- 1 -

The tight relationships of Recognizability

and Monadic Second-Order Logic

based on article Recognizability and Hypergraph operations using local informations

by Achim Blumensath and Bruno Courcelle

LaBRI, Bordeaux 1 University GAMES Research Training Network

Motivations and overview

- F: signature of operations on graphs, hypergraphs, *i.e.,* relational structures
 - → F-algebra
 - → Recognizable sets REC(F) (finite congruences, no

automata)

→ Equational sets EQ(F) (« context-free » ; equation systems, no rewriting rules)

Robustness :

- $F \equiv G$ means REC(F) = REC(G) and EQ(F) = EQ(G).
- → Equivalences between small and large signatures
- → Extension to particular operations like fusion and other <u>non</u> <u>quantifier-free</u> definable operations
- \rightarrow « Sources » in graphs and hypergraphs are dispensable

Relationships with MS logic :

- \rightarrow MS-definable \subseteq REC
- → MS-transductions preserve EQ
- → New result : inverse MS-transductions preserve REC.

1. Background : The algebra of relational structures

 Σ_{∞} = fixed countable set of relation symbols with arity

 $STR(\Sigma)$ = finite relational Σ -structures, for Σ finite $\subseteq \Sigma_{\infty}$

The fundamental signature QF:

Binary operation(s) : disjoint union \oplus : STR(Σ) X STR(Γ) \rightarrow STR($\Sigma \cup \Gamma$)

Unary operations : $STR(\Sigma) \rightarrow STR(\Gamma)$

defined by quantifier-free formulas :

- domain restriction (ex. delete all isolated vertices)
- redefinition of relations (ex. edge-complement, addition of new edges based on vertex labels)

Nullary symbol **1** : designating the structure in STR(\emptyset) with a single element.

STR the many-sorted QF-algebra with domains STR(Σ); each finite Σ is a sort.

 $T(QF)_{\Sigma}$ = finite terms over QF (of sort Σ). Value mapping *val* : $T(QF)_{\Sigma} \rightarrow STR(\Sigma)$.

- 3 -

Equational sets Context-Free (Graph) Grammars in an

algebraic setting.

Reminder : For words the set of context-free rules :

 $S \rightarrow a S T$; $S \rightarrow b$; $T \rightarrow c T T T$; $T \rightarrow a$ is equivalent to the system of two set equations:

S = a S T	\cup	{ b }
T = c T T T	\cup	{ a }

where S is the language generated by S (idem for T and T).

For graphs we consider similarily systems of equations like:

$$S = f(k(S), T) \cup \{b\}$$

 $T = f(T, f(g(T), m(T))) \cup \{a\}$

where f is a binary operation, g, k, m are unary operations on graphs, a, b are basic graphs.

An *equational set* is a component of the least (unique) solution of such an equation system.

There are two sets of graph operations, two classes of context-free sets of graphs, the HR-context-free sets (for Hyperedge-Replacement) and the VR-context-free sets (for Vertex-Replacement).

Equational sets in STR

 $EQ(\Sigma)$ = the equational subsets of $STR(\Sigma)$

EQ = U EQ(Σ), all Σ

The operations are those of QF

Examples :

Context-free languages,

Trees, Graphs of tree-width < k,

Cographs, Graphs of clique-width < k

Alternative characterization of equational sets :

 $\mathsf{EQ}(\Sigma) = val(\mathsf{REC}(\mathsf{T}(QF))_{\Sigma})$

Closure properties : union, homomorphisms,

intersection with a recognizable set

Remark :

 $L \in EQ(\Sigma) \Leftrightarrow L = val(K) \text{ for some}$ $K \in REC(T(QF(\Gamma))_{\Sigma}), \ \Sigma \subseteq \Gamma$

Question : what is the minimal Γ ?

Recognizable sets

 $L \subseteq STR(\Sigma)$ is *recognizable* iff

L is saturated for a finite congruence \cong over STR.

 \cong an equivalence relation,

 $S \cong S' \implies S$ and S' belong to the same STR(Σ),

 \cong a congruence for the operations of QF,

finitely many classes of each sort Σ .

Notation : $REC(\Sigma)$ = the recognizable subsets of $STR(\Sigma)$

REC = U REC(Σ), all Σ

Examples : Regular languages and "tree languages" (i.e., sets of finite terms),

Trees, planar graphs, connected graphs,

(More to come)

Closure properties :

Boolean operations, inverse homomorphisms.

Remark :

```
Can L \in REC(\Sigma) be defined in terms of a congruence
on STR(\Gamma) for a « small » \Gamma ?
```

Question : what is the minimal Γ ?

Monadic Second-Order (MS) Logic

- = First-order logic on power-set structures
- = First-order logic extended with (quantified) variables denoting subsets of the domains.

MS properties :

transitive closure,

properties of paths, connectivity,

planarity (via Kuratowski, uses connectivity),

k-colorability.

Notation :

 $\mathsf{MS-def}(\Sigma) \subseteq P(\mathsf{STR}(\Sigma))$

= sets characterized as { S / S $|= \phi$ } for an MS formula ϕ

Main result : MS-def(Σ) \subseteq REC(Σ)

This result holds for $\ensuremath{\mathsf{CMS}}$:

Counting Monadic Second-Order logic, using modulo-counting set predicates.

