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Motivations and overview  
 
F :  signature of operations on graphs, hypergraphs, i.e.,  

relational structures 
 F-algebra 
 Recognizable sets REC(F) (finite congruences, no            

                                                                    automata) 
 Equational sets EQ(F) (« context-free » ; equation  

                                        systems, no rewriting rules) 
Robustness :  
 

F ≡ G means  REC(F) = REC(G)  and EQ(F) = EQ(G). 
  Equivalences between small and large signatures 
 Extension to particular operations like fusion and other non 

                                     quantifier-free definable operations 
  « Sources » in graphs and hypergraphs are dispensable 

 
Relationships with MS logic : 
 

  MS-definable  ⊆ REC 
  MS-transductions preserve EQ 
  New result : inverse MS-transductions preserve REC.
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1. Background : The algebra of relational 
structures 
 

Σ∝ = fixed countable set of relation symbols with arity  

STR(Σ) = finite relational Σ -structures, for   Σ  finite    ⊆  Σ∝ 
 
The fundamental signature QF : 
 
Binary operation(s) :  
disjoint union   ⊕  :  STR(Σ) X STR(Γ) STR(Σ∪Γ) 
 
Unary operations : STR(Σ) STR(Γ) 
defined by quantifier-free formulas : 

- domain restriction (ex. delete all isolated vertices) 
- redefinition of relations (ex. edge-complement, addition of 

new edges based on vertex labels) 
 

Nullary symbol 1 : designating the structure in STR(∅)  with a single 
element. 
 
STR  the many-sorted QF-algebra with domains STR(Σ) ; 
each finite Σ is a sort. 
 
T(QF)Σ = finite terms over QF  (of sort Σ). 
Value mapping val : T(QF) Σ  STR(Σ). 
_____________________________________________________ 
 
Reminder :   S   countable  set of sorts, F  an S-signature  

(means that each  f  in F  has a type  
  s1s2 …sk → s,  with s, si ∈ S ) 

M = <(Ms)s ∈ S, (fM)f ∈ F >  an  F-algebra, Ms ∩ Mt  = ∅, if s  ≠  t 

where fM : Ms1 X  Ms2 X … X Msk →  Ms 
_____________________________________________________ 
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Equational sets  
Context-Free  (Graph)  Grammars  in  an 

  algebraic  setting. 
 

Reminder :  For   words  the  set of context-free  rules : 

S  → a S T ;    S  → b  ;  T  → c T T T ;   T  → a 
is equivalent to  the system  of  two set  equations: 

  S  =  a S T     ∪    { b }  

  T  =  c T T T      ∪        { a } 

where S is the language generated  by S (idem for T and T). 

 

For  graphs we consider similarily  systems of equations like: 

  S  =  f( k( S ), T  )     ∪  { b }  

  T  =  f( T , f( g(T ), m( T ))) ∪ { a } 

where f is a binary operation,  g, k, m are unary operations on  

graphs,  a, b are basic graphs.  

 

An  equational set  is  a component  of the least  (unique)  

solution  of such  an  equation system.  
 

 There are  two sets  of graph operations, two  classes of context-free sets 

of graphs,  the HR-context-free sets (for Hyperedge-Replacement) and the VR-

context-free sets (for Vertex-Replacement). 
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Equational  sets  in STR  
 
EQ(Σ)  =  the equational  subsets of STR(Σ) 
 

EQ =  U EQ(Σ), all  Σ 
 
The operations are those  of   QF 
 
 
Examples :  
 

Context-free languages,  
 
Trees,  Graphs of tree-width < k, 
 
Cographs,   Graphs of clique-width < k 

 
 
Alternative characterization  of equational  sets :  
 

EQ(Σ) = val(REC(T(QF))Σ) 
 
Closure properties :      union,     homomorphisms,  
 

intersection with  a  recognizable set 
 
Remark : 
 

L ∈ EQ(Σ)  ⇔ L = val(K) for  some  
K ∈ REC(T(QF(Γ))Σ),  Σ  ⊆  Γ 

 
Question : what is the minimal Γ  ? 
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Recognizable sets  
 
 

L  ⊆  STR(Σ) is recognizable iff  
 

L is saturated for a finite congruence  ≅  over STR. 
 

≅   an  equivalence relation,  
S  ≅  S’  ⇒ S and S’ belong to the same STR(Σ), 
≅  a congruence for the operations of QF, 
finitely many classes of each sort Σ. 

