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Motivations and overview

F : signature of operations on graphs, hypergraphs, i.e.,
relational structures
- F-algebra
- Recognizable sets REC(F) (finite congruences, no
automata)
- Equational sets EQ(F) (« context-free » ; equation
systems, no rewriting rules)
Robustness :

F =G means REC(F) = REC(G) and EQ(F) = EQ(G).

- Equivalences between small and large signatures

- Extension to particular operations like fusion and other non
quantifier-free definable operations

- « Sources » in graphs and hypergraphs are dispensable

Relationships with MS logic :

- MS-definable € REC
- MS-transductions preserve EQ
- New result : inverse MS-transductions preserve REC.
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1. Background : The al_g_ebra of relational
structures

2 = fixed countable set of relation symbols with arity

STR(2) = finite relational X -structures, for 2 finite < X

The fundamental signature QF :

Binary operation(s) :
disjoint union @ : STR(X) X STR(I') >STRZXUI)

Unary operations : STR(Z) >STR(I")
defined by quantifier-free formulas :
- domain restriction (ex. delete all isolated vertices)
- redefinition of relations (ex. edge-complement, addition of
new edges based on vertex labels)

Nullary symbol 1 : designating the structure in STR(J) with a single
element.

STR the many-sorted QF-algebra with domains STR(X) ;
each finite X is a sort.

T(QF)s = finite terms over QF (of sort ).
Value mapping val : T(QF)x 2> STR(X).

Reminder: S countable set of sorts, F an S-signature
(means that each f in F has a type
$1S2 ...8k > S, with's,s,€ S)

M=<(Mg)scs, (fw)cr> an F-algebra, MsnM; =0, ifs # t
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Equational sets
Context-Free (Graph) Grammars in an
algebraic setting.

Reminder : For words the set of context-free rules:
S »>aST: S—>b ;T ->5cTTT; T —5a

is equivalent to the system of two set equations:
S=aST U {b)
I'=cTlTTT ), {a}

where S is the language generated by S (idem for Tand T).

For graphs we consider similarily systems of equations like:
S =1fk(S)T) w {b}
r=17,f(g(T) m(T))v{a}

where f is a binary operation, g, k, m are unary operations on

graphs, a, b are basic graphs.

An equational set is a component of the least (unique)

solution of such an equation system.

There are two sets of graph operations, two classes of context-free sets
of graphs, the HR-context-free sets (for Hyperedge-Replacement) and the VR-

context-free sets (for Vertex-Replacement).
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Equational sets in STR
EQ(X) = the equational subsets of STR(X)

EQ= UEQ(), all =

The operations are those of QF

Examples :

Context-free languages,
Trees, Graphs of tree-width <k,

Cographs, Graphs of clique-width < k

Alternative characterization of equational sets:

EQ(2) = val(REC(T(QF))s)
Closure properties :  union, homomorphisms,
intersection with a recognizable set

Remark :

L € EQ(X) < L = val(K) for some
Ke REC(T(QF(I))x), 2 < T

Question : what is the minimal I" ?



Recognizable sets

L < STR(X) is recognizable iff

L is saturated for a finite congruence = over STR.

an equivalence relation,

~ § = S and S’ belong to the same STR(2),
a congruence for the operations of QF,

finitely many classes of each sort 2.

e o 11

Notation : REC(X) = the recognizable subsets of STR(X)

REC = UREC(X), all =

Examples : Regular languages and “tree languages”
(i.e., sets of finite terms),

Trees, planar graphs, connected graphs,

(More to come)

Closure properties :

Boolean operations, inverse homomorphisms.

Remark :
Can L € REC(2) be defined in terms of a congruence
on STR(I')for a « small » I" ?

Question : what is the minimal I" ?



Monadic Second-Orde_r _(MS) Logic

First-order logic on power-set structures

= First-order logic extended with (quantified) variables
denoting subsets of the domains.

