
 - 1 -

The tight relationships of Recognizability

and Monadic Second-Order Logic

based on article
Recognizability and Hypergraph operations

using local informations

by Achim Blumensath and Bruno Courcelle

LaBRI, Bordeaux 1 University
GAMES Research Training Network

Motivations and overview

F : signature of operations on graphs, hypergraphs, i.e.,

relational structures
 F-algebra
 Recognizable sets REC(F) (finite congruences, no

 automata)
 Equational sets EQ(F) (« context-free » ; equation

 systems, no rewriting rules)
Robustness :

F ≡ G means REC(F) = REC(G) and EQ(F) = EQ(G).
 Equivalences between small and large signatures
 Extension to particular operations like fusion and other non

 quantifier-free definable operations
 « Sources » in graphs and hypergraphs are dispensable

Relationships with MS logic :

 MS-definable ⊆ REC
 MS-transductions preserve EQ
 New result : inverse MS-transductions preserve REC.

 - 2 -

1. Background : The algebra of relational
structures

Σ∝ = fixed countable set of relation symbols with arity

STR(Σ) = finite relational Σ -structures, for Σ finite ⊆ Σ∝

The fundamental signature QF :

Binary operation(s) :
disjoint union ⊕ : STR(Σ) X STR(Γ) STR(Σ∪Γ)

Unary operations : STR(Σ) STR(Γ)
defined by quantifier-free formulas :

- domain restriction (ex. delete all isolated vertices)
- redefinition of relations (ex. edge-complement, addition of

new edges based on vertex labels)

Nullary symbol 1 : designating the structure in STR(∅) with a single
element.

STR the many-sorted QF-algebra with domains STR(Σ) ;
each finite Σ is a sort.

T(QF)Σ = finite terms over QF (of sort Σ).
Value mapping val : T(QF) Σ STR(Σ).

Reminder : S countable set of sorts, F an S-signature

(means that each f in F has a type
 s1s2 …sk → s, with s, si ∈ S)

M = <(Ms)s ∈ S, (fM)f ∈ F > an F-algebra, Ms ∩ Mt = ∅, if s ≠ t

where fM : Ms1 X Ms2 X … X Msk → Ms

 - 3 -

Equational sets
Context-Free (Graph) Grammars in an

 algebraic setting.

Reminder : For words the set of context-free rules :

S → a S T ; S → b ; T → c T T T ; T → a
is equivalent to the system of two set equations:

 S = a S T ∪ { b }

 T = c T T T ∪ { a }

where S is the language generated by S (idem for T and T).

For graphs we consider similarily systems of equations like:

 S = f(k(S), T) ∪ { b }

 T = f(T , f(g(T), m(T))) ∪ { a }

where f is a binary operation, g, k, m are unary operations on

graphs, a, b are basic graphs.

An equational set is a component of the least (unique)

solution of such an equation system.

 There are two sets of graph operations, two classes of context-free sets

of graphs, the HR-context-free sets (for Hyperedge-Replacement) and the VR-

context-free sets (for Vertex-Replacement).

 - 4 -

Equational sets in STR

EQ(Σ) = the equational subsets of STR(Σ)

EQ = U EQ(Σ), all Σ

The operations are those of QF

Examples :

Context-free languages,

Trees, Graphs of tree-width < k,

Cographs, Graphs of clique-width < k

Alternative characterization of equational sets :

EQ(Σ) = val(REC(T(QF))Σ)

Closure properties : union, homomorphisms,

intersection with a recognizable set

Remark :

L ∈ EQ(Σ) ⇔ L = val(K) for some
K ∈ REC(T(QF(Γ))Σ), Σ ⊆ Γ

Question : what is the minimal Γ ?

 - 5 -

Recognizable sets

L ⊆ STR(Σ) is recognizable iff

L is saturated for a finite congruence ≅ over STR.

≅ an equivalence relation,
S ≅ S’ ⇒ S and S’ belong to the same STR(Σ),
≅ a congruence for the operations of QF,
finitely many classes of each sort Σ.

Notation : REC(Σ) = the recognizable subsets of STR(Σ)

 REC = U REC(Σ), all Σ

Examples : Regular languages and “tree languages”

(i.e., sets of finite terms),

Trees, planar graphs, connected graphs,

 (More to come)

Closure properties :

Boolean operations, inverse homomorphisms.

Remark :
Can L ∈ REC(Σ) be defined in terms of a congruence
on STR(Γ) for a « small » Γ ?

Question : what is the minimal Γ ?

