, where v doesn’t have any free occurrence in B.
Here are some examples :

Expanded form abbreviated form

∀ n:nat, nat nat → nat
∀ n :nat ,∀H : P n, Q n ∀ n :nat, P n → Q n

That explains why the same tactics intro and apply work the same
way on implication and universal quantifications.
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Dependent Products

Typing rules for dependent products

The well-formedness of a dependent product ∀ v:A,B as well as
its type, depends of the sorts s of A and s ′ of B.
Variations on s and s ′ will allow us to show the big expressive
power of Coq’s type system.
We shall use examples for presenting the most interesting cases.
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Dependent Products

Some examples

s s ′ Example

Prop Prop 0 < n → 0 < n* n : Prop implication

Set Set nat → nat : Set simple functional type

Set Prop ∀ n:nat, 0 ≤ n : Prop first order quantifier

Set Type nat → Prop : Type type of a predicate
on nat

Type Type Prop→ Prop→ Prop : Type type of ∨, ∧, etc.

There was a mistake in the previous version of this slide
(distributed on the keys) : fourth line, third column of this table :
it was written Set instead of Prop.
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Dependent Products

Polymorphism

A polymorphic function such as rev (list reversing) has type
∀ A:Type, list A → list A.
This polymorphic type is a dependent product, formed with sorts
s = s ′ = Type.

Similarly, the type of the fold_right functional is
∀ A B : Type, (B → A → A) → A → list B → A.
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Dependent types

Assume we want to consider programs which operate on binary
words. It is natural to consider a type that is parameterized by the
word size.
We will show later how to define a constant binary_word of type
nat →Set. The formation of this type is allowed by Coq’s type
system (with sorts s = Set and s ′ = Type).
This declaration will allow us to write such definitions as :

Definition short : Set := binary_word 32.

Definition long : Set := binary_word 64.
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Dependent Products

A function for bitwise xor-ing two vectors of the same length will
have the following type :

∀ n:nat, binary_word n →
binary_word n→
binary_word n.

A concatenation function will have the type below :

∀ n p:nat, binary_word n →
binary_word p →
binary_word (n+p).
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Dependent Products

Typing rules for dependent products

Let ∀ v:A,B be some well-formed product (w.r.t. some context
Γ). As for other constructs, we have to give typing rules for
building and applying terms of this type.
It is important to notice that, since the dependent product
generalizes the arrow → and the first-order universal quantifier,
these rules have to be compatible with the rules for functional
types and implication.
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Dependent Products

Elimination rule

As for A→B, the elimination rule for ∀ v:A,B is the application
rule :

App
Γ ` f : ∀ v:A,B Γ ` a : A

Γ ` f a : B{v/a} .

Notation : B{v/a} is the result of replacing the free occurrences of
v in B with a.
Associated tactic : apply f .

Notice that f is a function, which receives the argument a in the
rule above.
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Dependent Products

Introduction rule

Let Γ be some context, and some dependent product ∀ v:A,B
well-formed in Γ. Then we state the introduction rule :

Γ, v : A ` t : B

Γ ` fun v : A⇒ t : ∀ v:A,B

Notice that this rule is an extension of the introduction rule for
arrow types :

Γ, v : A ` t : B

Γ ` fun v : A⇒ t : A→B

The associated tactic is intro v .
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Examples

Advanced Examples

We have already seen how to use dependent products in first-order
logic.
It is interesting to consider other uses of this construct :

I polymorphic functions,

I types depending on data,

I function specifications,

I higher-order logic :representation of rules, and construction of
derived rules, reasoning on functions and predicates, etc.