MS properties :
transitive closure,
properties of paths, connectivity,
planarity (via Kuratowski, uses connectivity),
k-colorability.
Notation :
MS-def(2) < P(STR(X))

= sets characterized as { S / S |= o }
for an MS formula ¢

Main result : MS-def(2) < REC(X)

This result holds for CMS :

Counting Monadic Second-Order logic, using
modulo-counting set predicates.



MS transductions

Multivalued mappings T : STR(2) 2 STR(I)
S [——T =1(S)

where T is :
a) defined by MS formulas

b) inside the structure: S®S®...® S
(fixed number of disjoint "marked" copies of S)

c) in terms of "parameters" i.e. subsets
X1, ...,.Xp of the domain of S

Proposition : The composition of two
MS transductions is an MS transduction.

Remark : For each tuple of parameters Xy, ..., X,
satisfying an MS property, T is uniquely
defined. T is multivalued by the different
choices of parameters.

Quantifier-neight of T : the maximum quantifier-height

of the formulas which specify T
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Example of an MS transduction (without parameters)

The square mapping & on words: u |—> uu

We let u = aac
S 09090
a a ¢
S®S « > e « D e
a a ¢ a a ¢
P1 P1 Pq P2 P2 P2
d(S) B i e e I S S
a a C a a C

In 3(S) we redefine Suc (i.e., > ) as follows :

Suc(x,y): < pq (x) & pq (y) & Suc(x,y)

V Py (X) & py (Y) & Suc(x,y)
vV pq (X) & py (y) & "x has no successor"

& "y has no predecessor'

We also remove the "marker" predicates p4, p,.



The fundamental property of MS transductions :

S | > T(S)

Ty —— v

Every MS formula v has an effectively computable
backwards translation t #(y), an MS formula, such that :

S |=t#(y) iff ©(S) I=vy

The verification of v in the object structure t(S) reduces
to the verification of t#(y) in the given structure S.

S describes t(S); the MS properties of t(S) are
described by MS properties of S.

Main results :

1) The value mapping T(QF(Zul’))s 2 STR() is an
MS transduction.
2) L < STR(2) is equational iff L = t(Trees), for an MS

transduction t.
3) The image of an equational set under an MS
transduction is equational

Theorem : The inverse image of a recognizable set
under an MS transduction is recognizable.
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Relationships between algebraic
and logical notions

Algebraic Algebraic Logical Closure
notions | characterizations | characterizations | properties

union, M Rec

EQ equation systems | MS-trans(Trees) homo
Val(REC(Terms)) MS-trans

Boolean opns
REC congruences MS-def — REC homo-1
MS-trans

Signatures for graphs and hypergraphs :
HR : hypergraphs with “sources”

VR : graphs with vertex labels
VR+QFgapns : With quantifier-free operations

(ex. edge complement)

QF : hypergraphs, i.e., relational structures
QF+ Fusion : hypergraphs.
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2. Local information and annotations

Let S in STR(X), a4, ...,an in Dg (the domain of S).

tpk(S, a1, ...,an) ={ 0 / S |=(p (a4, ...,an),
¢ € MS(Z, X1, ...,Xn) of quantifier-height < k }
e P(MSk(Z, x1, ...,Xn))
= (k,n)-Types

tpk(S, ay, ...,an) is alocal information relative to
a4, ...,an in S.

tpk(S) is a global information relative to S.
Annotation : S| M m(S) = (Ds, (Tp) p e (kn)-Types, n<m)-
To(a1, ...,an) : < tpk(S, a1, ...,an) = p.
M m(S) =S + local information

Facts :
1) Mk m is an MS transduction of quantifier-height k.
2) My is a quantifier-free transduction.

3) The inverse of M, is a quantifier-free transduction ;
it is functional because M is injective.
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Homomorphic properties of My m

Proposition :
1) Mcm(S®T) = @° [tp(S), tp(T)] (Micrm(S), Micn(T))

2) Forg quantifier-&g‘ree ;
Mk,m(9(S)) =g~ (Mk,m(S))

where g$, @$ [p,p’] are compositions of QF operations.