 - 6 -

Monadic Second-Order (MS) Logic

= First-order logic on power-set structures

= First-order logic extended with (quantified) variables

denoting subsets of the domains.

MS properties :

transitive closure,

properties of paths, connectivity,

planarity (via Kuratowski, uses connectivity),

k-colorability.

Notation :

MS-def(Σ) ⊆ P(STR(Σ))
= sets characterized as { S / S = ϕ }

for an MS formula ϕ

Main result : MS-def(Σ) ⊆ REC(Σ)

This result holds for CMS :

Counting Monadic Second-Order logic, using
modulo-counting set predicates.

 - 7 -

MS transductions

Multivalued mappings τ : STR(Σ) STR(Γ)

 S T = τ (S)

where T is :

a) defined by MS formulas

b) inside the structure: S ⊕ S ⊕ ... ⊕ S
 (fixed number of disjoint "marked" copies of S)

 c) in terms of "parameters" i.e. subsets

 X1, …,Xp of the domain of S

Proposition : The composition of two

MS transductions is an MS transduction.

Remark : For each tuple of parameters X1, …,Xp
 satisfying an MS property, T is uniquely

defined. τ is multivalued by the different
choices of parameters.

Quantifier-height of τ : the maximum quantifier-height

of the formulas which specify τ

 - 8 -

Example of an MS transduction (without parameters)

The square mapping δ on words: u → uu

 We let u = aac

 S • → • → •
 a a c

 S ⊕ S • → • → • • → • → •

 a a c a a c
 p1 p1 p1 p2 p2 p2

 δ(S) • → • → • → • → • → •

 a a c a a c

 In δ(S) we redefine Suc (i.e., →) as follows :

Suc(x,y) : ⇔ p1 (x) & p1 (y) & Suc(x,y)
 v p2 (x) & p2 (y) & Suc(x,y)
 v p1 (x) & p2 (y) & "x has no successor"

& "y has no predecessor"

 We also remove the "marker" predicates p1, p2.

 - 9 -

The fundamental property of MS transductions :

 S τ (S)

 τ #(ψ) ψ

Every MS formula ψ has an effectively computable
backwards translation τ #(ψ), an MS formula, such that :

S = τ #(ψ) iff τ (S) = ψ

 The verification of ψ in the object structure τ(S) reduces
to the verification of τ #(ψ) in the given structure S.
 S describes τ(S) ; the MS properties of τ(S) are
described by MS properties of S.

Main results :

1) The value mapping T(QF(Σ∪Γ))Σ STR(Σ) is an
MS transduction.

2) L ⊆ STR(Σ) is equational iff L = τ(Trees), for an MS
transduction τ.

3) The image of an equational set under an MS
transduction is equational

Theorem : The inverse image of a recognizable set

under an MS transduction is recognizable.

 - 10 -

Relationships between algebraic

and logical notions

Algebraic
notions

Algebraic
characterizations

Logical
characterizations

Closure
properties

 union, ∩ Rec
equation systems MS-trans(Trees) homo

EQ

Val(REC(Terms)) MS-trans

 Boolean opns
congruences MS-def ⊂ REC homo-1

REC

 MS-trans-1

Signatures for graphs and hypergraphs :

HR : hypergraphs with “sources”

VR : graphs with vertex labels
VR+QFgraphs : with quantifier-free operations

(ex. edge complement)

QF : hypergraphs, i.e., relational structures
QF+ Fusion : hypergraphs.

 - 11 -

2. Local information and annotations

Let S in STR(Σ), a1, …,an in DS (the domain of S).

tpk(S, a1, …,an) = { ϕ / S = ϕ (a1, …,an),

ϕ ∈ MS(Σ, x1, …,xn) of quantifier-height ≤ k }
∈ P(MSk(Σ, x1, …,xn))
= (k,n)-Types

tpk(S, a1, …,an) is a local information relative to
a1, …,an in S.

tpk(S) is a global information relative to S.

Annotation : S Mk,m(S) = (DS, (Tp) p ∈ (k,n)-Types, n≤ m).

Tp(a1, …,an) : ⇔ tpk(S, a1, …,an) = p.

Mk,m(S) = S + local information

Facts :

1) Mk,m is an MS transduction of quantifier-height k.

2) M0,m is a quantifier-free transduction.

3) The inverse of Mk,m is a quantifier-free transduction ;
it is functional because Mk,m is injective.

 - 12 -

Homomorphic properties of Mk,m

Proposition :
1) Mk,m(S⊕T) = ⊕$ [tpk(S), tpk(T)] (Mk,m(S), Mk,m(T))

2) For g quantifier-free :

Mk,m(g(S)) = g$ (Mk,m(S))

where g$, ⊕$ [p,p’] are compositions of QF operations.