 
Notation :   REC(Σ)  =  the recognizable subsets of STR(Σ) 
 

    REC =  U REC(Σ), all  Σ 
 
Examples : Regular  languages  and  “tree languages”  

(i.e., sets  of  finite terms), 
 

Trees, planar  graphs,  connected graphs,  
 

 (More  to come)  
 
 

Closure properties :  
 

Boolean operations, inverse homomorphisms. 
 

Remark : 
Can L ∈ REC(Σ) be defined in terms of a congruence  
on  STR(Γ) for  a  « small » Γ ? 
 
Question : what is the minimal Γ ? 
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Monadic Second-Order (MS) Logic  
 
 
=  First-order logic on power-set structures  
 
=  First-order logic extended with (quantified) variables  

denoting subsets  of the domains. 
 
MS properties :  
 

transitive closure,  
 
properties of paths, connectivity,  
 
planarity       (via Kuratowski, uses connectivity), 
 
k-colorability. 

 
Notation :   

MS-def(Σ)  ⊆   P(STR(Σ))   
=     sets characterized  as { S  /  S  =  ϕ }  

for an MS formula  ϕ 
 
Main result : MS-def(Σ)  ⊆   REC(Σ) 
 

This  result  holds  for  CMS :  
 

Counting Monadic Second-Order  logic, using  
modulo-counting set predicates. 
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MS  transductions  
 
Multivalued mappings  τ  : STR(Σ)  STR(Γ)  
 
   S                 T  =  τ (S)         

 
where   T  is  : 

a) defined by  MS formulas 
 

b) inside  the  structure:  S ⊕ S ⊕ ... ⊕ S  
    (fixed  number  of disjoint "marked" copies of S) 

 
   c) in terms  of "parameters"  i.e.  subsets  

 X1, …,Xp   of  the  domain  of  S 
  
 
Proposition  :  The  composition  of  two   
 

MS  transductions  is  an  MS  transduction. 
 

Remark  :   For  each tuple of parameters X1, …,Xp 
  satisfying  an MS  property, T is uniquely 

defined.  τ  is multivalued  by  the  different  
choices of parameters. 
 

Quantifier-height  of τ : the  maximum quantifier-height  
 

of the  formulas  which specify  τ 
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Example  of  an  MS  transduction   (without parameters) 
 
The  square  mapping  δ  on  words:  u  →   uu 
 
 We  let  u  =    aac  
 
  S     •  →  • → •    
       a      a      c      
     
  S ⊕ S    •  →  • → •              •  →  • → • 

     a       a     c             a        a     c  
     p1     p1    p1           p2      p2    p2 

 

 
  δ(S)   •  →  • → •  →  • → • →  •  

     a        a      c        a      a        c  
 

 
 In δ(S) we  redefine Suc (i.e., →  ) as  follows : 
 
 
Suc(x,y) :  ⇔   p1 (x) & p1 (y) & Suc(x,y) 
     v p2 (x) & p2 (y) & Suc(x,y) 
      v p1 (x) & p2 (y) & "x has no  successor"  

& "y has no  predecessor" 
 
 We also  remove  the  "marker" predicates p1, p2. 
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The fundamental property of MS  transductions :  
 
     S                      τ (S) 
 
     τ #(ψ)                ψ 
 

Every  MS  formula  ψ  has  an effectively  computable  
backwards  translation τ #(ψ), an MS formula, such that : 
 

S   =  τ #(ψ)    iff    τ (S)   =  ψ 
 
 The verification of ψ  in  the object structure τ(S)  reduces  
to  the  verification  of  τ #(ψ)   in  the  given structure S. 
 S  describes  τ(S) ;  the MS properties of τ(S)    are 
described by MS properties of S. 
 
 

Main results :  
 

1)   The value mapping T(QF(Σ∪Γ))Σ  STR(Σ)  is an 
MS transduction. 

2)   L ⊆ STR(Σ) is equational iff L =  τ(Trees), for an MS 
transduction τ. 

3)   The image of an equational set under an MS 
transduction is equational 

 
Theorem  : The inverse image of a recognizable set  

under an MS transduction is recognizable. 
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Relationships  between  algebraic   

and  logical  notions 
 
 
 

Algebraic 
notions 

Algebraic 
characterizations

Logical  
characterizations

Closure 
properties 

  union,  ∩ Rec
equation systems MS-trans(Trees) homo 

 
EQ 

Val(REC(Terms))  MS-trans 

  Boolean opns
congruences MS-def ⊂ REC homo-1 

 
REC 

  MS-trans-1 
 
 
 
Signatures  for  graphs and hypergraphs : 
 
HR : hypergraphs with “sources” 
 
 
VR : graphs with  vertex  labels 
VR+QFgraphs : with quantifier-free operations  

(ex. edge complement) 
 

QF : hypergraphs, i.e., relational structures 
QF+ Fusion : hypergraphs.
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2.  Local  information and annotations 
 
 
Let S in STR(Σ), a1, …,an  in DS  (the domain of S). 
 
tpk(S, a1, …,an) = { ϕ  /   S  = ϕ (a1, …,an), 

ϕ ∈ MS(Σ, x1, …,xn) of quantifier-height ≤ k }  
∈  P(MSk(Σ, x1, …,xn))  
=   (k,n)-Types 
 

tpk(S, a1, …,an) is a local  information relative to  
a1, …,an  in S. 
 

tpk(S) is a global  information relative to  S. 
 