Proof sketch :
1) By Feferman-Vaught-Shelah :

ST | = (p(a1, ...,dn, b1, ...,bq )
iff for some i :

S [=wi(a1, ...,an) and T|=0i(by, ...,bq)
where y; and 0; are MS formulas of quantifier-height <
that of ¢, and that only depend on ¢. Hence

M m(SDT) = f(Mim(S) @ Mk m(T))

where f redefines the types in S and in T (in terms of tpk(T)
and tpx(S)) and creates appropriate relations for the types
concerning both S and T (using addy vy w of Section 4).

2) By the fact that

tpk(9(S), a1, ...,an) = g&(tpk(S, a1, ...,an))
for some mapping g@ : (k,n)-Types =2 (k,n)-Types (by using
backwards translation relative to g).

We let g$ replace g by p whenever g@(q) =p
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Factorization :
Through My, annotations, MS transductions of

Quantifier-height <k reduce to quantifier-free ones :

If g: STR(X) -2 STR(I') is an MS transduction of
Quantifier-height < k, and m = MaximumArity(I') :
9(S) = f [tpk(S)] (Mi,m(S))

where f [p] : STR(Zxm) 2 STR(I') is quantifier-free.

Easy construction, using renamings of the type relations

and deletions of elements.
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3. Inverse MS transductions preserve REC

This is already known for MS definable sets and the
recognizable sets of graphs of bounded tree-width.

Proof sketch :
Every MS transduction is the composition of
MS transductions of 3 types :

- Copyk

- Parameterless noncopying
- Guessing of unary relations

1) Copyk
S |[> S®S® ...® S (ktimes)

augmented with binary relations Yjjfor1<i<j<Kk

defined as
{(x,y) / xis the i-copy, y is the j-copy of some u in Dg}
Facts: a) Copyk(S @ T) = Copyk(S) ® Copyk(T)

b) For f quantifier-free, there is a quantifier-free g:

Copyk(f(S)) = g(Copyk(S))

Hence Copyy is “almost” a homomorphism, and REC is

preserved under inverse homomorphisms.
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2) Forgetting unary relations :

We let fgt; : STR(2. w I1) > STR(2) just « forget » 11,

I'Tis afinite set of unary relations.

Its inverse consists in « guessing » the relations in 11, this
can be done by means of parameters of an MS transduction.

Lemma : If L € REC, then fgtg(L) € REC.

Proof : From a congruence = for L, we define the
equivalence :

S =T iff {[U]l=/ fgtn(U)=S}={[U]= / fgtn(U) =T}
It is finite, saturates fgty(L).
Itis a congruence : we use the fact that

S @ T = fgt(W) iff
there exist S’, T' suchthat W=S'® T,

S = fgtr1(S’), and T = fgt(T),

and a similar observation for unary operations.
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3) Parameterless noncopying MS transductions.

We letL € REC(])
T be a parameterless noncopying MS transduction :
STR(2) = STR(I") of quantifier-height k

We prove that T (L) € REC(Z)

From a congruence = for L, we define, on each set
STR(A), the equivalence :

S =T iff

tpk(S) = tpk(T) and for every parameterless noncopying
MS transduction p : STR(A) = STR(I') of quantifier-height at
most k, we have u(S) = u(T).

(tpk(S) is the MS theory of S of quantifier height at most k.)

It is finite, saturatesr'1(L) (because T is one of the
considered transductions u ).



-17-

It is a congruence. We consider f unary, quantifier-
free. Let S =T :

tpk(f(S)) = FO( tpk(8)) = F®(tpi(T)) = tp(f(T)) (cf. page 12).
For every W, Jof is a parameterless noncopying

MS transduction of quantifier-neight k :

H(f(S)) =pof(S) = pof(T) = u(f(T)). Qed
Remains @ :LetS=T,S' =T, wewantS® S’ =TDT.
We have tp(S @D S’) =tpx(TD T) (by Feferman et al.)
For every u :

(S @ S’) = f [tpk(S @S')[(Mkm(SDS’)) (m = MaxArity(I'), cf.
page 13)