Proof sketch :
1) By Feferman-Vaught-Shelah :

S⊕T = ϕ(a1, …,an, b1, …,bq)
iff for some i :

S = ψi(a1, …,an) and T = θi(b1, …,bq)
where ψi and θi are MS formulas of quantifier-height ≤
that of ϕ, and that only depend on ϕ. Hence

Mk,m(S⊕T) = f(Mk,m(S) ⊕ Mk,m(T))

where f redefines the types in S and in T (in terms of tpk(T)
and tpk(S)) and creates appropriate relations for the types
concerning both S and T (using addU,V,W of Section 4).

2) By the fact that

tpk(g(S), a1, …,an) = g@(tpk(S, a1, …,an))
for some mapping g@ : (k,n)-Types (k,n)-Types (by using
backwards translation relative to g).

We let g$ replace q by p whenever g@(q) = p

 - 13 -

Factorization :

Through Mk,m annotations, MS transductions of

Quantifier-height ≤ k reduce to quantifier-free ones :

If g : STR(Σ) STR(Γ) is an MS transduction of

Quantifier-height ≤ k, and m = MaximumArity(Γ) :

g(S) = f [tpk(S)] (Mk,m(S))

where f [p] : STR(Σk,m) STR(Γ) is quantifier-free.

Easy construction, using renamings of the type relations

and deletions of elements.

 - 14 -

3. Inverse MS transductions preserve REC

This is already known for MS definable sets and the
recognizable sets of graphs of bounded tree-width.

Proof sketch :
Every MS transduction is the composition of
MS transductions of 3 types :

- Copyk
- Parameterless noncopying
- Guessing of unary relations

1) Copyk :

S S ⊕ S ⊕ … ⊕ S (k times)

augmented with binary relations Yi,j for 1 ≤ i < j ≤ k

defined as

{(x,y) / x is the i-copy, y is the j-copy of some u in DS}

Facts : a) Copyk(S ⊕ T) = Copyk(S) ⊕ Copyk(T)

 b) For f quantifier-free, there is a quantifier-free g :

 Copyk(f(S)) = g(Copyk(S))

Hence Copyk is “almost” a homomorphism, and REC is

preserved under inverse homomorphisms.

 - 15 -

2) Forgetting unary relations :

We let fgtΠ : STR(Σ ∪ Π) STR(Σ) just « forget » Π,

Π is a finite set of unary relations.

Its inverse consists in « guessing » the relations in Π, this
can be done by means of parameters of an MS transduction.

Lemma : If L ∈ REC, then fgtΠ(L) ∈ REC.

Proof : From a congruence ≡ for L, we define the
equivalence :

S ≅ T iff { [U] ≡ / fgtΠ(U) = S } = { [U] ≡ / fgtΠ(U) = T }

 It is finite, saturates fgtΠ(L).

 It is a congruence : we use the fact that

S ⊕ T = fgtΠ(W) iff
there exist S’, T’ such that W = S’⊕ T’,
S = fgtΠ(S’), and T = fgtΠ(T’),

and a similar observation for unary operations.

 - 16 -

3) Parameterless noncopying MS transductions.

We let L ∈ REC(Γ)
τ be a parameterless noncopying MS transduction :

STR(Σ) STR(Γ) of quantifier-height k

 We prove that τ -1(L) ∈ REC(Σ)

From a congruence ≡ for L, we define, on each set
STR(∆), the equivalence :

S ≅ T iff

tpk(S) = tpk(T) and for every parameterless noncopying
MS transduction µ : STR(∆) STR(Γ) of quantifier-height at
most k, we have µ(S) ≡ µ(T).

(tpk(S) is the MS theory of S of quantifier height at most k.)

It is finite, saturates τ -1(L) (because τ is one of the

considered transductions µ).

 - 17 -

It is a congruence. We consider f unary, quantifier-

free. Let S ≅ T :

tpk(f(S)) = f@(tpk(S)) = f@(tpk(T)) = tpk(f(T)) (cf. page 12).

For every µ, µof is a parameterless noncopying

MS transduction of quantifier-height k :

µ(f(S)) =µof(S) ≡ µof(T) = µ(f(T)). Qed

Remains ⊕ : Let S ≅ T, S’ ≅ T’, we want S ⊕ S’ ≅ T ⊕ T’.

We have tpk(S ⊕ S’) = tpk(T ⊕ T’) (by Feferman et al.)

