
Infinite Objects and Proofs

Infinite Objects and Proofs 1

Pierre Castéran

Beijing, August 2009

1This lecture corresponds to the chapter 13 : “Infinite Objects and Proofs”
of the book.



Infinite Objects and Proofs

In this lecture, we shall see how to represent in Coq infinite or
potentially infinite data structures. Such objects may appear in
computer science (e.g. the sequence of inputs or outputs of some
process), or in mathematics (for instance, the infinite sequence of
all prime numbers, 2, 3, 5, 7, 11, . . . )



Infinite Objects and Proofs

Of course, there is no hope to represent any infinite data structure
in a bounded computer’s memory.
However, we shall present some constructs and computation
mechanisms which help us to simulate the building and exploration
of such objects.
For instance, building in Coq the infinite sequence of prime
numbers or the execution trace of some process amounts to create
some (finite) term and the possibility to access sequentially to any
item of this sequence.



Infinite Objects and Proofs

We shall learn how to :

I declare types for this kind of structures,

I build terms of these types (data and proofs),

I use these structures (as arguments of functions, in proofs.)

The examples we will study use potentially infinite lists, which
correspond to, for instance, the output stream of a process which
can either stop or run indefinitely.



Infinite Objects and Proofs

Definition of a co-inductive type

Set Implicit Arguments.

CoInductive LList (A: Type) : Type := (* lazy lists *)
| LNil : LList A
| LCons : A -> LList A -> LList A.

Implicit Arguments LNil [A].

The constants LNil and LCons are the two constructors of the type
LList A.
There is no induction principle, which would say that any such list
could be obtained by a finite number of constructor applications
(and thus would be finite).



Infinite Objects and Proofs

It is easy to build finite lists of our new type :

Check (LCons 1 (LCons 2 (LCons 3 LNil))).
LCons 1 (LCons 2 (LCons 3 LNil))

: LList nat

But how to build infinite lists ?

(* the list of natural numbers starting from n *)
Fixpoint from (n:nat) : LList nat

:= LCons n (from (S n)).

Error message; bad formed recursive definition !



Infinite Objects and Proofs

Defining functions using CoFixpoint

Infinite objects can be defined by means of non-ending methods of
construction, like in lazy functional programming languages. The
CoFixpoint command can be used in Coq for that purpose.

CoFixpoint from (n:nat) : LList nat :=
LCons n (from (S n)).

Definition nat_stream := from 0.

CoFixpoint repeat (A:Type)(a: A) := LCons a (repeat a).

There is also a construct cofix for defining anomynous functions for
building infinite objects.



Infinite Objects and Proofs

CoFixpoint is not so simple

Let’s try to do some tests on from and repeat.

Eval simpl in (from 2).
= from 2
: LList nat

Eval compute in (from 2).
= (cofix from (n : nat) : LList nat := LCons n (from (S n))) 2 2

: LList nat

A term of the form cofix f x . . . := t is not spontaneously
unwinded, (e.g. from 2 into LCons 2 (from 3)), since it would lead
to infinite computations.

2The orange term is just the value of the constant from



Infinite Objects and Proofs

Lazy computing

A term built with a cofixpoint operator is unwinded only when
destructured by a matching construct, i.e. when its contexts wants
to inspect the constructor it has been built with.

Eval compute in (match from 2 with
| LNil ⇒ None
| LCons a l’ ⇒ Some a
end).

= Some 2
: option nat

The match construct surrounding the co-fixpoint term asks for its
structure (constructor and arguments), and forces it to be
unwinded into LCons 2 (from 3).



Infinite Objects and Proofs

Examples of programming with lazy lists

Definition LHead (A:Type) (l:LList A) : option A :=
match l with
| LNil ⇒ None
| LCons a l’ ⇒ Some a
end.

Definition LTail (A:Type) (l:LList A) : LList A :=
match l with
| LNil ⇒ LNil
| LCons a l’ ⇒ l’
end.

Eval compute in (LHead (LTail (LTail (from 3)))).
= Some 5 : option nat



Infinite Objects and Proofs

Guard conditions

The interaction between matching constructs and the co-fixpoint
unwinding mechanism, and the requirement on termination of
computations lead to the following principle :

Any unwinding of some cofix-point term must produce
some constructor (reclaimed by some match).

A stronger condition is implemented in Coq :

Any recursive call of a function defined as a co-fixpoint
must be the argument of a non-empty term built only
with constructors.



Infinite Objects and Proofs

CoFixpoint filter (A:Type)(p:A->bool)(l:LList A) :=
match l with
LNil ⇒ LNil

| Lcons a l’ ⇒ if p a then LCons a (filter p l’)
else filter p l’

end.