Annotation : S   Mk,m(S) = (DS, (Tp) p ∈ (k,n)-Types, n≤ m). 
 

Tp(a1, …,an) : ⇔ tpk(S, a1, …,an) = p.   
 

Mk,m(S) = S  +  local  information 
 

Facts :  
 

1) Mk,m is an MS transduction of quantifier-height  k. 
 

2) M0,m is a quantifier-free transduction. 
 

3) The inverse  of Mk,m is a quantifier-free transduction ; 
it  is  functional  because  Mk,m  is injective. 
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Homomorphic  properties  of Mk,m  
 
Proposition : 
1) Mk,m(S⊕T) = ⊕$ [tpk(S), tpk(T)] (Mk,m(S), Mk,m(T)) 
 
2) For g quantifier-free : 

Mk,m(g(S)) = g$ (Mk,m(S)) 
 

where g$, ⊕$ [p,p’] are compositions of QF operations. 
 

Proof sketch : 
1) By Feferman-Vaught-Shelah : 

S⊕T = ϕ(a1, …,an, b1, …,bq )   
iff  for some i : 

S  = ψi(a1, …,an)  and T = θi(b1, …,bq) 
where ψi  and θi  are MS formulas of quantifier-height   ≤  
that of ϕ, and that only depend on ϕ. Hence  
 

Mk,m(S⊕T) = f(Mk,m(S) ⊕ Mk,m(T)) 
 

where f redefines the types in S and in T (in terms of tpk(T) 
and tpk(S)) and  creates appropriate relations for the types 
concerning both  S  and  T (using addU,V,W  of Section 4). 
 
2) By the fact that  

tpk(g(S), a1, …,an) = g@(tpk(S, a1, …,an)) 
for some mapping g@ :  (k,n)-Types  (k,n)-Types (by  using 
backwards translation relative to g).  

We let g$ replace q  by  p whenever g@(q) = p 
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Factorization :  
 

Through  Mk,m  annotations,  MS  transductions of  
 
Quantifier-height ≤ k  reduce  to quantifier-free ones : 
 
 

If g : STR(Σ)  STR(Γ)  is an MS transduction of  
 
Quantifier-height ≤ k, and m = MaximumArity(Γ) : 
 

g(S) = f [tpk(S)] (Mk,m(S)) 
 

where f [p] : STR(Σk,m)  STR(Γ)  is quantifier-free. 
 
 

Easy construction, using renamings of the type relations 
 
and  deletions  of elements. 
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3. Inverse MS transductions  preserve  REC 
 

This is already known for MS definable sets and the 
recognizable sets of graphs of bounded tree-width. 
 
Proof sketch : 
Every MS transduction is the composition of  
MS   transductions of 3 types : 
 

- Copyk 
- Parameterless noncopying 
- Guessing   of  unary  relations 

 
1) Copyk  :  
 

S         S ⊕ S ⊕  … ⊕  S   (k times) 
 

augmented with binary  relations  Yi,j for 1 ≤ i < j ≤ k   
 

defined  as   
 

{(x,y)  /  x is the i-copy, y is the j-copy of some u in DS} 
 

Facts :  a) Copyk(S ⊕ T) = Copyk(S) ⊕ Copyk(T) 
 

       b) For  f  quantifier-free, there is a  quantifier-free  g : 
 
          Copyk(f(S)) = g(Copyk(S)) 
 

Hence Copyk  is “almost” a homomorphism, and  REC is  
 
preserved under  inverse  homomorphisms. 
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2) Forgetting  unary relations : 
 
We let fgtΠ  : STR(Σ ∪ Π)  STR(Σ)  just « forget »  Π,  

Π is a finite  set of unary relations.   
 
Its inverse consists  in « guessing »  the relations  in Π, this 
can be done by means  of parameters  of an MS transduction. 
 
 
Lemma  : If L ∈ REC,  then fgtΠ(L) ∈ REC. 
 