For every µ :

µ(S ⊕ S’) = f [tpk(S ⊕S’)](Mk,m(S⊕S’)) (m = MaxArity(Γ), cf.

page 13)
 = f [tpk(S ⊕S’)] (⊕$[tpk(S), tpk(S’)](Mk,m(S), Mk,m(S’)))

and similarly for µ(T ⊕ T’) (cf. page 12)
Since Mk,m is an MS transduction of quantifier-height ≤ k :
Mk,m(S) ≡ Mk,m(T), Mk,m(S’) ≡ Mk,m(T’)
Also : ⊕$[tpk(T), tpk(T’)] = ⊕$[tpk(T), tpk(T’)]

f [tpk(S ⊕ S’)] = f [tpk(T ⊕ T’)]

Since ≡ is a QF-congruence, and f[p], ⊕$ are in QF :

µ(S ⊕ S’) ≡ µ(T ⊕ T’) , hence S ⊕ S’ ≅ T ⊕ T’

 - 18 -

4. A « small » signature equivalent to QF

 Vertex k-labelled graphs are in STR({edg, P1, …., Pk})

 Equational and recognizable sets are defined w.r.t. all

finite sets of relation symbols of unbounded arity.

 Can’ t we restrict to {edg, P1, …., Pk,…} ? Yes

 More generally, what about subsets of STR(Σ)?

The VR signature for vertex labelled graphs :

 Labels are 1, …, k, …
 Operations are : disjoint union ⊕
 Edge addition addi,j which adds to a graph

the edges x y for x labelled i and y labelled j
 Label renaming reni j which replaces label i by j.
 Constants : vertex labelled i ; the same with a loop.

Theorem (BC, JEngelfriet, PWeil) :

1) EQ(VR) = EQ(QF) ∩Graphs = MS-trans(Trees)

2) REC(VR) = REC(QF)∩Graphs

 - 19 -

Proof sketch :
MS-trans(Trees) ⊆ val(REC(T(VR)) = EQ(VR)

 Let L = τ(Trees) = a set of m-graphs.

1) Technical step :
 One has : L = σ(K) where
 - K ∈ REC(T({♦,*})) (♦binary,* constant)

 - σ is a noncopying, nondeleting, MS transduction with-
out parameters. The vertices of σ(t) are the occurrences of * in t.

2) For t in K we let (cf. page 11)

 TH(t) = Mk,2(t) ∩ Leaves(t)
 (= the leaves of t with labels and edges encoding the types of
vertices and pairs of vertices for MS formulas of quantifier-height ≤ k)

There exists a tree-transducer θ that maps t in K to a
VR-term θ(t) such that :
 val(θ(t)) = TH(t).

3) Using the proposition page 13 :
 σ(t) = f(Mk,2(t))

= f(Mk,2(t) ∩ Leaves(t)) = f(TH(t))
= f(val(θ(t)))

where f is a composition of VR-operations.

Hence L = val(f(θ(K)))

where f(θ(K)) ∈ REC(T(VR))

Hence L ∈ EQ(VR)

 - 20 -

For REC(VR) ⊆ REC(QF)∩Graphes (proof from BC-PWeil).

Let L be VR-recognizable with conguence ≈. It is also

w.r.t. QF. We define congruences ≡ on the sets STR(Γ) for

all Γ by :

S ≡ T iff tp0(S) = tp0(T) and
h(S) ≈ h(T) for every quantifier-free
transduction h : STR(Γ) k-Graphs.

Congruence :

1) Let g be quantifier-free : STR(∆) STR(Γ).
 Let S ≡ T. For every h quantifier-free, hog is quantifier-free:

h(g(S)) = (hog)(S) ≈ (hog)(T) = h(g(T)),

hence g(S) ≡ g(T).

2) Next we consider ⊕.
 Let S ≡ S’, T ≡ T’. To be proved : S ⊕ T ≡ S’ ⊕ T’.

Lemma : For every quantifier-free h : STR(Γ) k-Graphs

h(S ⊕ T) = t(g(S) ⊕ g’(T))

for some composition t of VR operations, and some
quantifier-free g, g’ : STR(Γ) k-Graphs

 - 21 -

Lemma : For every quantifier-free h : STR(Γ) k-Graphs

h(S ⊕ T) = t(g(S) ⊕ g’(T))

for some composition t of VR operations, and some
quantifier-free g, g’ : STR(Γ) k-Graphs

Proof sketch : Cf p. 12 and 16. For µ of quantifier-height 0, and m = 2:

µ(S ⊕ T) =
 = f [tp0(S ⊕ T)] (⊕$[tp0(S), tp0(T)](M0,2(S), M0,2(T)))
 = t(M0,2(S) ⊕ M0,2(T))

where t is a composition of VR-operations. Qed

 Now S ≡ S’, T ≡ T’ implies :

tp0(S) = tp0(S’), tp0(T) = tp0(T’), tp0(S ⊕ T) = tp0(S’⊕T’)

M0,2(S) ≈ M0,2(S’), M0,2(T) ≈ M0,2(T’)

because M0,2 is quantifier-free

µ(S ⊕ T) ≈ µ(S’ ⊕ T’) because ≈ is a congruence for
 ⊕ and for t .