If Coq accepted this definition, the evaluation of the following term
would lead to a non-ending computation.

filter
(fun i:nat ⇒ match i with | 0 ⇒ false

| _ ⇒ true end)
(repeat 0)



Infinite Objects and Proofs

A well-formed definition

CoFixpoint LAppend (A:Type) (u v:LList A) : LList A :=
match u with
| LNil ⇒ v
| LCons a u’ ⇒ LCons a (LAppend u’ v)
end.

In the next class, we shall study some properties of this function.



Infinite Objects and Proofs

CoFixpoint LMap(A B:Type)(f : A -> B)(u :LList A)
: LList B :=
match u with
| LNil ⇒ LNil
| LCons a u’ ⇒ LCons (f a) (LMap f u’)
end.

Eval compute in (LHead (LTail
(LMap (fun i ⇒ i * i) (from 3)))).

Some 16 : option nat



Infinite Objects and Proofs

Inductive predicates on a co-inductive type

There is no problem at all for defining an inductive property on
such a type as LList A.

Inductive Finite(A:Type): LList A -> Prop :=
Finite_LNil : Finite LNil
|Finite_Lcons : forall a l, Finite l ->

Finite (LCons a l).

Lemma L123 : Finite (LCons 1 (LCons 2 (LCons 3 LNil))).
Proof.
repeat constructor.
Qed.



Infinite Objects and Proofs

Co-inductive predicates

A co-inductive predicate is defined as an“ordinary”co-inductive
type, of sort Prop. For instance, let us define the Infinite predicate.

CoInductive Infinite(A:Type): LList A -> Prop :=
Infinite_LCons : forall a l, Infinite l ->

Infinite (LCons a l).

Notice that this predicate has a unique constructor ; unlike most
inductive predicates, there is no base case (non recursive
constructor).



Infinite Objects and Proofs

The following lemma is easily proved using a case analysis on l,
and inversion on hypotheses Infinite LNil and Infinite (LCons a l)

Lemma Tail_of_Infinite : forall (A:Type)(l : LList A),
Infinite l ->
Infinite (LTail l).

Proof.
destruct l.

2 subgoals

A : Type
============================
Infinite LNil -> Infinite (LTail LNil)

subgoal 2 is:
Infinite (LCons a l) -> Infinite (LTail (LCons a l))
intro H;inversion H. (* inversion 1 *)



Infinite Objects and Proofs

1 subgoal

A : Type
a : A
l : LList A
============================
Infinite (LCons a l) -> Infinite (LTail (LCons a l))

intro H; inversion_clear H.
1 subgoal

H : Infinite (LCons a l)
H1 : Infinite l
============================
Infinite (LTail (LCons a l))
simpl;assumption.
Qed.



Infinite Objects and Proofs

Infinite Proofs

We would like to prove in Coq the proposition
∀ n :nat, Infinite (from n).
In other words, we want to build a function that associates to any
n a term of the co-inductive type
Infinite (from n), i.e. an infinite proof tree of the form :

Infinite_LCons n (from n)
(Infinite_LCons (S n) (from (S n))
(Infinite_LCons (S (S n)) (from (S (S n)))
...

Let us look at some problems we have to solve :



Infinite Objects and Proofs

If we manage to get the following subgoal in our proof :

1 subgoal

Exp2_Infinite : forall n : nat, Infinite (from n)
n : nat
============================
Infinite (LCons n (from (S n)))

then this subgoal is solved by the tactic constructor ;apply
Exp2 Infinite.
We will see now how to get this subgoal.



Infinite Objects and Proofs

The tactic cofix

The tactic cofix helps to build proof terms of type ∀ x : A, P x of
the form cofix H (x : A) : P x := t, where t is a term of type
∀ x : A, P x in the context Γ augmented with the hypothesis
H : ∀ x : A, P x . The term t must be guarded, in order to make
the proof term well formed.

The tactic cofix proceeds as follows :

1. On a goal of the form ∀ x : A, P x , where P is a co-inductive
type family, the call cofix H adds to the current context an
hypothesis H : ∀ x : A, P x ,

2. the user tries then to solve the goal ∀ x : A, P x , building a
solution t in which all recursive calls to H are guarded,

3. when the whole proof term is built (after the Qed command),
the guard condition is checked by the system.



Infinite Objects and Proofs

In our example, we would like to build a proof term t for getting a
proof term like :

cofix H (n:nat) : Infinite (from n) := t :
∀ n:nat, Infinite (from n)

As for functions like from, the whole term must be guarded, i.e.
each recursive call of H must be surrounded only by calls of
Infinite’s constructor Infinite LCons.