Proof : From  a congruence  ≡  for L,  we  define the  
equivalence :  
 

S  ≅ T  iff  { [U] ≡  /  fgtΠ(U) = S } = { [U] ≡  /  fgtΠ(U) = T } 
 
 It  is  finite, saturates fgtΠ(L).  
 
 It is a  congruence : we use  the fact that  
 

S ⊕ T = fgtΠ(W)  iff  
there exist S’, T’ such that   W = S’⊕ T’, 
S = fgtΠ(S’), and  T = fgtΠ(T’), 
 

and a similar observation for  unary  operations. 
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3)  Parameterless  noncopying  MS transductions. 
 
  

We let L ∈ REC(Γ) 
τ  be a  parameterless  noncopying  MS transduction : 

STR(Σ)  STR(Γ) of quantifier-height k 
 

 We  prove that  τ -1(L) ∈ REC(Σ) 
 

From  a congruence  ≡  for L,  we  define, on each set 
STR(∆),   the  equivalence :  
 

S  ≅ T  iff  
 

tpk(S) = tpk(T) and for every  parameterless  noncopying  
MS transduction µ : STR(∆)  STR(Γ) of quantifier-height at 
most k,  we have  µ(S) ≡ µ(T).  

 
(tpk(S) is the MS theory of S of  quantifier height at most k.) 

 
It  is  finite, saturates τ -1(L) (because  τ  is  one of   the 

considered   transductions µ ).  
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It is a  congruence.  We consider  f   unary,  quantifier-

free.   Let  S  ≅ T  : 
 
tpk(f(S)) = f@( tpk(S)) = f@(tpk(T)) = tpk(f(T)) (cf. page 12). 

 
For every  µ, µof  is  a parameterless  noncopying   

 
MS transduction of quantifier-height k : 

 
µ(f(S)) =µof(S) ≡ µof(T) = µ(f(T)). Qed 

 
Remains ⊕  : Let S ≅ T, S’ ≅ T’, we want S ⊕ S’   ≅ T ⊕ T’. 
 
We have  tpk(S ⊕ S’) = tpk(T ⊕ T’)     (by Feferman et al.) 
 
For every µ : 
 
µ(S ⊕ S’) = f [tpk(S ⊕S’)](Mk,m(S⊕S’))    (m = MaxArity(Γ), cf.  

page  13) 
 = f [tpk(S ⊕S’)] (⊕$[tpk(S), tpk(S’)](Mk,m(S), Mk,m(S’))) 
 
and similarly for µ(T ⊕ T’)                                    (cf. page 12) 
Since Mk,m is an MS transduction of quantifier-height ≤  k : 
Mk,m(S) ≡ Mk,m(T), Mk,m(S’) ≡ Mk,m(T’) 
Also :  ⊕$[tpk(T), tpk(T’)] = ⊕$[tpk(T), tpk(T’)] 

f [tpk(S ⊕ S’)]       = f [tpk(T ⊕ T’)] 
 

Since  ≡ is a QF-congruence, and  f[p], ⊕$  are in QF : 
 

µ(S ⊕ S’) ≡ µ(T ⊕ T’) , hence    S ⊕ S’ ≅ T ⊕ T’ 
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4. A « small »  signature  equivalent to  QF 
 
 Vertex k-labelled graphs are in STR({edg, P1, …., Pk}) 
 
 Equational and recognizable sets are defined w.r.t. all  
 

finite sets of relation symbols of unbounded arity. 
 
 Can’ t  we restrict to {edg, P1, …., Pk,…} ?  Yes  
 
 More generally, what about subsets of STR(Σ)? 
 
 
The  VR  signature for vertex labelled  graphs : 
 
 Labels are 1, …, k, … 
 Operations are  : disjoint union  ⊕  
  Edge addition addi,j  which adds to a graph  

the edges x  y for x labelled i and y labelled j 
  Label renaming reni j   which replaces label  i  by  j. 
  Constants : vertex labelled i ; the same with a loop. 
 
 
Theorem (BC, JEngelfriet, PWeil) : 
 
1) EQ(VR) = EQ(QF) ∩Graphs = MS-trans(Trees) 
 
2)  REC(VR) = REC(QF)∩Graphs 
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Proof sketch : 
MS-trans(Trees)  ⊆ val(REC(T(VR)) = EQ(VR) 

 
 Let  L  =  τ(Trees)  =  a set of m-graphs.  
 
1) Technical step : 
 One  has  : L = σ(K) where  
 -  K ∈ REC(T({♦,*}))                  (♦binary,* constant) 

 -  σ  is a noncopying, nondeleting, MS transduction  with-
out parameters. The vertices of  σ(t) are the occurrences of *  in t. 
 