 Qed

 - 22 -

Similar results for relational structures.

Let Γ with maximal arity m.

We let Σ(Γ,m) be the sorts ⊆ Γ ∪ ∆ where ∆ are finite
sets of “auxiliary” symbols of arity at most m-1.

We let QFΓ be the restriction of QF to the domains
STR(Σ) for Σ in Σ(Γ,m) with the operations :

- disjoint union ⊕
- “forget” an “auxiliary” relation
- “rename” an “auxiliary” relation into an “auxiliary”

one of same arity
- addR,S,T for R,S,T auxiliary : adds a T-hyperedge

with vertex sequence u*v for every u, v, disjoint
loop-free vertex sequences of R- and S-
hyperedges.

- addR,S,T,h for R,S “auxiliary”, T in Γ: as above,
but, in addition, h permutes the vertex sequence of
the T-hyperedge and creates loops.

- some constants denoting singleton hypergraphs.

Theorem : Let L ⊆ STR(Γ).

1) L ∈ EQ(QFΓ) iff L ∈ EQ(QF)

 iff L = MS-trans(Trees)

2) L ∈ REC(QFΓ) iff L ∈ REC(QF).

 - 23 -

Improvement for small rank and large arity

Notation : S ∈ STRn(Γ) iff each hyperedge has at most n

distinct vertices, i.e., rank at most n. Clearly n ≤ m.

One takes ∆’ finite sets of relation symbols of arity ≤
n-1. We obtain, with ∆’ in place of ∆ :

Theorem : Same as above for L ⊆ STRn(Γ).

Consequences :

1) For 3-ary hypergraphs, all 3-ary hyperedges of which have
loops, rank ≤ 2 hence unary “auxiliary” relations (vertex
labels P1, …., Pk) suffice.

2) For general 3-ary hypergraphs, “auxiliary” binary relations
are necessary.

Example : R, 3-ary relation

Let An with domain {1,…,n}, RAn = { (i,j,k) / i < j < k }.

1) The set L of An’s is the image of the set of terms
{ fn(c) / n >0 } under an MS-transduction, hence is
equational.

2) It cannot be generated by the operations of QF based
on R and finitely many unary “auxiliary” relations P1, ….,
Pm.

 - 24 -

5. “Larger” signatures using local information

 The fusion operation on vertex labelled hypergraphs :

 fusep(S) = the quotient of S obtained by fusing all vertices
labelled p

 Fuse = { fusep }

Theorem (BC, JMakowsky) :

 The mapping val : T(QF ∪ Fuse) STR
 is an MS transduction.
 EQ(QF) = EQ(QF ∪ Fuse)

Questions :

 What about REC ?

 Can one use a quantifier-free formula ϕ(x) instead of p

(which corresponds to Pp(x)) ?

 - 25 -

How to enlarge a signature into an equivalent one ?

S Ann(S) = S + local information

F a signature equivalent to QF

G a set of new operations

Conditions :

1) For every f ∈ F ∪ G :

Ann(f(S, …,T)) = Annf (Ann(S), …,Ann(T))

where Annf is a composition of operations in QF

2) Ann-1 is an MS transduction

Proposition : Under these conditions :

EQ(F ∪ G) = EQ(QF)

 REC(F ∪ G) = REC(QF)

Proof : The mapping val : T(F ∪ G) STR is the
composition of 3 MS transductions :

t Annt (by Condition 1)
val (from T(QF) to annotated structures),
Ann-1 (by Condition 2).

Hence EQ(F ∪ G) ⊆ EQ(QF) = EQ(F) ⊆ EQ(F ∪ G).

For REC(F ∪ G) = REC(QF), the proof uses the closure
of REC under inverse MS transductions (Ann-1) and under
inverse homomorphisms (cf. Condition 1).

 - 26 -

Application to Fusion

For ϕ(x) a quantifier-free formula, fuseϕ(S) is S

where all elements satisfying ϕ are fused.

Example, for a 2-graph : ϕ(x) may be edg(x,x) ∧ ¬P2(x)

We let Fuse denote the set of all these operations

What kind of local information satisfies Condition 1) ?