MS transductions

Proposition : The composition of two

MS transductions is an MS transduction.

Remark : For each tuple of parameters X_1, \ldots, X_p satisfying an MS property, T is uniquelydefined. τ is multivalued by the differentchoices of parameters.

Quantifier-height of τ : the maximum quantifier-height

of the formulas which specify τ

- 7 -

Example of an MS transduction (without parameters)

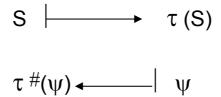
- 8 -

The square mapping δ on words: $u \mid \rightarrow uu$

We let u = aacS $\cdot \rightarrow \cdot \rightarrow \cdot$ a a c S⊕S $\cdot \rightarrow \cdot \rightarrow \cdot \quad \cdot \rightarrow \cdot \rightarrow \cdot$ a a c a a c p₁ p₁ p₁ p₂ p₂ p₂ p₂ δ(S) $\cdot \rightarrow \cdot \rightarrow \cdot \rightarrow \cdot \rightarrow \cdot \rightarrow \cdot$ a a c a a c In $\delta(S)$ we redefine Suc (i.e., \rightarrow) as follows : Suc(x,y): $\Leftrightarrow p_1(x) \& p_1(y) \& Suc(x,y)$ v p₂ (x) & p₂ (y) & Suc(x,y) v p1 (x) & p2 (y) & "x has no successor" & "y has no predecessor"

We also remove the "marker" predicates p1, p2.

The fundamental property of MS transductions :



Every MS formula ψ has an effectively computable *backwards translation* $\tau \#(\psi)$, an MS formula, such that :

$$S \mid = \tau \#(\psi)$$
 iff $\tau(S) \mid = \psi$

The verification of ψ in the object structure $\tau(S)$ reduces to the verification of $\tau \#(\psi)$ in the given structure S.

S describes $\tau(S)$; the MS properties of $\tau(S)$ are described by MS properties of S.

Main results :

- 1) The value mapping $T(QF(\Sigma \cup \Gamma))_{\Sigma} \rightarrow STR(\Sigma)$ is an MS transduction.
- 2) $L \subseteq STR(\Sigma)$ is equational iff $L = \tau$ (Trees), for an MS transduction τ .
- 3) The image of an equational set under an MS transduction is equational

Theorem : The *inverse image* of a recognizable set under an MS transduction is recognizable.

Relationships between algebraic and logical notions

Algebraic	Algebraic	Logical	Closure
notions	characterizations	characterizations	properties
			union, $\cap Rec$
EQ	equation systems	MS-trans(Trees)	homo
	Val(REC(Terms))		MS-trans
			Boolean opns
REC	congruences	$MS\text{-}def \subset REC$	homo ⁻¹
			MS-trans ⁻¹

Signatures for graphs and hypergraphs :

HR : hypergraphs with "sources"

VR : graphs with vertex labels *VR*+*QF*_{graphs} : with quantifier-free operations (ex. edge complement)

QF : hypergraphs, i.e., relational structures QF+ Fusion : hypergraphs.

2. Local information and annotations

Let S in STR(Σ), a_1, \ldots, a_n in D_S (the *domain* of S).

$$\begin{array}{l} \operatorname{tp}_k(S,\,a_1,\,\ldots,a_n) = \{ \ \phi \ / \ S \ | = \phi \ (a_1,\,\ldots,a_n), \\ \phi \in \mathsf{MS}(\Sigma,\,x_1,\,\ldots,x_n) \ \text{of quantifier-height} \leq k \ \} \\ \in \ \ P(\mathsf{MS}_k(\Sigma,\,x_1,\,\ldots,x_n)) \\ = \ \ (k,n)\text{-Types} \end{array}$$

 $tp_k(S, a_1, ..., a_n)$ is a local information relative to $a_1, ..., a_n$ in S.

 $tp_k(S)$ is a global information relative to S.

Annotation : $S \rightarrow M_{k,m}(S) = (D_S, (T_p)_{p \in (k,n)}, T_{ypes, n \leq m}).$

$$T_p(a_1, ..., a_n) : \Leftrightarrow tp_k(S, a_1, ..., a_n) = p$$

 $M_{k,m}(S) = S + local information$

Facts :

1) $M_{k,m}$ is an MS transduction of quantifier-height k.

2) $M_{0,m}$ is a quantifier-free transduction.

3) The inverse of $M_{k,m}$ is a quantifier-free transduction ; it is functional because $M_{k,m}$ is injective.

Homomorphic properties of M_{k,m}

Proposition : 1) $M_{k,m}(S \oplus T) = \bigoplus^{\$} [tp_k(S), tp_k(T)] (M_{k,m}(S), M_{k,m}(T))$

2) For g quantifier-free : $M_{k,m}(g(S)) = g^{\$} (M_{k,m}(S))$

where $g^{\$}, \oplus^{\$}$ [p,p'] are compositions of QF operations.