2)  For  t  in K we let  (cf. page 11) 

                     TH(t) = Mk,2(t) ∩ Leaves(t) 
 (= the leaves of t with labels and edges encoding the types of 
vertices and pairs of vertices for MS  formulas of quantifier-height ≤ k) 

There exists  a  tree-transducer  θ  that maps  t  in K  to a  
VR-term θ(t) such that :   
                      val(θ(t))  =  TH(t). 
  
3)  Using  the proposition page 13 : 
   σ(t)  = f(Mk,2(t))  

= f(Mk,2(t) ∩ Leaves(t)) = f(TH(t)) 
= f(val(θ(t)))  

where f  is  a composition of VR-operations. 
 

Hence   L  = val(f(θ(K)))   
 
where    f(θ(K))  ∈ REC(T(VR)) 

Hence     L  ∈ EQ(VR) 
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For  REC(VR)  ⊆   REC(QF)∩Graphes  (proof from BC-PWeil).  
 

Let  L  be VR-recognizable  with conguence  ≈. It is also 

w.r.t. QF.  We define congruences  ≡  on the sets STR(Γ) for 

all Γ by  :  

S ≡ T   iff     tp0(S) = tp0(T)  and  
h(S) ≈ h(T)  for every quantifier-free  
transduction h :  STR(Γ)  k-Graphs. 
 

Congruence :  
 
1) Let g be quantifier-free : STR(∆)  STR(Γ). 
   Let S ≡ T.  For every h quantifier-free, hog is quantifier-free: 

h(g(S)) =  (hog)(S) ≈ (hog)(T) = h(g(T)), 
 

hence g(S) ≡ g(T). 
 
2) Next we consider ⊕. 
     Let S ≡ S’, T ≡ T’. To be proved : S ⊕ T ≡ S’ ⊕ T’. 
 
Lemma : For every quantifier-free h : STR(Γ)  k-Graphs 
 

h(S ⊕ T) = t(g(S) ⊕ g’(T)) 
 
for some  composition t of VR operations, and some 
quantifier-free g, g’ : STR(Γ)  k-Graphs 
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Lemma : For every quantifier-free h : STR(Γ)  k-Graphs 
 

h(S ⊕ T) = t(g(S) ⊕ g’(T)) 
 
for some  composition t of VR operations, and some 
quantifier-free g, g’ : STR(Γ)  k-Graphs 
 
Proof sketch : Cf p. 12 and 16. For µ of quantifier-height 0, and m = 2:  
 
µ(S ⊕ T)   =  
 = f [tp0(S ⊕ T)] (⊕$[tp0(S), tp0(T)](M0,2(S), M0,2(T))) 
 = t(M0,2(S)  ⊕  M0,2(T)) 
 
where t is a composition  of  VR-operations.         Qed 
 
 
   Now S ≡ S’, T ≡ T’  implies :  
 

tp0(S)  = tp0(S’), tp0(T)  = tp0(T’), tp0(S ⊕ T) = tp0(S’⊕T’) 
 
M0,2(S) ≈  M0,2(S’), M0,2(T) ≈  M0,2(T’)    

because M0,2 is quantifier-free 
 

µ(S ⊕ T) ≈ µ(S’ ⊕ T’)     because  ≈  is a congruence  for  
       ⊕   and for  t .     
 
           Qed 
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Similar results  for relational structures. 
 

Let Γ with maximal arity  m. 
 

We let Σ(Γ,m) be the sorts  ⊆  Γ ∪ ∆ where ∆  are finite 
sets of “auxiliary” symbols of arity  at most m-1. 
 

We let QFΓ  be  the restriction of  QF  to the domains  
STR(Σ) for Σ in Σ(Γ,m)   with the operations : 
 

- disjoint union  ⊕ 
- “forget”  an  “auxiliary” relation 
- “rename” an “auxiliary” relation into an “auxiliary” 

one of same arity 
- addR,S,T for R,S,T auxiliary : adds a T-hyperedge 

with vertex sequence u*v for every u, v, disjoint 
loop-free vertex sequences of R- and S-
hyperedges. 

- addR,S,T,h   for R,S “auxiliary”, T in Γ: as above, 
but, in addition, h permutes the vertex sequence of 
the T-hyperedge and creates loops. 

- some constants denoting singleton hypergraphs. 
 
Theorem :  Let L ⊆ STR(Γ). 
 

1) L ∈ EQ(QFΓ)  iff L ∈  EQ(QF)  

                                iff L = MS-trans(Trees) 
 

2) L ∈ REC(QFΓ)  iff L ∈  REC(QF). 
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Improvement for  small  rank  and large arity 
 
Notation :  S  ∈ STRn(Γ)  iff  each hyperedge has at most n 

distinct vertices, i.e., rank at most n. Clearly  n  ≤  m.   
 