Notation:

θ,µ,ν, ... denote (0,1)-types (cf. page 11)

= conjunctions of atomic and negated atomic formulas in
 tp0(S,a) for some S, a

With S in STR(Σ), we associate L(S) in STR(Σ L) such that :

L(S) = S + new relations, with typical case

(a,b,c) ∈ R[••θµ•ν]L(S) iff
(a,b,u,v,c,w) ∈ RS for some u, v, w that satisfy

respectively θ, µ, ν
R[••••••] is identical to R.

Σ L is Σ ∪ new symbols like R[••θµ•ν] with at least one •

 - 27 -

Global information associated with S :

R[θ1…θm] abreviates
∃y1,…,ym (R(y1,…,ym) ∧ θ1(y1)∧ ... ∧ θm(ym))

LTP(S) = the set of (0,1)-types and of formulas

R[θ1…θm] satisfied in S

⊆ tpn(S) ((n,0)-type, n = MaxArity(Σ), cf. page 11)

Proposition : For the annotation L :

a) L-1 is a quantifier-free transduction, hence Condition 2)
holds.

b) For a subsignature QF_ equivalent to QF :

b1) LTP is inductively computable w.r.t. Fuse ∪ QF_
b2) Condition 1) holds for Fuse ∪ QF_

Proof : a) is clear.
Consider b)
i) Disjoint union ⊕ :

tp0(S⊕T, a) = tp0(S, a) for a in S
LTP(S⊕T) = LTP(S) ∪ LTP(T)

 L(S⊕T) = L(S) ⊕L(T)

For unary operations f we want (cf. page 25) :

L(f(S)) = Lf [LTP(S)] (L(S))

where Lf is a composition of QF operations, depending on
LTP(S).

 - 28 -

ii) Deletion of elements by f = delµ (µ : (0,1)-type) :

tp0(f(S),a) = tp0(S,a) ≠ µ, (a is deleted if µ(a) holds in S)
LTP(f(S)) = LTP(S) – everything containing µ

 Lf deletes elements by delµ and
“forgets” the relations R[...µ...]

iii) Case of fuseµ (µ : (0,1)-type)

Let a in S yield b in fuseµ(S) (it is a quotient structure)
if tp0(S,a) = µ : tp0(fuseµ(S), b) = µ∗ =

{ R(x,x,…,x) / R[µµ...µ] ∈ LTP(S) } ∪
{ ¬R(x,x,…,x) / R[µµ...µ] ∉ LTP(S)} ;

if tp0(S,a) ≠ µ : tp0(fuseµ(S),b) = tp0(S,a)

LTP(fuseµ(S)) = { µ∗ } ∪ { θ ∈ LTP(S) / θ ≠ µ}
∪ {R[…µ∗…θ…] / R[…µ…θ…] ∈ LTP(S) }

 We now consider L(fuseµ(S)) ; f = fuseµ

 S f(S)
 ↓ ↓

 L(S) T = delµ(L(S)) L(f(S))

L(f(S)) = Link(T ⊕ s) where :
 s is a singleton satisfying µ∗ (this depends on LTP(S))

Link : first creates (a,b,s,c,d) in R[••••θ•]L(f(S))
from (a,b,c,d) in R[••µ•θ•]L(S)
then renames R[••µ•θ•] into R[••µ∗•θ•]
This gives : Lf [LTP(S)] (U)= Link(delµ(U) ⊕ s)

 - 29 -

iv) Only for certain non-deleting quantifier-free operations f
we have :
 LTP(f(S)) computable from LTP(S), and

L(f(S)) = Lf [LTP(S)] (L(S))

These include :

Forget or rename (some relations)
AddU,V,W (cf. page 22)
AddU,V,W,h (cf. page 22)

and more generally those such that :
each relation R(x1, …,xn) is defined by a disjunction
of conditions, each of the form A ∧ B ∧ C where

A is a set of defining equalities,
B is a conjunction of atomic and negated atomic
formulas with a single variable,
C is a conjunction of atomic formulas where no
variable occurs more than once.

