
Interactions between inductive and dependent types

Interactions between inductive and dependent
types

Yves Bertot

August 2009



Interactions between inductive and dependent types

Mixing inductive types with dependent types gives us more
expressive power, stronger invariants for datatypes, new ways to
define predicates. In this lesson, we will concentrate on :

I Dependent pattern matching and recursion

I Inductive types with dependently typed constructors

I Inductive families of types used as predicates

I Specific proof techniques



Interactions between inductive and dependent types

Dependent pattern matching and recursion

Dependent pattern-matching

Attach to pattern-matching construct an expression that describes
the returned type

match e as x return t with
p1 => e1

| p2 => e2

end

The pattern-matching construct is well formed if each e1 has type
t[x\pi ]



Interactions between inductive and dependent types

Dependent pattern matching and recursion

Example on dependent pattern-matching

Define a function on natural numbers that maps 0 to another
natural number and all other natural numbers to a boolean values
First define the function that describes the returned type

Definition rt (x : nat) :=
match x with 0 => nat | S p => bool end.

Definition f1 (x : nat) :=
match x as e return rt e with
0 => 1 | S p => true

end.

Definition f2 (x : nat) :=
match x return rt x with 0 => 1 | _ => true end.



Interactions between inductive and dependent types

Dependent pattern matching and recursion

Dependent pattern-matching with recursion

match e as x return t with
p1 => e1

| p2 => e2

end

If the type of e has recursion, then recursive calls may occur in e1

and e2, with relevant types...



Interactions between inductive and dependent types

Dependent pattern matching and recursion

Recursive dependent pattern-matching on nat

Fixpoint f (x : nat) : A x :=
match x return A x with
0 => V

| S p => E p (f p)
end.

The expression V must have type A 0
the expression E must have type
forall p :nat, A p -> A (S p)



Interactions between inductive and dependent types

Dependent pattern matching and recursion

Recursive dependent pattern-matching on nat (2)

Fixpoint nat_rect (P:nat -> Type)
(V : P 0)
(E : forall n:nat, P n -> P (S n))
(n : nat) : P n :=
match n with
0 => V

| S p => E p (nat_rect P V E p)
end.

nat_rect :

∀ P, P 0 -> (∀ n, P n -> P (S n)) -> ∀ n, P n

Done automatically when receiving the type definition
Usual mathematical induction principle on natural numbers



Interactions between inductive and dependent types

Dependently typed constructors of inductive types

Dependently typed constructors

With dependent types, we can set constraints on components of
structures

Inductive binary_word1 (n:nat) : Type :=
bwc (l : list bool) (_ : length l = n).

The type of the second component depends on the first one.
Alternative approach to fixed length vectors :

Inductive binary_word : nat -> Type :=
bw_nil : binary_word 0

| bw_cons :
forall n, bool -> binary_word n -> binary_word (S n).



Interactions between inductive and dependent types

Dependently typed constructors of inductive types

Possibly empty inductive type families

Inductive even_line : nat -> Type :=
el0 : even_line 0

| el2 : forall n, even_line n -> even_line (S (S n)).

The types even_line 0, even_line 2, etc, are inhabited
It is possible to show that even_line 1 is not.



Interactions between inductive and dependent types

Dependently typed constructors of inductive types

Recursion on inductive types families

Induction principles use predicates that cover all members of the
type family
Quantification over the index, then over the members
Each constructor gives rise to an hypotheses (as for nat)



Interactions between inductive and dependent types

Dependently typed constructors of inductive types

Induction on even line

forall A : forall n, even_line n -> Type,
A 0 el0 ->
(forall n (t : even_line n), A n t ->

A (S (S n)) (el2 n t)) ->
forall n (t : even_line n), A n t



Interactions between inductive and dependent types

Dependently typed constructors of inductive types

How to write the recursion function

Fixpoint elr (A : forall n, even_line n -> Type)
(V : A 0 el0)
(E : forall n, even_line n -> even_line (S (S n)))
(n:nat) (e:even_line n) : A n e :=
match e as e0 in even_line n0 return A n0 e0 with
el0 => V

| el2 p t => E p t (elr A V E p t)
end.



Interactions between inductive and dependent types

Inductive predicates

Using inductive types as predicates

As a datatype even_line is not interesting
For a given n, even_line n contains zero or one element
The information whether it contains an element is interesting, not
the element
It is worth having a new recursion principle that concentrates on n

forall A : nat -> Prop,
A 0 ->
(forall n, even_line n -> A n -> A (S (S n))) ->
forall n, even_line n -> A n

Derivable directly from the previous one
Done automatically when the type is in Prop instead of Type



Interactions between inductive and dependent types

Inductive predicates

A tour of inductive predicates

Most logical connectives actually are inductive predicates
This explains why case, destruct, elim are useful on connectives
The order ≤ on natural numbers is also defined inductively
Programming language semantics are also easily described using
inductive predicates

I Reminiscent of logic programming

I No problems with function termination



Interactions between inductive and dependent types

Proof techniques

Induction on inductive predicates

Assume the following inductive predicate :

Inductive even : nat -> Prop :=
ev0 : even 0 | ev2 : forall n, even n -> even (S (S n)).

Show the obvious property of even numbers :

Lemm ex3 : forall n, even n -> exists p, n = 2 * p.

A proof by induction will follow the structure of constructors



Interactions between inductive and dependent types

Proof techniques

Induction on an inductive predicate

intros n H; induction H.
2 subgoals

================

exists p, nat, 0 = 2 * p

exists 0; reflexivity.
H : even n

IHeven : exists p, n = 2 * p

================

exists p, S (S n) = 2 * p

destruct IHeven as [p q]; subst; exists (S p); ring.
Proof completed.



Interactions between inductive and dependent types

Proof techniques

Inversion

Proofs by induction on predicate don’t work well if arguments are
not variables
A stronger tactic can be used in this case : inversion
For a given argument, inversion detects which constructors could
be used to prove the instance and collects facts from the premises
This tactic makes it possible to move from conclusion to premises,
hence the name.



Interactions between inductive and dependent types

Proof techniques

Examples using inversion

Lemma ex4 : forall n, even (S (S n)) -> even n.
intros n H; inversion H.
H0 : even n

===============

even n

assumption.

The tactic determines that only the constructor ev2 could be used
to prove even (S (S n))
It adds the corresponding instance of the premise to ev2 to the
context



Interactions between inductive and dependent types

Proof techniques

Second example using inversion

Lemma ex5 : even 1 -> False.
intros H; inversion H.
proof completed.


	Dependent pattern matching and recursion
	Dependently typed constructors of inductive types
	Inductive predicates
	Proof techniques