One takes ∆’  finite sets  of  relation symbols of arity ≤  
n-1. We  obtain, with  ∆’ in place of  ∆ : 
 
Theorem : Same  as above for L  ⊆  STRn(Γ). 
 
Consequences :  
 
1) For 3-ary hypergraphs, all 3-ary hyperedges of  which have 
loops, rank ≤ 2  hence unary “auxiliary” relations (vertex 
labels  P1, …., Pk)  suffice. 
 
2)  For general 3-ary hypergraphs, “auxiliary” binary relations  
are necessary. 
 
Example : R,   3-ary relation 
 
Let  An  with domain  {1,…,n},  RAn =  { (i,j,k) /  i < j < k }. 
 

1) The set L of An’s  is the image of the set of terms  
{ fn(c) / n >0 }  under an MS-transduction, hence is 
equational. 
 
2)  It cannot be generated by the operations of QF  based 
on R and finitely many unary “auxiliary” relations P1, …., 
Pm. 
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5. “Larger”  signatures   using  local information 
 
 
 
 The  fusion operation on vertex labelled hypergraphs : 
 
 fusep(S) = the quotient of S obtained by fusing all vertices 
labelled p 
 
 Fuse = { fusep } 
 
Theorem (BC, JMakowsky) : 
 
 The mapping val : T(QF ∪ Fuse)  STR  
       is  an MS  transduction. 
 EQ(QF) = EQ(QF ∪ Fuse) 
 
Questions  : 
 
 What  about  REC ? 
 
 Can one  use a quantifier-free  formula ϕ(x)  instead of  p   
 
(which  corresponds  to  Pp(x) ) ? 
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How  to  enlarge  a  signature  into  an equivalent one ? 
 

S    Ann(S)  =  S + local  information 
 

F  a signature  equivalent to QF 
 
G  a  set of new operations 
 

Conditions : 
 

1) For every  f  ∈   F ∪ G : 
 

Ann(f(S, …,T))  =  Annf (Ann(S), …,Ann(T)) 
 

where Annf   is  a composition of operations  in QF 
 

2) Ann-1   is  an MS  transduction 
 

Proposition :  Under  these  conditions  : 
 

EQ( F ∪ G ) = EQ(QF) 
 

  REC( F ∪ G ) = REC(QF) 
 

Proof : The mapping  val : T(F ∪ G)  STR  is the 
composition of  3 MS transductions  :   

t          Annt  (by Condition 1) 
val  (from T(QF)  to  annotated  structures), 
Ann-1  (by Condition 2). 

Hence EQ(F ∪ G)  ⊆  EQ(QF) = EQ(F ) ⊆ EQ(F ∪ G). 
 

For REC(F ∪ G) = REC(QF), the proof  uses  the closure 
of REC under inverse MS transductions (Ann-1)  and under  
inverse   homomorphisms (cf. Condition 1). 
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Application  to Fusion  
 

For ϕ(x)  a  quantifier-free formula,  fuseϕ(S)   is  S   
 

where  all elements  satisfying  ϕ  are fused. 
 
Example, for a 2-graph  : ϕ(x)  may be  edg(x,x) ∧ ¬P2(x)  
 

We let  Fuse  denote the set of all  these operations 
 
 
What  kind of local information  satisfies Condition 1) ? 
 
Notation: 
 
θ,µ,ν, ...  denote (0,1)-types   (cf. page 11) 

= conjunctions of atomic and negated atomic formulas in 
 tp0(S,a)  for some S, a 

 
With S in STR(Σ),  we associate L(S)  in STR(Σ L) such that : 
 
L(S) = S +  new  relations,  with  typical  case  
 

(a,b,c) ∈  R[••θµ•ν]L(S)   iff  
(a,b,u,v,c,w) ∈ RS  for some u, v, w that satisfy  

respectively θ, µ, ν 
R[••••••] is identical  to R. 