= £ [tp(S ®S)] (@ [tpk(S), tok(S )Mk m(S), M m(S")))

and similarly for y(T @ T°) (cf. page 12)
Since Mg m is an MS transduction of quantifier-height < k:

My m(S) = /gk,m(T)’ Mkm(S’) = g/lk,m(T’)
Also 1 D [tp(T), tpk(T')] = @ [tpk(T), tpk(T")]
fitpk(S © S')]  =f[tp(T © T')]

Since = is a QF-congruence, and f[p], @$ are in QF :

MSD®S)=u(T@®T),hence SRS =TDT
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4. A « small » signatu_re_ equivalent to QF

Vertex k-labelled graphs are in STR({edg, P1, ...., Px})
Equational and recognizable sets are defined w.r.t. all
finite sets of relation symbols of unbounded arity.

Can’t we restrict to {edg, P4, ...., Px,...} ? Yes

More generally, what about subsets of STR(X)?

The VR signature for vertex labelled graphs:

Labelsare 1, ..., K, ...
Operations are : disjoint union @

Edge addition add;; which adds to a graph
the edges x - y for x labelled i and y labelled j

Label renaming ren;_j which replaces label i by j.
Constants : vertex labelled i ; the same with a loop.

Theorem (BC, JEngelfriet, PWeil) :
1) EQ(VR) = EQ(QF) nGraphs = MS-trans(Trees)

2) REC(VR) = REC(QF)Graphs
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Proof sketch :

MS-trans(Trees) < val(REC(T(VR)) = EQ(VR)
Let L = t(Trees) = a set of m-graphs.

1) Technical step :
One has : L = o(K) where

- K € REC(T({#,+})) (# binary,* constant)

- o is a noncopying, nondeleting, MS transduction with-
out parameters. The vertices of G(t) are the occurrences of = in t.

2) For t in Kwe let (cf. page 11)
TH(t) = Mk 2(t) N Leaves(t)
(= the leaves of t with labels and edges encoding the types of
vertices and pairs of vertices for MS formulas of quantifier-height < k)

There exists a tree-transducer 6 thatmaps t inK toa
VR-term O(t) such that :
val(0(t)) = TH(t).

3) Using the proposition page 13 :
o(t) = f(Mi2(t)
= f(M 2(t) N Leaves(t)) = f(TH(t))
= f(val(0(t)))
where f is a composition of VR-operations.

Hence L = val(f(O(K)))

where f(O(K)) €& REC(T(VR))
Hence L € EQ(VR)
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For REC(VR) € REC(QF)MGraphes (proof from BC-PWeil).

Let L be VR-recognizable with conguence =. Itis also

w.r.t. QF. We define congruences = on the sets STR(I") for

all " by :
S=T iff tpg(S)=1tpo(T) and
h(S) = h(T) for every quantifier-free
transduction h : STR(I') 2 k-Graphs.
Congruence :

1) Let g be quantifier-free : STR(A) > STR(I').
Let S=T. For every h quantifier-free, hog is quantifier-free:
h(g(S)) = (hog)(S) = (hog)(T) = h(g(T)),

hence g(S) = g(T).

2) Next we consider ©.
LetS=S,T=T.Tobeproved:S®@T=S DT.

Lemma : For every quantifier-free h : STR(I') - k-Graphs
h(S®T) =tg(S) ® g'(T))

for some composition t of VR operations, and some
quantifier-free g, g’ : STR(I') 2 k-Graphs
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Lemma : For every quantifier-free h : STR(I') - k-Graphs
h(S®T)=tg(S) ® g'(T))

for some composition t of VR operations, and some
quantifier-free g, g’ : STR(I') > k-Graphs

Proof sketch : Cf p. 12 and 16. For u of quantifier-neight 0, and m = 2:

WSDT) =

= f [tpo(S © T)] (®$[tpo(8), tpo(T))(Mo,2(S), Mo 2(T)))
=t(Mp,2(S) ® Mo (T))

where t is a composition of VR-operations. Qed

Now S=S', T=T implies :
tpo(S) = tpo(S’), tpo(T) = tpo(T’), tpo(S @ T) = tpo(S'AT’)

Mo,2(S) = Mo ,2(S’), Mo,2(T) = Mo 2(T")
because My 2 is quantifier-free

MSDT)=u(S @ T) because = is a congruence for
@ and for t.