Proof sketch :

1) By Feferman-Vaught-Shelah :

 $S \oplus T \mid = \phi(a_1, ..., a_n, b_1, ..., b_q)$

iff for some i :

S $|=\psi_i(a_1, ..., a_n)$ and T $|=\theta_i(b_1, ..., b_q)$

where ψ_i and θ_i are MS formulas of quantifier-height \leq that of ϕ , and that only depend on ϕ . Hence

$$M_{k,m}(S \oplus T) = f(M_{k,m}(S) \oplus M_{k,m}(T))$$

where f redefines the types in S and in T (in terms of $tp_k(T)$ and $tp_k(S)$) and creates appropriate relations for the types concerning both S and T (using $add_{U,V,W}$ of Section 4).

2) By the fact that

 $tp_k(g(S), a_1, ..., a_n) = g^{@}(tp_k(S, a_1, ..., a_n))$ for some mapping $g^{@}$: (k,n)-Types \rightarrow (k,n)-Types (by using backwards translation relative to g).

We let g^{s} replace q by p whenever $g^{\text{@}}(q) = p$

Factorization :

Through $M_{k,m}$ annotations, MS transductions of Quantifier-height $\leq k$ reduce to quantifier-free ones :

If g : STR(Σ) \rightarrow STR(Γ) is an MS transduction of

Quantifier-height \leq k, and m = MaximumArity(Γ) :

 $g(S) = f[tp_k(S)](M_{k,m}(S))$

where f [p] : STR($\Sigma_{k,m}$) \rightarrow STR(Γ) is quantifier-free.

Easy construction, using renamings of the type relations and deletions of elements.

- 14 -

3. Inverse MS transductions preserve REC

This is already known for MS definable sets and the recognizable sets of graphs of bounded tree-width.

Proof sketch :

Every MS transduction is the composition of MS transductions of 3 types :

- Copy_k
- Parameterless noncopying
- Guessing of unary relations

1) Copy_k :

$$S \mid \Rightarrow S \oplus S \oplus ... \oplus S$$
 (k times)

augmented with binary relations $Y_{i,j}$ for $1 \le i < j \le k$ defined as

$$\{(x,y) / x \text{ is the i-copy, } y \text{ is the j-copy of some u in } D_S\}$$

Facts : a) Copy_k(S \oplus T) = Copy_k(S) \oplus Copy_k(T)

b) For f quantifier-free, there is a quantifier-free g :

$$Copy_k(f(S)) = g(Copy_k(S))$$

Hence $Copy_k$ is "almost" a homomorphism, and REC is preserved under inverse homomorphisms.

2) Forgetting unary relations :

We let $\operatorname{fgt}_{\Pi} : \operatorname{STR}(\Sigma \cup \Pi) \to \operatorname{STR}(\Sigma)$ just « forget » Π , Π is a finite set of unary relations.

- 15 -

Its inverse consists in « guessing » the relations in Π , this can be done by means of parameters of an MS transduction.

Lemma : If $L \in REC$, then $fgt_{\Pi}(L) \in REC$.

Proof : From a congruence \equiv for L, we define the equivalence :

```
S \cong T iff { [U] \equiv / fgt<sub>\Pi</sub>(U) = S } = { [U] \equiv / fgt<sub>\Pi</sub>(U) = T }
```

It is finite, saturates $fgt_{\Pi}(L)$.

It is a congruence : we use the fact that

```
S \oplus T = fgt_{\Pi}(W) iff
there exist S', T' such that W = S' \oplus T',
S = fgt_{\Pi}(S'), and T = fgt_{\Pi}(T'),
```

and a similar observation for unary operations.

3) Parameterless noncopying MS transductions.

We let $L \in \text{REC}(\Gamma)$

τ be a parameterless noncopying MS transduction : STR(Σ) → STR(Γ) of quantifier-height k

We prove that $\tau^{-1}(L) \in \text{REC}(\Sigma)$

From a congruence \equiv for L, we define, on each set STR(Δ), the equivalence :

 $S \;\cong T \;\; iff$

 $tp_k(S) = tp_k(T)$ and for every parameterless noncopying MS transduction $\mu : STR(\Delta) \rightarrow STR(\Gamma)$ of quantifier-height at most k, we have $\mu(S) \equiv \mu(T)$.

 $(tp_k(S))$ is the MS theory of S of quantifier height at most k.)

It is finite, saturates $\tau^{-1}(L)$ (because τ is one of the considered transductions μ).

It is a congruence. We consider f unary, quantifier-free. Let S \cong T :

$$tp_k(f(S)) = f^{@}(tp_k(S)) = f^{@}(tp_k(T)) = tp_k(f(T))$$
 (cf. page 12).

For every μ , μ of is a parameterless noncopying MS transduction of quantifier-height k :

$$\mu(f(S)) = \mu of(S) \equiv \mu of(T) = \mu(f(T))$$
. Qed

Remains \oplus : Let S \cong T, S' \cong T', we want S \oplus S' \cong T \oplus T'.