 
Σ L  is Σ ∪ new symbols  like R[••θµ•ν] with at least one • 
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Global  information associated with S : 
 

R[θ1…θm] abreviates  
∃y1,…,ym (R(y1,…,ym) ∧ θ1(y1)∧ ... ∧ θm(ym)) 

 
LTP(S)   =  the  set  of  (0,1)-types and of formulas  

R[θ1…θm]  satisfied in S 
 

⊆  tpn(S)   ((n,0)-type,  n = MaxArity(Σ), cf. page 11) 
 

Proposition   : For the annotation L : 
 
a)  L-1  is  a quantifier-free  transduction, hence Condition 2)  
holds. 
 
b) For  a  subsignature QF_  equivalent to QF :  

b1) LTP  is  inductively  computable  w.r.t.  Fuse ∪ QF_   
b2) Condition 1)  holds  for   Fuse ∪ QF_ 

 
Proof : a) is clear.   
Consider b)  
i) Disjoint union ⊕  : 

tp0(S⊕T, a) = tp0(S, a)  for a in S 
LTP(S⊕T) = LTP(S) ∪ LTP(T) 

  L(S⊕T) = L(S) ⊕L(T)  
 

For  unary operations  f  we  want (cf. page 25)  : 
 

L(f(S)) = Lf [LTP(S)] (L(S))  
 

where  Lf  is a composition of QF operations, depending on 
LTP(S). 
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ii) Deletion of elements  by f  = delµ  (µ :  (0,1)-type) : 
 

tp0(f(S),a) = tp0(S,a) ≠ µ,  (a is deleted if µ(a) holds in S) 
LTP(f(S)) = LTP(S) – everything containing  µ 

  Lf  deletes  elements  by delµ  and  
“forgets”  the  relations   R[...µ...]   

 

iii) Case  of   fuseµ  (µ :  (0,1)-type) 
 

Let  a in S yield b in fuseµ(S)         (it is a quotient structure) 
if  tp0(S,a) =  µ :   tp0(fuseµ(S), b)  = µ∗ =  

{ R(x,x,…,x)  /  R[µµ...µ] ∈ LTP(S) } ∪ 
{ ¬R(x,x,…,x)  /  R[µµ...µ] ∉ LTP(S)} ; 

if  tp0(S,a) ≠ µ :    tp0(fuseµ(S),b) = tp0(S,a)  
 

LTP(fuseµ(S))  = { µ∗ } ∪ { θ ∈ LTP(S)  / θ ≠ µ} 
∪ {R[…µ∗…θ…] / R[…µ…θ…] ∈ LTP(S) } 

 
 We  now  consider L(fuseµ(S)) ; f = fuseµ 
 

  S                                               f(S) 
   ↓        ↓ 

  L(S)     T = delµ(L(S))      L(f(S)) 
 

L(f(S)) =   Link(T ⊕ s)   where  : 
   s is a singleton satisfying µ∗    (this depends on LTP(S)) 

Link : first   creates   (a,b,s,c,d) in R[••••θ•]L(f(S)) 
from  (a,b,c,d) in R[••µ•θ•]L(S) 
then   renames   R[••µ•θ•]  into  R[••µ∗•θ•] 
This gives : Lf [LTP(S)] (U)= Link(delµ(U) ⊕ s)  
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iv ) Only for certain  non-deleting quantifier-free  operations  f  
we have : 
  LTP(f(S))  computable  from LTP(S),  and  

L(f(S)) = Lf [LTP(S)] (L(S))  
 
These  include  : 
 

Forget or rename (some relations) 
AddU,V,W (cf. page 22)  
AddU,V,W,h (cf. page 22) 
 

and  more generally those such that  :  
each relation R(x1, …,xn)  is  defined  by  a disjunction   
of conditions, each of the form A ∧ B ∧ C where  

A is a set of defining equalities, 
B is a conjunction of atomic and negated atomic 
formulas with a single variable, 
C is a conjunction of atomic formulas where no  
variable  occurs more than once. 

 
Example :  
 For defining R(s,u,v,w,x,y,z)  

x=u ∧ y=v ∧ z =v       (A) 
∧  edg(u,u) ∧ ¬edg(w,w) ∧ ¬P(v)  (B) 
∧  edg(u,v) ∧ edg(w,s)    (C) 
 

(x,y,z  are  defined from s,u,v,w) 
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Proofs  : For  such  f  :  

tp0(f(S),a) = f@(tp0(S,a))   (cf. page 12)  
 

LTP(f(S)) = the set of   f@(θ)  for θ in LTP(S), and of   
formulas R[θ1…θm]  built from LTP(S) ;  
in  the  example  of p. 29, we let  in  LTP(f(S))  formulas  
 
R[f@(θs)f@(θu)f@(θv)f

@(θw)f@(θu)f@(θv)f
@(θv)] 

such that   : 
θu ⇒  edg(u,u),  
θw ⇒  ¬edg(w,w),  
θv ⇒  ¬P(v)         (cf. B) 
edg[θuθv]  and  edg[θwθs] ∈ LTP(S)   (cf. C)  
 

 For  defining Lf  we  only  consider the example of  
f = addU,V,W where U, V are of arity 2 and W of arity 4; 
Hence W(x,y,z,u)  is defined  in f(S)  by  the formula :  

  W(x,y,z,u)  ∨ ( U(x,y)  ∧  V(z,u) ) 
 

 Then   Lf  adds    (x,z)  in  W[•f@(θ)• f@(µ)]   
whenever  x ∈ U[•θ]  and  z ∈V[•µ] in L(S). 