Qed
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Similar results for relational structures.

Let I with maximal arity m.

We let 2(I',m) be the sorts < 1" U A where A are finite
sets of “auxiliary” symbols of arity at most m-1.

We let QFF be the restriction of QF to the domains
STR(X) for 2 in 2(I',m) with the operations :

- disjoint union @

- “forget” an “auxiliary” relation

- “rename” an “auxiliary” relation into an “auxiliary”
one of same arity

- addr s 1 for R,S,T auxiliary : adds a T-hyperedge

with vertex sequence u»v for every u, v, disjoint
loop-free vertex sequences of R- and S-
hyperedges.

- addrsTh for R,S “auxiliary”, Tin I': as above,
but, in addition, h permutes the vertex sequence of
the T-hyperedge and creates loops.

- some constants denoting singleton hypergraphs.

Theorem : LetL < STR(I').

1)L € EQ(QF')  iffL € EQ(QF)
iff L = MS-trans(Trees)

2)L € REC(QF') iffL € REC(QF).
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Improvement for smail rank and large arity

Notation: S & STRu(I) iff each hyperedge has at most n

distinct vertices, i.e., rank at most n. Clearly n < m.

One takes A’ finite sets of relation symbols of arity <
n-1. We obtain, with A’ in place of A :

Theorem : Same as above for L < STRy(I).

Consequences :

1) For 3-ary hypergraphs, all 3-ary hyperedges of which have
loops, rank < 2 hence unary “auxiliary” relations (vertex

labels P, ...., Pk) suffice.

2) For general 3-ary hypergraphs, “auxiliary” binary relations
are necessary.

Example : R, 3-ary relation
Let A, with domain {1,....,n}, Ran= {(i,jk)/ i<j<k}.

1) The set L of A,’'s is the image of the set of terms

{fn(c) / n >0} under an MS-transduction, hence is
equational.

2) It cannot be generated by the operations of QF based
on R and finitely many unary “auxiliary” relations P4, ....,
Pm.
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5. “Larger” signatures using local information

The fusion operation on vertex labelled hypergraphs :

fusep(S) = the quotient of S obtained by fusing all vertices
labelled p

Fuse = { fusep }
Theorem (BC, JMakowsky) :

The mapping val : T(QF U Fuse) > STR
is an MS transduction.

EQ(QF) = EQ(QF U Fuse)
Questions :

What about REC ?
Can one use a quantifier-free formula @(x) instead of p

(which corresponds to Pp(x) ) ?
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How to enlarge a signature into an equivalent one ?

S|> Ann(S) = S + local information
F a signature equivalent to QF

G a set of new operations

Conditions ;

1) Forevery f € FUG:

Ann

Ann(f(S, ...,T)) = f (Ann(S), ...,Ann(T))

where Anng is a composition of operations in QF

2) Ann”' is an MS transduction

Proposition : Under these conditions :
EQ(FuU G)=EQ(QF)
REC( FuU G ) =REC(QF)

Proof : The mapping val: T(FuU G) > STR s the
composition of 3 MS transductions :

t |> "™t (by Condition 1)
val (from T(QF) to annotated structures),
Ann’' (by Condition 2).
Hence EQ(F U G) ¢ EQ(QF) = EQ(F ) < EQ(F v G).

For REC(F U G) = REC(QF), the proof uses the closure

of REC under inverse MS transductions (Ann'1) and under
inverse homomorphisms (cf. Condition 1).
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Application to Fusion

For ¢(x) a quantifier-free formula, fusey(S) is S
where all elements satisfying ¢ are fused.
Example, for a 2-graph : ¢(x) may be edg(x,x) A =P2(x)

We let Fuse denote the set of all these operations

What kind of local information satisfies Condition 1) ?