We have $tp_k(S \oplus S') = tp_k(T \oplus T')$ (by Feferman et al.) For every μ :

$$\begin{split} \mu(S \oplus S') &= f\left[tp_k(S \oplus S')\right](M_{k,m}(S \oplus S')) \quad (m = MaxArity(\Gamma), \text{ cf.} \\ page 13) \\ &= f\left[tp_k(S \oplus S')\right] \left(\oplus^{\$}[tp_k(S), tp_k(S')](M_{k,m}(S), M_{k,m}(S'))\right) \end{split}$$

and similarly for $\mu(T \oplus T')$ (cf. page 12) Since $M_{k,m}$ is an MS transduction of quantifier-height $\leq k$: $M_{k,m}(S) \equiv M_{k,m}(T), M_{k,m}(S') \equiv M_{k,m}(T')$ Also : $\bigoplus^{\$}[tp_{k}(T), tp_{k}(T')] = \bigoplus^{\$}[tp_{k}(T), tp_{k}(T')]$ $f [tp_{k}(S \oplus S')] = f [tp_{k}(T \oplus T')]$

Since \equiv is a *QF*-congruence, and f[p], \oplus ^{\$} are in *QF*:

 $\mu(S \oplus S') \equiv \mu(T \oplus T')$, hence $S \oplus S' \cong T \oplus T'$

4. A « small » signature equivalent to QF

Vertex k-labelled graphs are in STR({edg, P₁, ..., P_k})

Equational and recognizable sets are defined w.r.t. all

finite sets of relation symbols of unbounded arity.

Can't we restrict to {edg, P_1 , ..., P_k ,...}? Yes

More generally, what about subsets of $STR(\Sigma)$?

The VR signature for vertex labelled graphs :

Labels are 1, ..., k, ... Operations are : disjoint union ⊕ Edge addition add_{i,j} which adds to a graph the edges x → y for x labelled i and y labelled j Label renaming ren_{i→j} which replaces label i by j. Constants : vertex labelled i ; the same with a loop.

Theorem (BC, JEngelfriet, PWeil) :

1) $EQ(VR) = EQ(QF) \cap Graphs = MS-trans(Trees)$

2) REC(*VR*) = REC(*QF*) \cap Graphs

- 19 -

Proof sketch :

 $MS-trans(Trees) \subseteq val(REC(T(VR)) = EQ(VR)$

Let L = τ (Trees) = a set of m-graphs.

1) Technical step :

One has : $L = \sigma(K)$ where - $K \in \text{REC}(T(\{ \blacklozenge, *\}))$ (\blacklozenge binary, * constant)

- σ is a noncopying, nondeleting, MS transduction without parameters. The vertices of $\sigma(t)$ are the occurrences of * in t.

2) For t in K we let (cf. page 11)

 $TH(t) = M_{k,2}(t) \cap Leaves(t)$

(= the leaves of t with labels and edges encoding the types of vertices and pairs of vertices for MS formulas of quantifier-height \leq k)

There exists a tree-transducer θ that maps t in K to a VR-term $\theta(t)$ such that :

 $val(\theta(t)) = TH(t).$

3) Using the proposition page 13 : $\sigma(t) = f(M_{k,2}(t))$ $= f(M_{k,2}(t) \cap \text{Leaves}(t)) = f(\text{TH}(t))$ $= f(val(\theta(t)))$ where f is a composition of VR-operations.

Hence $L = val(f(\theta(K)))$

where $f(\theta(K)) \in REC(T(VR))$

Hence $L \in EQ(VR)$

For $REC(VR) \subseteq REC(QF) \cap Graphes$ (proof from BC-PWeil).

Let L be VR-recognizable with conguence \approx . It is also w.r.t. *QF*. We define congruences \equiv on the sets STR(Γ) for all Γ by :

```
S \equiv T iff tp_0(S) = tp_0(T) and
h(S) \approx h(T) for every quantifier-free
transduction h : STR(\Gamma) \rightarrow k-Graphs.
```

Congruence :

1) Let g be quantifier-free : STR(Δ) → STR(Γ). Let S = T. For every h quantifier-free, hog is quantifier-free: $h(g(S)) = (hog)(S) \approx (hog)(T) = h(g(T)),$

hence $g(S) \equiv g(T)$.

2) Next we consider \oplus . Let S = S', T = T'. To be proved : S \oplus T = S' \oplus T'.

Lemma : For every quantifier-free h : STR(Γ) \rightarrow k-Graphs

 $h(S \oplus T) = t(g(S) \oplus g'(T))$

for some composition t of VR operations, and some quantifier-free g, g' : STR(Γ) \rightarrow k-Graphs

- 20 -

- 21 -

Lemma : For every quantifier-free h : STR(Γ) \rightarrow k-Graphs

$$h(S \oplus T) = t(g(S) \oplus g'(T))$$

for some composition t of VR operations, and some quantifier-free g, g' : STR(Γ) \rightarrow k-Graphs

Proof sketch : Cf p. 12 and 16. For μ of quantifier-height 0, and m = 2:

$$\begin{split} \mu(S \oplus T) &= \\ &= f \left[t p_0(S \oplus T) \right] (\oplus^{\$} [t p_0(S), t p_0(T)] (M_{0,2}(S), M_{0,2}(T))) \\ &= t (M_{0,2}(S) \oplus M_{0,2}(T)) \end{split}$$

where t is a composition of VR-operations.

Now $S \equiv S'$, $T \equiv T'$ implies : $tp_0(S) = tp_0(S'), tp_0(T) = tp_0(T'), tp_0(S \oplus T) = tp_0(S' \oplus T')$ $M_{0,2}(S) \approx M_{0,2}(S'), M_{0,2}(T) \approx M_{0,2}(T')$ because $M_{0,2}$ is quantifier-free $\mu(S \oplus T) \approx \mu(S' \oplus T')$ because \approx is a congruence for and for t. \oplus

Qed

Similar results for relational structures.