Example :
 For defining R(s,u,v,w,x,y,z)

x=u ∧ y=v ∧ z =v (A)
∧ edg(u,u) ∧ ¬edg(w,w) ∧ ¬P(v) (B)
∧ edg(u,v) ∧ edg(w,s) (C)

(x,y,z are defined from s,u,v,w)

 - 30 -

Proofs : For such f :

tp0(f(S),a) = f@(tp0(S,a)) (cf. page 12)

LTP(f(S)) = the set of f@(θ) for θ in LTP(S), and of
formulas R[θ1…θm] built from LTP(S) ;
in the example of p. 29, we let in LTP(f(S)) formulas

R[f@(θs)f@(θu)f@(θv)f

@(θw)f@(θu)f@(θv)f
@(θv)]

such that :
θu ⇒ edg(u,u),
θw ⇒ ¬edg(w,w),
θv ⇒ ¬P(v) (cf. B)
edg[θuθv] and edg[θwθs] ∈ LTP(S) (cf. C)

 For defining Lf we only consider the example of
f = addU,V,W where U, V are of arity 2 and W of arity 4;
Hence W(x,y,z,u) is defined in f(S) by the formula :

 W(x,y,z,u) ∨ (U(x,y) ∧ V(z,u))

 Then Lf adds (x,z) in W[•f@(θ)• f@(µ)]
whenever x ∈ U[•θ] and z ∈V[•µ] in L(S).

This can be done by the operation
addU[•θ], V[•µ], W[•f@(θ)• f@(µ)]

 - 31 -

The signature QF_ consisting of ⊕, delµ, and these

particular quantifier-free operations is equivalent to QF by
the theorem page 22.

From Conditions 1 and 2 we obtain :

Theorem :

1) EQ(QF ∪ Fuse) = EQ(QF_ ∪ Fuse) = EQ(QF)

2) REC(QF ∪ Fuse) ⊆ REC(QF_ ∪ Fuse) = REC(QF)

The proof is done for operations fuseϕ where ϕ(x)
is a (0,1)-type (i.e., some tp0). The operations fuseϕ can be

expressed as combinations of these special fuse operations

and some quantifier-free operations. The theorem follows.

 - 32 -

Example showing why the lemma page 29 does not extend to
QF instead of QF_

Let R of arity 3 and f : STR({R}) STR({R})

redefine R by :

R(x,y,z) in f(S) iff R(x,y,y) and R(y,z,z) in S

We let S with domain {1,2,3} and
RS = {(1,2,2), (2,3,3)}
f(S) has domain {1,2,3} and Rf(S) = {(1,2,3)}

We let T with domain {1,2,3,4} and
RT = {(1,2,2), (4,3,3)}
f(T) has domain {1,2,3,4} and Rf(T) = ∅

LTP(S) = LTP(T)

Now if L(f(S)) = Lf [LTP(S)] (L(S)) (1)
we also have

L(f(T)) = Lf [LTP(S)] (L(T)) (2)

Observe that :

1 ∈ R[•θθ] in L(S), in L(T), in L(f(S)),

but 1 ∉ R[•θθ] in L(f(T)), where θ(x) is ¬R(x,x,x) ;

we should have 1 ∈ R[•θθ] in L(f(T)) from (1) and (2).

 - 33 -

6. The fusion operation for graphs ;
 “gluing” operations based on local information

 All relations have arity 1 or 2. Structures are vertex-
and edge-labelled graphs.

New binary “gluing” operations forming a set Glue

G ⊗g H = G ⊕ H + edges between x and y
 whenever G = ϕ(x) , H = θ(y)

 Formulas ϕ, θ are first-order and represent “local

information” relative to x and y

Question : When do we have, for Glue :

EQ(VR) = EQ(QFgraphs) = EQ(QFgraphs ∪ Glue)
 REC(VR) = REC(QFgraphs) = REC(QFgraphs ∪ Glue) ?

Complete annotation :

γ, γ’, ... denote (0,2)-types (cf. page 11)

= conjunctions of all the atomic and negated atomic
formulas in tp0(G,a,b) for some G, a, b ≠ a

For such γ = tp0(G,a,b), γ1 denotes tp0(G,a),

γ2 denotes tp0(G,b)

 - 34 -

Λ = the set of formulas λ(x) of the form ∃y.γ(x,y)

The complete 1-type of a in G is :

ctp(G,a) = the conjunction of the valid formulas λ(x)
 and of the negations of the others
 = δ(x)

CTP(G) = the set of formulas ∃x.δ(x) valid in G

Complete annotation :

For every graph G :
C(G) = G + each vertex a labelled by δ with G = δ(a)
 + edges a b labelled by tp0(G, a,b), for all a ≠ b

(C(G) is a complete labelled graph).