Infinite Objects and Proofs

The tactic cofix at work

Lemma from_Infinite : forall n, Infinite (from n).
Proof.
1 subgoal

============================
forall n : nat, Infinite (from n)

cofix H.
1 subgoal

H : forall n : nat, Infinite (from n)
============================
forall n : nat, Infinite (from n)



Infinite Objects and Proofs

A bad attempt

1 subgoal

H : forall n : nat, Infinite (from n)
============================
forall n : nat, Infinite (from n)

assumption.
Proof completed.
Qed.
Error: Recursive definition of H is ill-formed.
In environment
H : forall n : nat, Infinite (from n)
Unguarded recursive call in ”H”.



Infinite Objects and Proofs

What happened ? The use of assumption on the hypothesis H led
to the building of a non-guarded proof term

cofix H (n :nat) : Infinite (from n) := H

What we have to do is forcing the use of Infinite’s constructor in
order to make it surround the recursive call of H.



Infinite Objects and Proofs

Let us consider some natural number n.

intro n.
1 subgoal

H : forall n : nat, Infinite (from n)
n : nat
==================
Infinite (from n)

Since the term from n doesn’t have the form LCons t1 t2, we have
first to replace the term from n by its unwinded form
LCons n (from (S n)).



Infinite Objects and Proofs

The ad-hoc tactic unwind (available in this class’s list of exercises)
allows us to introduce an equality in the context :

unwind (from n) (LCons n (from (S n))).
1 subgoal

H : forall n : nat, Infinite (from n)
n : nat
eg : from n = LCons n (from (S n))
============================
Infinite (from n)



Infinite Objects and Proofs

End of the proof

rewrite eg.
1 subgoal

H : forall n : nat, Infinite (from n)
n : nat
eg : from n = LCons n (from (S n))
============================
Infinite (LCons n (from (S n)))

constructor;auto.
Qed.

The proof term built by this proof is guarded, since the subterm
that corresponds to an application of H is surrounded by
constructors.



Infinite Objects and Proofs

An Important Definition

We say that two (lazy) lists l and l ′ are extensionally equal if they
share the same elements in the same order. This relationship can
be defined as a co-inductive predicate :

CoInductive LList_eq (A:Type)
: LList A -> LList A -> Prop :=

| LList_eq_LNil : LList_eq LNil LNil
| List_eq_LCons : forall a l l’,

LList_eq l l’ ->
LList_eq (LCons a l) (LCons a l’).

We also say that l and l ′ are bisimilar.



Infinite Objects and Proofs

In Coq, there is no way to prove the following theorem :

∀ (A:Type)(l l’: LList A), LList_eq l l’ → l=l’.

On the other hand, we can“easily”prove the following equivalence :

Lemma LList_eq_LNth : forall A (l l’: LList A),
LList_eq l l’ <->
(forall n, LNth n l = LNth n l’).



Infinite Objects and Proofs

A Last example

Let us consider the following statement :

Lemma Infinite_not_Finite : ∀ A (l:LList A),
Infinite l → ∼ Finite l.

Proof.

We cannot use cofix for solving this goal, since cofix helps to prove
statements in which the associated co-inductive type is in the
conclusion position.
Moreover, no induction on l is possible !



Infinite Objects and Proofs

On the other hand, it is possible to do an induction on an
hypothesis of type Finite l :

intros A l H H0;generalize H.
1 subgoal

A : Type
l : LList A
H : Infinite l
H0 : Finite l
============================
Infinite l → False

induction H0.



Infinite Objects and Proofs

2 subgoals

A : Type
H : Infinite LNil
============================
Infinite LNil → False

subgoal 2 is:
Infinite (LCons a l) → False
inversion 1.(* solves the first subgoal *)



Infinite Objects and Proofs

1 subgoal
a : A
l : LList A
H : Infinite (LCons a l)
H0 : Finite l
IHFinite : Infinite l → Infinite l → False
============================
Infinite (LCons a l) → False
inversion_clear 1.



Infinite Objects and Proofs

1 subgoal
...
H0 : Finite l
IHFinite : Infinite l → Infinite l → False
H2 : Infinite l
============================
False

auto.
Qed.



Infinite Objects and Proofs

Conclusion

I Handling infinite objects in a finite computer is one the most
exciting activities in computer science,

I Using co-inductive definitions is rather more difficult than
using inductive ones,

I Don’t forget that injection, discriminate, inversion and
pattern-matching also work in this context,

I A good practice (running examples, doing exercises) is
necessary for feeling comfortable with co-inductive types.