Let Γ with maximal arity m.

We let $\Sigma(\Gamma,m)$ be the sorts $\subseteq \Gamma \cup \Delta$ where Δ are finite sets of "auxiliary" symbols of arity at most m-1.

We let QF^{Γ} be the restriction of QF to the domains STR(Σ) for Σ in $\Sigma(\Gamma,m)$ with the operations :

- disjoint union \oplus
- "forget" an "auxiliary" relation
- "rename" an "auxiliary" relation into an "auxiliary" one of same arity
- add_{R,S,T} for R,S,T auxiliary : adds a T-hyperedge with vertex sequence u*v for every u, v, disjoint loop-free vertex sequences of R- and Shyperedges.
- add_{R,S,T,h} for R,S "auxiliary", T in Γ: as above, but, in addition, h permutes the vertex sequence of the T-hyperedge and creates loops.
- some constants denoting singleton hypergraphs.

Theorem : Let $L \subseteq STR(\Gamma)$.

1) $L \in EQ(QF^{\Gamma})$ iff $L \in EQ(QF)$ iff L = MS-trans(Trees) 2) $L \in REC(QF^{\Gamma})$ iff $L \in REC(QF)$.

Improvement for small rank and large arity

Notation : $S \in STR_n(\Gamma)$ iff each hyperedge has at most n distinct vertices, i.e., *rank* at most n. Clearly $n \leq m$.

One takes Δ ' finite sets of relation symbols of arity \leq n-1. We obtain, with Δ ' in place of Δ :

Theorem : Same as above for $L \subseteq STR_n(\Gamma)$.

Consequences :

1) For 3-ary hypergraphs, all 3-ary hyperedges of which have loops, rank ≤ 2 hence unary "auxiliary" relations (vertex labels P₁, ..., P_k) suffice.

2) For general 3-ary hypergraphs, "auxiliary" binary relations are necessary.

Example : R, 3-ary relation

Let A_n with domain $\{1,...,n\}$, $R_{An} = \{(i,j,k) / i < j < k\}$.

1) The set L of A_n 's is the image of the set of terms $\{ f^n(c) / n > 0 \}$ under an MS-transduction, hence is equational.

2) It cannot be generated by the operations of QF based on R and finitely many unary "auxiliary" relations P₁, ..., P_m.

5. "Larger" signatures using local information

The fusion operation on vertex labelled hypergraphs :

 $\mathsf{fuse}_p(S)$ = the quotient of S obtained by fusing all vertices labelled p

Fuse = { fusep }

Theorem (BC, JMakowsky):

The mapping val : $T(QF \cup Fuse) \rightarrow STR$ is an MS transduction. $EQ(QF) = EQ(QF \cup Fuse)$

Questions :

```
What about REC?
```

Can one use a quantifier-free formula $\varphi(x)$ instead of p

(which corresponds to $P_p(x)$)?

- 25 -

How to enlarge a signature into an equivalent one?

 $S \rightarrow Ann(S) = S + local information$

F a signature equivalent to QF

G a set of new operations

Conditions :

1) For every $f \in F \cup G$: Ann(f(S, ...,T)) = ^{Ann}f (Ann(S), ...,Ann(T)) where ^{Ann}f is a composition of operations in *QF* 2) Ann⁻¹ is an MS transduction

Proposition : Under these conditions :

 $\mathsf{EQ}(\mathsf{F} \cup \mathsf{G}) = \mathsf{EQ}(\mathsf{QF})$

 $\mathsf{REC}(F \cup G) = \mathsf{REC}(QF)$

Proof : The mapping *val* : T(*F* ∪ *G*) → STR is the composition of 3 MS transductions : t $| \rightarrow | Ann^{t}$ (by Condition 1) *val* (from T(*QF*) to annotated structures), Ann⁻¹ (by Condition 2). Hence EQ(*F* ∪ *G*) ⊆ EQ(*QF*) = EQ(*F*) ⊆ EQ(*F* ∪ *G*).

For REC($F \cup G$) = REC(QF), the proof uses the closure of REC under inverse MS transductions (Ann⁻¹) and under inverse homomorphisms (cf. Condition 1).

Application to Fusion

For $\phi(x)$ a quantifier-free formula, fuse_{ϕ}(S) is S

where all elements satisfying ϕ are fused.

Example, for a 2-graph : $\phi(x)$ may be $edg(x,x) \land \neg P_2(x)$

We let Fuse denote the set of all these operations

What kind of local information satisfies Condition 1)? Notation:

 $\theta,\mu,\nu,...$ denote (0,1)-types (cf. page 11) = conjunctions of atomic and negated atomic formulas in tp₀(S,a) for some S, a

With S in STR(Σ), we associate L(S) in STR(Σ_L) such that :

L(S) = S + new relations, with typical case

 $(a,b,c) \in R[\bullet \bullet \theta \mu \bullet v]_{L(S)}$ iff $(a,b,u,v,c,w) \in R_S$ for some u, v, w that satisfy respectively θ , μ , v $R[\bullet \bullet \bullet \bullet \bullet]$ is identical to R.