I definition of new types constructs

I etc.
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Polymorphism

Polymorphism

The module List of the Standard Library contains a definition of a
constant list : Type→Type. Lists can be built with the help of two
constructors 2 :

@nil : ∀ A : Type, list A
@cons : ∀ A : Type, A → list A → list A

Thus the following terms are well typed :

list nat : Set
list Prop : Type
@nil nat : list nat
@cons nat : nat → list nat → list nat
@cons nat 3 (@cons nat 8 (@nil nat)) : list nat
plus::mult::minus::nil : list (nat → nat → nat)

2The symbol @ is used here to write terms with all their implicit arguments
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Examples

Polymorphism

A short remark about notation

Let us consider again the type of cons :

About cons.
cons : ∀ A : Type, A → list A → list A
Argument A is implicit . . .

This answer means that, among the three arguments of cons :

I A type A,

I an element of type A,

I a list of type list A

the first one can be deduced from the other arguments. Quite
similarly, the argument of nil can be deduced from the type of a
list in which it appears.
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Polymorphism

The following notations are equivalent in Coq :

@cons nat 3 (@cons nat 5 (@nil nat))
cons 3 (cons 5 nil)
3::5::nil

On the other hand, if cons or nil don’t receive enough arguments,
it is necessary to make some type information explicit, as in the
following examples :

@nil @cons
@nil nat (nil (A:=nat))
@cons nat (cons (A:=nat))
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Polymorphism

Here are some examples of use of polymorphic types :
Since rev has the type ∀ A : Type, list A → list A, and its
argument A is implicit, the following terms are well typed :

@rev nat : list nat → list nat
@rev nat (1 :: 2 :: 3 :: nil): list nat
rev (1 :: 2 :: 3 :: nil): list nat

We notice that the first argument of rev is used to instantiate the
polymorphic parameter A.
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Polymorphism

The following definition is correct too :

Definition add_r {A:Type}(a:A)(l:list A) : list A :=
l ++ (a :: nil).

Eval compute in add_r 4 (1::2::3::nil).
1::2::3::4::nil : list nat

Eval compute in map (fun f => f 9 5)
(add_r mult (plus::minus::nil)).

14::4::45::nil : list nat

Check add_r mult.
add_r mult :
list (nat →nat→nat) → list (nat→nat→nat)
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Logical rules

Logical rules

Higher order logic (quantification on predicates and functions)
allows us to represent logical rules inside the Coq system, as well
as induction schemes.
Here are some examples :

or_introl : ∀ A B:Prop, A → A ∨ B
False_ind : ∀ A:Prop, False → A
ex_intro : ∀ (A : Type) (P : A → Prop) (x : A),

P x → ex P
nat_ind : ∀ P : nat → Prop,

P 0 →
(∀ n : nat, P n → P (S n)) →
∀ n : nat, P n

nat_ind (fun n:nat ⇒ 0 ≤ n) (le_n 0):
(∀ n : nat, 0 ≤ n → 0 ≤ S n) → ∀ n : nat, 0 ≤ n
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Examples

Logical rules

One can also prove and use new“derived” rules.

Lemma or_False : ∀ P: Prop, P ∨ False → P.
Proof.
intros P [H | ff];[assumption | destruct ff].
Qed.

Lemma or_False’ : ∀ (A: Set)(P : A → Prop),
(∀ x:A, P x ∨ False) →
∀ x:A, P x.

Proof.
intros A P H x. (* P x *)
apply or_False. (* P x ∨ False *)
apply H.
Qed.
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Logical rules

Here is an interesting example, we shall study as an exercise :

Lemma exm_double_neg : (∀ P:Prop, P ∨ ∼P) →
(∀ A:Prop, ∼∼A → A).

Proof.
intros Exm A H.

1 subgoal

Exm : ∀ P : Prop, P ∨ ∼ P
A : Prop
H : ∼∼ A
============================
A

(* (Exm A) is a term of type A ∨ ∼A. *)
destruct (Exm A) as [a|a’].
(* end of proof as an exercise *)
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Logical rules

Lemma double_neg_exm : (∀ A:Prop, ∼ ∼ A → A) →
(∀ P:Prop, P ∨ ∼P).