The new gluing operations

G ⊗g H = G ⊕ H + R-edges x y
 whenever G = δ(x) , H = δ‘(y)

Formally g is a disjunction of triples (R(x,y), δ(x), δ‘(y))

 - 35 -

Verification of Condition 1 (p. 25)

i) Gluing ⊗g (and disjoint union since ⊗∅ = ⊕) :

Facts : 1) tp0(G ⊗g H, a) = tp0(G, a), tp0(G ⊗g H, a,b) = tp0(G, a,b)
 if a,b ∈ G

2) an R-edge a b is defined from ctp(G,a) and ctp(H, b)
3) ctp(G ⊗g H, a) is defined from ctp(G,a) and CTP(H).

Hence :

CTP(G ⊗g H) = h(CTP(G), CTP(H))

C(G ⊗g H) = k[CTP(G),CTP(H)](C(G), C(H))

where :
h is a fixed function and
k[p,p’] is a composition of VR-operations :
disjoint union of C(G) and C(H),
addition of edges between them,
relabellings for updating local information.

 - 36 -

ii) For unary operations f we want (cf. page 25) :

C(f(G)) = Cf [CTP(G)] (C(G))

where Cf is a composition of QF operations, depending on
CTP(G).

a) Deletion of elements by f = delµ (µ is a (0,1)-type) :

Facts :

tp0(f(G), a) = tp0(G, a) ≠ µ, (a is deleted if µ(a) holds in G)

tp0(f(G), a,b) = tp0(G, a,b) if tp0(G, a) ≠ µ, tp0(G, b) ≠ µ

ctp(f(S),a) contains no formula ∃y.γ(x,y) such that
γ1 or γ2 is equal to µ

Hence :
CTP(f(G)) = CTP(G) – everything “containing” µ

Cf deletes the elements labelled by δ containing
∃y.γ(x,y) such that γ1 = µ , and updates the labels δ by
removing formulas ∃y.γ(x,y) such that γ2 = µ

b) f is nondeleting and quantifier-free

Cf updates the labels δ by using the updating function
f@ on 0-types, cf. p. 12.

 - 37 -

Fusion operation fuseµ is a composition of QF and

Glue operations :

fuseµ(G) = delµ(G ⊗g s)

where s is a singleton graph, possibly with loops and

vertex labels, cf. page 28, and g define edges between G
and s

Hence we have the equivalence of the signatures :

VR, QFgraphs, QFgraphs ∪ Fuse, QFgraphs ∪ Glue

 - 38 -

7. « Sources » are dispensable

 Constant symbols a , b, c, … in relational structures
denote unique elements called « sources » in the graph
grammar terminology.

 The typical use is for parallel composition of
(hyper)graphs :

G // H =
G ⊕ H with fusion of sources with same names.

 Quantifier-free operations may use constants in
redefinitions like :

edg(x,y) : ⇔ edg(x,a) ∧ edg(y,b)

 but are no longer quantifier-free if written :
edg(x,y): ⇔ ∃u,v (edg(x,u)∧Pa(u)∧ edg(y,v)∧Pb(v))

by the obvious coding of constants by unary predicates

 We get a signature QF-C

 - 39 -

A coding of S in STR(Σ,C) into S in STR(Σ)

 We delete CS, the elements denoted by constants in C

 We replace a tuple (x, aS, y, bS, bS) in a relation RS
where x,y are not in CS by the pair (x,y) in a new relation
R[♣a♣bb].

 Hence Σ is the set of relations R[w] where :

w is a word in (C∪{♣})* of length the arity of R
containing at least one ♣ and
the arity of R[w] is the number of occurrences of ♣.

Fact : S can be reconstructed in a unique way from S and
S[CS], by an operation in QF-C (one for each S[CS]).

 We let L/ϑ = { S ∈ L / S[CS] = ϑ }.

Theorem : Let L ⊆ STR(Σ,C):

1) L ∈ EQ(QF-C) iff L/ϑ ∈ EQ(Σ) for each ϑ.

2) L ∈ REC(QF-C) iff L/ϑ ∈ REC(Σ) for each ϑ.

 - 40 -

Reminder : Parallel Composition //

(Hyper)graphs have distinguished vertices called

sources, designated by labels from a set of size k :

{a, b, c, ..., h}.

G // H is the disjoint union of G and H

 and sources with same

 label are fused.
 (If G and H are not disjoint, one

 first makes a copy of H disjoint

 from G .)

 - 41 -

8. Open questions

 1. Are the signatures QF and QF ∪ Fuse equivalent,

(without restriction to binary structures) ?

 2. Which quantifier-free operations on relational

structures preserve recognizability ?

 3. Can one define on relational structures a complexity

measure generalizing clique-width for graphs and “nicely”

related with a signature equivalent to QF ?

 This document and the base article are available from

 http://www.labri.fr/~courcell/ActSci.html