 Σ_L is $\Sigma \cup$ new symbols like R[$\bullet \theta \mu \bullet \nu$] with at least one \bullet

Global information associated with S :

$$\begin{split} & \mathsf{R}[\theta_1 \dots \theta_m] \text{ abreviates} \\ & \exists y_1, \dots, y_m \; (\mathsf{R}(y_1, \dots, y_m) \land \theta_1(y_1) \land \dots \land \theta_m(y_m)) \\ & \mathsf{LTP}(\mathsf{S}) \; = \; \text{the set of } (0,1)\text{-types and of formulas} \\ & \quad \mathsf{R}[\theta_1 \dots \theta_m] \; \text{ satisfied in S} \\ & \quad \subseteq \; tp_n(\mathsf{S}) \; \; ((n,0)\text{-type, } n = \mathsf{MaxArity}(\Sigma), \, \text{cf. page 11}) \end{split}$$

Proposition : For the annotation *L* :

a) L^{-1} is a quantifier-free transduction, hence Condition 2) holds.

b) For a subsignature QF_ equivalent to QF :
b1) LTP is inductively computable w.r.t. Fuse ∪ QF_
b2) Condition 1) holds for Fuse ∪ QF_

```
Proof : a) is clear.

Consider b)

i) Disjoint union ⊕ :

tp_0(S \oplus T, a) = tp_0(S, a) for a in S

LTP(S \oplus T) = LTP(S) \cup LTP(T)

L(S \oplus T) = L(S) \oplus L(T)
```

For unary operations f we want (cf. page 25) :

 $L(f(S)) = {}^{L}f[LTP(S)](L(S))$

where L f is a composition of QF operations, depending on LTP(S).

ii) Deletion of elements by $f = del_{\mu}$ (μ : (0,1)-type) :

- 28 -

 $tp_0(f(S),a) = tp_0(S,a) ≠ μ, (a is deleted if μ(a) holds in S)$ LTP(f(S)) = LTP(S) – everything containing μ^Lf deletes elements by del_μ and"forgets" the relations R[...μ...]

iii) Case of fuse_{μ} (μ : (0,1)-type)

Let a in S yield b in fuse_µ(S) (it is a quotient structure) if tp₀(S,a) = µ : tp₀(fuse_µ(S), b) = μ^* = {R(x,x,...,x) / R[µµ...µ] \in LTP(S)} \cup { \neg R(x,x,...,x) / R[µµ...µ] \notin LTP(S)}; if tp₀(S,a) \neq µ : tp₀(fuse_µ(S),b) = tp₀(S,a)

$$LTP(fuse_{\mu}(S)) = \{ \mu^{*} \} \cup \{ \theta \in LTP(S) / \theta \neq \mu \}$$
$$\cup \{ R[...\mu^{*}...\theta...] / R[...\mu...\theta...] \in LTP(S) \}$$

We now consider $L(fuse_{\mu}(S))$; f = fuse_{\mu}

$$S_{\downarrow} \xrightarrow{} f(S)_{\downarrow}$$
$$L(S) \rightarrow T = del_{\mu}(L(S)) \rightarrow L(f(S))$$

 $L(f(S)) = Link(T \oplus s) \text{ where } :$ s is a singleton satisfying μ^* (this depends on LTP(S)) Link : first creates (a,b,s,c,d) in R[••••θ•]_{L(f(S))} from (a,b,c,d) in R[•• μ •θ•]_{L(S)} then renames R[•• μ •θ•] into R[•• μ^* •θ•] This gives : ^Lf [LTP(S)] (U)= Link(del_µ(U) \oplus s) - 29 -

iv) Only for certain non-deleting quantifier-free operations f we have :

```
LTP(f(S)) computable from LTP(S), and L(f(S)) = {}^{L}f[LTP(S)](L(S))
```

These include :

Forget or rename (some relations) Add_{U,V,W} (cf. page 22) Add_{U,V,W,h} (cf. page 22)

and more generally those such that :

each relation R(x₁, ...,x_n) is defined by a disjunction of conditions, each of the form A ∧ B ∧ C where A is a set of defining equalities, B is a conjunction of atomic and negated atomic formulas with a single variable, C is a conjunction of atomic formulas where no variable occurs more than once.

Example :For defining R(s,u,v,w,x,y,z) $x=u \land y=v \land z = v$ (A) $\land edg(u,u) \land \neg edg(w,w) \land \neg P(v)$ (B) $\land edg(u,v) \land edg(w,s)$ (C)

(x,y,z are defined from s,u,v,w)

 $\begin{array}{l} \textit{Proofs}: \text{For such } f:\\ tp_0(f(S),a) = f^{@}(tp_0(S,a)) \quad (cf. \text{ page 12})\\\\ \textit{LTP}(f(S)) = \text{the set of } f^{@}(\theta) \quad \text{for } \theta \text{ in LTP}(S), \text{ and of formulas } R[\theta_1 \dots \theta_m] \quad \text{built from LTP}(S) ;\\ \text{in the example of } p. 29, \text{ we let in LTP}(f(S)) \quad \text{formulas } \\\\ \textit{R}[f^{@}(\theta_s)f^{@}(\theta_u)f^{@}(\theta_v)f^{@}(\theta_w)f^{@}(\theta_u)f^{@}(\theta_v)f^{@}(\theta_v)] \\ \text{such that }:\\ \theta_u \Rightarrow edg(u,u),\\ \theta_w \Rightarrow \neg edg(u,u),\\ \theta_v \Rightarrow \neg P(v) \qquad (cf. B) \\ edg[\theta_u\theta_v] \text{ and } edg[\theta_w\theta_s] \in \text{LTP}(S) \qquad (cf. C) \end{array}$