Proof.
intros D P.
D : ∀ A : Prop, ∼ ∼ A → A
P : Prop
============================
P ∨ ∼ P

apply D.

D : ∀ A : Prop, ∼ ∼ A → A
P : Prop
============================
∼ ∼ (P ∨ ∼ P)

. . .
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Logical rules

One can also create new connectives and quantifiers :

Definition ex_or (A B : Prop) := A ∧ ∼ B ∨
B ∧ ∼ A.

Definition exists_one {A:Type} (P:A→Prop) : Prop :=
∃ a:A, P a ∧ ∀ b:A, P b → a = b.
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Logical rules

Goal exists_one (fun i : nat ⇒ ∀ j:nat, i ≤ j).
Proof.
unfold ex1.
1 subgoal
============================
exists a : nat,

(forall j : nat, a <= j) ∧
(forall b : nat, (forall j : nat, b <= j) -> a = b)

exists 0; split.
2 subgoals

============================
∀ j : nat, 0 ≤ j

subgoal 2 is:
∀ b : nat, (∀ j : nat, b ≤ j) → 0 = b
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Logical rules

Lemma ex_or_imp : forall P Q, ex_or P Q -> P -> ∼ Q.
Proof.
unfold ex_or;tauto.
Qed.

Lemma exists_one_exists : forall (A:Type)(P:A->Prop),
exists_one P -> exists x, P x.

Proof.
intros A P H;destruct H as [x [H1 _]];exists x; auto.
Qed.
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Examples

Impredicative definitions

Just for the fun

It is possible to use the formation rules of dependent products to
define propositions [resp. predicates] as universal quantification on
all propositions (including themselves). This kind of definition is
called impredicative. We give them as material for some exercises,
but they are not used in Coq developments.

Definition my_False : Prop := ∀ P: Prop, P.

Definition my_or (A B:Prop): Prop :=
∀ C:Prop, (A → C) → (B → C) → C.



Inside Coq’s Type System

Examples

The rule of conversion

The rule of conversion

Let us consider again our previous declarations :

Parameter binary_word : nat → Set.

Definition short : Set := binary_word 32.
Definition long : Set := binary_word 64.

bitwise_xor :∀ n:nat, binary_word n →
binary_word n→
binary_word n.

binary_word_concat: ∀ n p:nat, binary_word n →
binary_word p →
binary_word (n+p).
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The rule of conversion

Let us consider the term binary word concat 32 32. According to
our typing rules, its type is : binary word 32 → binary word 32 →
binary word (32 + 32).
However, it is possible to type the following definition :

Definition short_concat : short → short → long :=
binary_word_concat 32 32.
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The rule of conversion

Coq’s type system has an important property : since types are
terms too, computation rules (simplification, constant unfolding,
evaluation, etc.) apply also to types.

Moreover, the rule of conversion tells us that if some term t has
type A, and terms A and B can be reduced into the same
term/type C then t has type B too.

Our definition of short concat uses this property, through the
expansion of the constants short, long and the simplification of
32 + 32 into 64.
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Function Specifications

The following dependent product is allowed in Coq :

∀ A : Type, (A → Prop) → Type : Type

This is the type of the constant sig. This constant is often used
under the form sig (fun x :A ⇒ t), abbreviated into {x :A | t}.
In fact, sig P is an inductive type, whose unique constructor is :

exist :∀ a:A,P a → sig P

That means that a term of type sig P is built from a data a : A
and a proof of P a.
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Function Specifications

Let us consider for instance the following type :

∀ n : nat, 2 ≤ n →
{p:nat | n ≤ p ∧ prime p = true }

This kind of type is called a strong specification. This example
defines the type of functions which take as argument a natural
number n such that 2 ≤ n and return a number p, together with a
proof that n ≤ p and p is a prime number. Such a function is
called a certified program.
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Function Specifications