Notation:

O,u,v, ... denote (0,1)-types (cf. page 11)
= conjunctions of atomic and negated atomic formulas in
tpo(S,a) for some S, a

With S in STR(2), we associate L(S) in STR(X 1) such that :
L(S)=S + new relations, with typical case

(a,b,c) € R[eeOpeV] (s iff

(a,b,u,v,c,w) € Rg for some u, v, w that satisfy
respectively 0, 1, v

R[eeeeee] is identical to R.

> | is X U new symbols like R[eeOuev] with at least one o
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Global information associated with S :

R[01...0m] abreviates
3y1,-...¥m (R(Y1,--.¥Ym) A O1(y1)A .. A Om(Ym))

LTP(S) = the set of (0,1)-types and of formulas
R[01...0m] satisfied in S

c tpn(S) ((n,0)-type, n = MaxArity(2), cf. page 11)
Proposition : For the annotation L :

a) 1 is a quantifier-free transduction, hence Condition 2)
holds.

b) For a subsignature QF _ equivalent to QF :
b1) LTP is inductively computable w.r.t. Fuse U QF_
b2) Condition 1) holds for Fuse U QF_

Proof : a) is clear.

Consider b)

1) Disjoint union @ :
tpo(S@T, a) =tpo(S, a) forain S
LTP(S®T) = LTP(S) U LTP(T)
L(S®T) = L(S) ®L(T)

For unary operations f we want (cf. page 25) :
L
L(f(S)) = FILTP(S)I (L(S))

where K is a composition of QF operations, depending on
LTP(S).
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ii) Deletion of elements by f =del, (u: (0,1)-type):

tpo(f(S),a) = tpo(S,a) = U, (ais deleted if p(a) holds in S)
LTP(f(S)) = LTP(S) — everything containing
“f deletes elements by del,, and

“forgets” the relations R[...u...]

iii) Case of fuse, (u: (0,1)-type)

Let ain Syield b in fuse(S) (it is a quotient structure)

*

if tpo(S,a) = pn: tpo(fuse,(S), b) =p =
{ R(x,X,...,x) / R[uu...u] € LTP(S) } v
{ =R(x,x,...,x) / R[up...u] ¢ LTP(S)};
if tpo(S,a)# pn: tpo(fuse,(S),b) = tpo(S,a)

LTP(fuse,(S)) ={u } U {0 € LTP(S) /0 = u}
U {R[....t"...0...]/R[...n...0...] € LTP(S) }

We now consider L(fusey(S)) ; f = fuse,

; 1)
L(S) = T=del(L(S)) = L(f(S))

L(f(S)) = Link(T ®s) where :

s is a singleton satisfying u* (this depends on LTP(S))
Link : first creates (a,b,s,c,d)in R[eeeeQe]; fs))
from (a,b,c,d) in R[eeLe0e]; (s)

then renames R[eee0e] into R[np*OGO]

This gives : " [LTP(S)] (U)= Link(del(U) @ s)
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iv ) Only for certain non-deleting quantifier-free operations f

we have :
LTP(f(S)) computable from LTP(S), and

L(f(S)) = " [LTP(S)] (L(S))
These include :

Forget or rename (some relations)
Addy v w (cf. page 22)
Addy v w h (cf. page 22)

and more generally those such that
each relation R(x1, ...,xn) is defined by a disjunction

of conditions, each of the form A A B A C where
A is a set of defining equalities,
B is a conjunction of atomic and negated atomic
formulas with a single variable,
C is a conjunction of atomic formulas where no
variable occurs more than once.