For defining ^Lf we only consider the example of f = $add_{U,V,W}$ where U, V are of arity 2 and W of arity 4; Hence W(x,y,z,u) is defined in f(S) by the formula : W(x,y,z,u) \lor (U(x,y) \land V(z,u))

Then L^{f} adds (x,z) in $W[\bullet f^{@}(\theta) \bullet f^{@}(\mu)]$ whenever $x \in U[\bullet \theta]$ and $z \in V[\bullet \mu]$ in L(S). This can be done by the operation

add $U[\bullet\theta]$, $V[\bullet\mu]$, $W[\bullet f@(\theta)\bullet f@(\mu)]$

The signature QF_{-} consisting of \oplus , del_µ, and these particular quantifier-free operations is equivalent to QF_{-} by the theorem page 22.

From Conditions 1 and 2 we obtain :

Theorem :

1) EQ($QF \cup Fuse$) = EQ($QF _ \cup Fuse$) = EQ(QF)

2) $\operatorname{REC}(QF \cup Fuse) \subseteq \operatorname{REC}(QF \cup Fuse) = \operatorname{REC}(QF)$

The proof is done for operations $fuse_{\phi}$ where $\phi(x)$ is a (0,1)-type (i.e., some tp_0). The operations $fuse_{\phi}$ can be expressed as combinations of these special fuse operations and some quantifier-free operations. The theorem follows.

Example showing why the lemma page 29 does not extend to *QF* instead of *QF*_

Let R of arity 3 and $f: STR(\{R\}) \rightarrow STR(\{R\})$

redefine R by:

R(x,y,z) in f(S) iff R(x,y,y) and R(y,z,z) in S

We let S with domain {1,2,3} and R_S = {(1,2,2), (2,3,3)} f(S) has domain {1,2,3} and R_{f(S)} = {(1,2,3)}

We let T with domain {1,2,3,4} and $R_T = \{(1,2,2), (4,3,3)\}$ f(T) has domain {1,2,3,4} and $R_{f(T)} = \emptyset$

LTP(S) = LTP(T)

Now if $L(f(S)) = {}^{L}f[LTP(S)](L(S))$ (1) we also have $L(f(T)) = {}^{L}f[LTP(S)](L(T))$ (2)

Observe that :

 $1 \in R[\bullet \theta \theta]$ in L(S), in L(T), in L(f(S)),

but $1 \notin R[\bullet \theta \theta]$ in L(f(T)), where $\theta(x)$ is $\neg R(x,x,x)$;

we should have $1 \in R[\bullet \theta \theta]$ in L(f(T)) from (1) and (2).

6. The fusion operation for graphs ; "gluing" operations based on local information

All relations have arity 1 or 2. Structures are vertexand edge-labelled graphs.

New binary "gluing" operations forming a set Glue

 $G \otimes_{g} H = G \oplus H + edges between x and y$ whenever $G \models \phi(x), H \models \theta(y)$

Formulas ϕ , θ are first-order and represent "local information" relative to x and y

Question : When do we have, for Glue :

 $EQ(VR) = EQ(QF_{graphs}) = EQ(QF_{graphs} \cup Glue)$ $REC(VR) = REC(QF_{graphs}) = REC(QF_{graphs} \cup Glue) ?$

Complete annotation :

 γ, γ', \dots denote (0,2)-types (cf. page 11) = conjunctions of all the atomic and negated atomic formulas in tp₀(G,a,b) for some G, a, b \neq a

For such $\gamma = tp_0(G,a,b)$, γ_1 denotes $tp_0(G,a)$, γ_2 denotes $tp_0(G,b)$ Λ = the set of formulas $\lambda(x)$ of the form $\exists y.\gamma(x,y)$

- 34 -

The complete 1-type of a in G is :

ctp(G,a) = the conjunction of the valid formulas $\lambda(x)$ and of the negations of the others = $\delta(x)$

CTP(G) = the set of formulas $\exists x.\delta(x)$ valid in G

Complete annotation :
 For every graph G :
 C(G) = G + each vertex a labelled by δ with G | = δ(a)
 + edges a → b labelled by tp₀(G, a,b), for all a ≠ b
 (C(G) is a complete labelled graph).

The new gluing operations

 $G \otimes_{g} H = G \oplus H + R$ -edges $x \rightarrow y$ whenever $G \mid = \delta(x), H \mid = \delta'(y)$

Formally g is a disjunction of triples (R(x,y), $\delta(x)$, $\delta'(y)$)

Verification of Condition 1 (p. 25)

i) Gluing ⊗_g (and disjoint union since ⊗_Ø = ⊕):
Facts : 1) tp₀(G ⊗_g H, a) = tp₀(G, a), tp₀(G ⊗_g H, a,b) = tp₀(G, a,b) if a,b ∈ G
2) an R-edge a → b is defined from ctp(G,a) and ctp(H, b)
3) ctp(G ⊗_g H, a) is defined from ctp(G,a) and CTP(H).