The constant sumbool of type Prop→Prop→Set allows us to
specify certified decision functions.
Formally, if A and B are two propositions, then sumbool A B (also
written {A }+ {B} ) is the type of terms of one of the two forms :

I left B tA where tA : A

I right A tB where tB : B
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Function Specifications

For instance, the following type :

∀ (A:Type)(R:A → A → Prop),
total_order A R →
(∀ a b:A, {R a b} +{∼ R a b}) →
∀ (l:list A),
{l’ : list A | sorted R l’ ∧ permutation l l’}

is a specification of polymorphic list sorting functions (the
definition of the predicates total order, sorted and permutation is
left as an exercise).
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Function Specifications

Certified programs are often built interactively. Though they are
hardly readable mixtures of functional programming and proofs,
they enjoy some interesting properties :

I their interactive development is guided by the specification, so
that they are built and proved at the same time,

I the proof of correction is inside the term,

I extraction algorithms are able to erase the logical arguments
and return safe functional programs (for Haskell, OCaml
etc.)
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Using the conversion rule

Using the conversion rule

We have already seen the conversion rule, which allows to consider
computations on types (see documentation and/or the book
(chapter 2) for a presentation of Coq’s computation rules : β, δ, ι,
and ζ rules).
Using this rule in a goal-directed proof allows us to change the
current goal’s conclusion A for some type B that is convertible
with A and better suited for applying some tactic. This conversion
is sometimes automatic, driven by the tactic (e.g. destruct,
induction, rewrite . . .at, and often apply.)
In other cases, auxiliary tactics like pattern or change are used to
force the conversion.
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Using the conversion rule

Parameter odd : nat→ Prop.
Lemma odd_S_2n : ∀ n:nat, odd (1 + (2 * n)).
Admitted.
Hint Resolve odd_S_2n.

Goal odd 37.
change (odd (1 + (2 * 18))).
auto.
Qed.

See also : pattern.
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Using the conversion rule

Using the conversion rule (2)

Lets us admit the following lemma :

Lemma Even_ind : ∀ (P:nat→Prop),
P 0 →
(∀ p:nat, P p → P (S (S p))) →
∀ n:nat, Even n → P n.

Lemma Even_plus_Even :
∀ i, Even i → ∀ n, Even n → Even (n + i).

intros i Hi.
i : nat
Hi : Even i
============================
∀ n : nat, Even n → Even (n + i)

We want now to apply Even ind.
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Using the conversion rule

The following terms are convertible :

∀ n : nat, Even n → Even (n + i)

∀ n : nat, Even n → (fun n:nat => Even (n + i)) n

Then we can apply Even ind
(with the substitution P := fun n : nat⇒Even(n + i)).
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Using the conversion rule

apply Even_ind.
i : nat
Hi : Even i
============================
Even (0 + i) (* P 0 *)

Subgoal 2 is :
(* ∀ p : nat, P p → P (S (S p) *)
∀ p : nat, Even (p + i) → Even (S (S p) + i)

In some situations, one must use pattern to decompose a
proposition into some application P t . . . .
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Problems with equality

Lemma concat_assocative : ∀ (n p q: nat)
(u : binary_word n)
(v : binary_word p)
(w : binary_word q),

binary_word_concat (binary_word_concat u v) w =
binary_word_concat u (binary_word_concat v w).

The term ”binary word concat u (binary word concat v w)”has type
”binary word (n + (p + q))”while it is expected to have type
”binary word (n + p + q)”.
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Advanced features

Problems with equality

Require Import JMeq.

JMeq : ∀ A : Type, A → ∀ B : Type, B → Prop
JMeq refl: ∀ (A : Type) (x : A), JMeq x x

Lemma concat_associative : ∀ (n p q: nat)
(u : binary_word n)
(v : binary_word p)
(w : binary_word q),

JMeq (binary_word_concat (binary_word_concat u v) w)
(binary_word_concat u (binary_word_concat v w)).
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