Example
For defining R(s,u,v,w,X,y,z)
X=U A Y=V A Z=V (A)
A edg(u,u) A —edg(w,w) A =P(v) (B)
A edg(u,v) A edg(w,s) (C)

(x,y,z are defined from s,u,v,w)
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Proofs : For such f :
tpo(f(S),a) = f(tpa(S,a)) (cf. page 12)

LTP(f(S)) = the set of f@(e) for O in LTP(S), and of

formulas R[01...0m] built from LTP(S) ;
in the example of p. 29, we let in LTP(f(S)) formulas

RIFE(O5)I(0,)f%(0,)F(0) 2 (BL)IB(6,)F2(0V)]

such that :

0y = edg(u,u),

0w = —edg(w,w),

0y = —P(v) (cf. B)
edg[0,0,] and edg[0,0s] € LTP(S) (cf. C)

For defining Lf we only consider the example of

f =addy v w where U, V are of arity 2 and W of arity 4;
Hence W(x,y,z,u) is defined in f(S) by the formula :

W(x,y,z,u) v (U(x,y) A V(z,u))

Then “f adds (x,2) in W[ef®(0)e f®(u)]
whenever x € U[e0] and z €V[eu] in L(S).
This can be done by the operation

addue], Viep], W[ef@(0)e f@(1)]
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The signature QF_ consisting of @, del,,, and these

particular quantifier-free operations is equivalent to QF by
the theorem page 22.

From Conditions 1 and 2 we obtain :

Theorem :

1) EQ(QF v Fuse) = EQ(QF_ v Fuse) = EQ(QF)

2) REC(QF U Fuse) — REC(QF_u Fuse) = REC(QF)

The proof is done for operations fuse, where @(x)
isa (0,1)-type (i.e., some tpg). The operations fuse, can be

expressed as combinations of these special fuse operations

and some quantifier-free operations. The theorem follows.
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Example showing why the lemma page 29 does not extend to
QF instead of QF _

Let R ofarity 3 and f: STR({R}) 2> STR({R})
redefine R by :
R(x,y,z) inf(S) iff R(x,y,y)and R(y,z,z) in S

We let S with domain {1,2,3} and
Rs ={(1,2,2), (2,3,3)}
f(S) has domain {1,2,3} and Rgs) ={(1,2,3)}

We let T with domain {1,2,3,4} and
Rt ={(1,2,2), (4,3,3)}
f(T) has domain {1,2,3,4} and RqT1) =

LTP(S) = LTP(T)

Now if L(F(S)) = “f [LTP(S)] (L(S)) (1)
we also have

L(F(T)) = "F [LTP(S)] (L(T)) 2)
Observe that :

1 € R[e00] in L(S), in L(T), in L(f(S)),
but 1 ¢ R[e00] in L(f(T)), where 0(x) is —R(x,x,X) ;

we should have 1 € R[¢060] in L(f(T)) from (1) and (2).
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6. The fusion operation for graphs;
“gluing” operations based on local information

All relations have arity 1 or 2. Structures are vertex-
and edge-labelled graphs.

New binary “gluing” operations forming a set Glue

G®gH = GO®H + edges between x andy
whenever G |= o¢(x), Hl= 0(y)

Formulas ¢, 0 are first-order and represent “local
information” relative to x and y

Question : When do we have, for Glue :

EQ(VR) = EQ(QFgraphs) = EQ(QFgraphs W Glue)

Complete annotation :
Y,Y, ... denote (0,2)-types (cf. page 11)
= conjunctions of all the atomic and negated atomic

formulas in tpg(G,a,b) for some G, a,b #a

For such y = tpo(G,a,b), v1 denotes tpo(G,a),
Y2 denotes tpo(G,b)
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A = the set of formulas A(x) of the form 3dy.y(x,y)

The complete 1-type of a inG is:

ctp(G,a) = the conjunction of the valid formulas A(x)
and of the negations of the others

= 0(x)

CTP(G) =the set of formulas dx.0(x) valid in G

Complete annotation :
For every graph G:

C(G) = G + each vertex a labelled by 6 with G | = o(a)
+ edges a > b labelled by tpg(G, a,b), foralla# b

(C(G) is a complete labelled graph).

The new gluing operations

G®yH = G®H + R-edges x 2> vy
whenever G [=8(x), Hl= §'(y)

Formally g is a disjunction of triples (R(x,y), d(x), 8'(y))
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Verification of Condition 1 (p. 25)

) Gluing ®g (and disjoint union since ®g = @ ):

Facts : 1) tpo(G ®4 H, a) = tpo(G, a), tpo(G ®y H, a,b) = tpo(G, a,b)
ifab e G
2) an R-edge a -2 b is defined from ctp(G,a) and ctp(H, b)
3) ctp(G ®g H, a) is defined from ctp(G,a) and CTP(H).