Hence :

 $CTP(G \otimes_{g} H) = h(CTP(G), CTP(H))$

 $C(G \otimes_{g} H) = k[CTP(G), CTP(H)](C(G), C(H))$

where : h is a fixed function and k[p,p'] is a composition of VR-operations : disjoint union of C(G) and C(H), addition of edges between them, relabellings for updating local information. ii) For unary operations f we want (cf. page 25) :

- 36 -

 $C(f(G)) = {}^{C}f[CTP(G)](C(G))$

where C f is a composition of *QF* operations, depending on CTP(G).

a) Deletion of elements by $f = del_{\mu}$ (μ is a (0,1)-type) :

Facts :

 $tp_0(f(G), a) = tp_0(G, a) \neq \mu$, (a is deleted if $\mu(a)$ holds in G)

 $tp_0(f(G), a, b) = tp_0(G, a, b)$ if $tp_0(G, a) \neq \mu$, $tp_0(G, b) \neq \mu$

ctp(f(S),a) contains no formula $\exists y.\gamma(x,y)$ such that γ_1 or γ_2 is equal to μ

Hence :

 $CTP(f(G)) = CTP(G) - everything "containing" \mu$

^Cf deletes the elements labelled by δ containing $\exists y.\gamma(x,y)$ such that $\gamma_1 = \mu$, and updates the labels δ by removing formulas $\exists y.\gamma(x,y)$ such that $\gamma_2 = \mu$

b) f is nondeleting and quantifier-free

^Cf updates the labels δ by using the updating function $f^{@}$ on 0-types, cf. p. 12.

Fusion operation fuse_{μ} is a composition of QF and Glue operations :

 $fuse_{\mu}(G) = del_{\mu}(G \otimes_{g} s)$

where s is a singleton graph, possibly with loops and vertex labels, cf. page 28, and g define edges between G and s

Hence we have the equivalence of the signatures :

VR, QF_{graphs} , $QF_{graphs} \cup Fuse$, $QF_{graphs} \cup Glue$

7. « Sources » are dispensable

Constant symbols a , b, c, ... in relational structures denote unique elements called « sources » in the graph grammar terminology.

The typical use is for parallel composition of (hyper)graphs :

G // H = $G \oplus H$ with fusion of sources with same names.

Quantifier-free operations may use constants in redefinitions like :

edg(x,y) : $\Leftrightarrow edg(x,a) \land edg(y,b)$

but are no longer quantifier-free if written : edg(x,y): $\Leftrightarrow \exists u,v (edg(x,u) \land P_a(u) \land edg(y,v) \land P_b(v))$

by the obvious coding of constants by unary predicates

We get a signature QF-C

A coding of S in STR(Σ ,C) into <u>S</u> in STR($\underline{\Sigma}$)

We delete C_S, the elements denoted by constants in C

We replace a tuple (x, a_S, y, b_S, b_S) in a relation R_S where x,y are not in C_S by the pair (x,y) in a new relation R[aabb].

Hence ∑ is the set of relations R[w] where : w is a word in (C∪{♣})* of length the arity of R containing at least one ♣ and the arity of R[w] is the number of occurrences of ♣.

Fact : S can be reconstructed in a unique way from <u>S</u> and $S[C_S]$, by an operation in *QF-C* (one for each $S[C_S]$).

We let $L/\vartheta = \{ S \in L / S[C_S] = \vartheta \}.$

Theorem : Let $L \subseteq STR(\Sigma, C)$:

1) $L \in EQ(QF-C)$ iff $\underline{L/\vartheta} \in EQ(\underline{\Sigma})$ for each ϑ .

2) $L \in \text{REC}(QF-C)$ iff $\underline{L}/\underline{\vartheta} \in \text{REC}(\underline{\Sigma})$ for each ϑ .

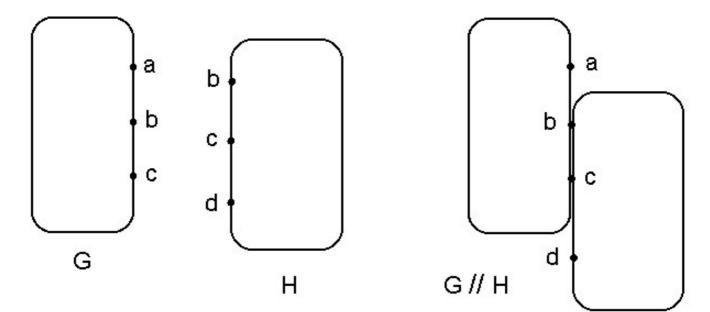
Reminder : Parallel Composition //

(Hyper)graphs have distinguished vertices called *sources,* designated by labels from a set of size k : {*a, b, c, ..., h*}.

- 40 -

G // H is the disjoint union of G and H and sources with same label are fused. (If G and H are not disjoint, one first makes a copy of H disjoint

from G.)



8. Open questions

1. Are the signatures QF and $QF \cup Fuse$ equivalent, (without restriction to binary structures)?

2. Which quantifier-free operations on relational structures preserve recognizability?

3. Can one define on relational structures a complexity measure generalizing clique-width for graphs and "nicely" related with a signature equivalent to QF ?

This document and the base article are available from <u>http://www.labri.fr/</u>~courcell/ActSci.html

- 41 -