Hence :
CTP(G ®g H) = h(CTP(G), CTP(H))

C(G ®g H) = K[CTP(G),CTP(H)](C(G), C(H))

where :

h is a fixed function and

K[p,p’] is a composition of VR-operations :
disjoint union of C(G) and C(H),

addition of edges between them,
relabellings for updating local information.
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ii) For unary operations f we want (cf. page 25) :

C(f(G)) = “FICTP(G) (C(G))

where Cf is a composition of QF operations, depending on
CTP(G).

a) Deletion of elements by f =del, (u isa (0,1)-type) :

Facts :
tpo(f(G), a) = tpo(G, a) # U, (ais deleted if p(a) holds in G)

tpo(f(G), a,b) = tpo(G, a,b) iftpo(G, a) # W, tpo(G, b) # 1

ctp(f(S),a) contains no formula dy.y(x,y) such that

Y1 Or y2 is equal to n
Hence :

CTP(f(G)) = CTP(G) — everything “containing”

i deletes the elements labelled by 6 containing
dy.y(x,y) such that y4 = u, and updates the labels ¢ by
removing formulas dy.y(x,y) such that y, = pu

b) f is nondeleting and quantifier-free

“f updates the labels 6 by using the updating function
€ on O-types, cf. p. 12.
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Fusion operation fuse,, is a composition of QF and
Glue operations :

fuse,(G) = del, (G ®qg s)

where s is a singleton graph, possibly with loops and
vertex labels, cf. page 28, and g define edges between G
and s

Hence we have the equivalence of the signatures :

VR, QFgraphs, QFgraphs W Fuse, QFgraphs U Glue
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/. « Sources » are dispensable

Constant symbols a, b, c, ... in relational structures
denote unique elements called « sources » in the graph
grammar terminology.

The typical use is for parallel composition of
(hyper)graphs :

G//[H =
G @ H with fusion of sources with same names.

Quantifier-free operations may use constants in
redefinitions like :

edg(x,y) : < edg(x,a) A edg(y,b)

but are no longer quantifier-free if written :
edg(x,y): < du,v (edg(x,u)APg(u)A edg(y,v)APp(V))

by the obvious coding of constants by unary predicates

We get a signature QF-C



A coding of Sin STR(2,C) into Sin STR(X)
We delete Cg, the elements denoted by constants in C

We replace atuple (x, as, Y, bs, bs) in a relation Rg
where x,y are not in Cg by the pair (x,y) in a new relation
R[s#asbb].

Hence X is the set of relations R[w] where :
w is a word in (ClU{&})* of length the arity of R

containing at least one & and
the arity of R[w] is the number of occurrences of &.

Fact : S can be reconstructed in a unique way from S and
S[Csg], by an operation in QF-C (one for each S[Cg]).

Welet L/IS={SeL / S[Cs]= 9}

Theorem : Let L < STR(X,C):

1)L € EQ(QF-C) iff L/ € EQ(X) for each 3.

2) L € REC(QF-C) iff L/S € REC(X) for each 3.
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Reminder : Parallel Composition //

(Hyper)graphs have distinguished vertices called

sources, designated by labels from a set of size k :
{a, b, c, ..., h}.

G//H is the disjoint unionof G and H
and sources with same

label are fused.
(If G and H are not disjoint, one

first makes a copy of H disjoint

from G .)
= | t)l
] t]
[ |
s
N— N
G
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8. Open questions

1. Are the signatures QF and QF U Fuse equivalent,

(without restriction to binary structures) ?

2. Which quantifier-free operations on relational

structures preserve recognizability ?

3. Can one define on relational structures a complexity
measure generalizing clique-width for graphs and “nicely”

related with a signature equivalent to QF ?

This document and the base article are available from

http.://www.labri.fr/~courcell/ActSci.html