This  can  be done  by  the operation  
addU[•θ], V[•µ], W[•f@(θ)• f@(µ)]   
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The  signature QF_ consisting of ⊕, delµ, and these 

particular quantifier-free operations is equivalent to QF   by  
the theorem page 22. 

 
From  Conditions  1  and 2  we obtain  : 

 
Theorem :  
 
1) EQ(QF ∪ Fuse) = EQ(QF_  ∪ Fuse) = EQ(QF)  
 
2) REC(QF ∪ Fuse) ⊆ REC(QF_ ∪ Fuse) = REC(QF) 
 
 
 

The  proof is  done  for  operations  fuseϕ   where   ϕ(x) 
is a  (0,1)-type (i.e., some tp0).  The  operations fuseϕ  can be  
 
expressed as combinations  of these special fuse operations   
 
and  some quantifier-free operations. The  theorem  follows. 
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Example showing why the lemma page 29  does not extend to 
QF instead of QF_ 
 
Let  R  of arity 3  and  f : STR({R})  STR({R})  
 
redefine  R  by : 
 
R(x,y,z)  in f(S)  iff  R(x,y,y) and R(y,z,z)  in S 
 
We  let  S  with domain {1,2,3}  and    
RS = {(1,2,2), (2,3,3)}   
f(S)  has domain {1,2,3}  and Rf(S) = {(1,2,3)}   
 
We  let  T  with domain {1,2,3,4}  and    
RT = {(1,2,2), (4,3,3)}   
f(T)  has domain {1,2,3,4}  and Rf(T) = ∅ 
 
LTP(S) = LTP(T) 
 
Now if     L(f(S)) = Lf [LTP(S)] (L(S))          (1) 
we also have  

L(f(T)) = Lf [LTP(S)] (L(T))           (2)  
 

Observe that  :  
 
1 ∈ R[•θθ] in L(S), in L(T), in L(f(S)),  
 
but 1 ∉ R[•θθ] in L(f(T)), where  θ(x)  is  ¬R(x,x,x) ; 
 
we should have  1 ∈ R[•θθ] in L(f(T))  from (1) and (2). 
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6. The fusion  operation  for  graphs ; 
 “gluing” operations based  on  local  information 
 
 All relations  have  arity 1 or 2.  Structures are vertex-  
and edge-labelled  graphs. 
 
New  binary  “gluing” operations forming  a  set Glue 
 

G ⊗g H  =  G ⊕ H  +  edges between x  and y  
    whenever     G  =  ϕ(x) , H =  θ(y)  
 
 Formulas   ϕ, θ  are  first-order  and represent “local 

information”  relative to x  and  y 
  
 
Question : When do we have,  for  Glue : 
 

EQ(VR) = EQ(QFgraphs) = EQ(QFgraphs ∪ Glue) 
           REC(VR) = REC(QFgraphs) = REC(QFgraphs ∪ Glue) ? 

 
 
Complete annotation :  
 
γ, γ’, ...  denote (0,2)-types   (cf. page 11) 

= conjunctions of all  the  atomic and negated atomic 
formulas in  tp0(G,a,b)  for some G, a, b ≠ a 

 
For such γ = tp0(G,a,b),  γ1  denotes tp0(G,a),  

γ2  denotes tp0(G,b) 
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Λ =  the  set  of  formulas   λ(x)  of the  form   ∃y.γ(x,y)  
 
 
The complete 1-type  of  a  in G  is : 
 
ctp(G,a) = the conjunction of the valid  formulas λ(x)    
   and of the negations  of the others 
  = δ(x) 
 
 
CTP(G)  = the  set of formulas  ∃x.δ(x)  valid in G 
 
Complete  annotation :   

For  every  graph G : 
C(G) = G + each vertex a labelled by δ  with G  =  δ(a) 
 +  edges  a  b  labelled  by tp0(G, a,b), for all a ≠  b  
 
(C(G) is  a  complete  labelled  graph). 
 
 

The new  gluing  operations  
 

G ⊗g H  =  G ⊕ H  +  R-edges  x    y  
    whenever     G  = δ(x) , H =  δ‘(y)  
 
 

Formally g is a disjunction  of triples (R(x,y), δ(x), δ‘(y))  
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Verification  of  Condition 1 (p. 25)  
 
 
i) Gluing  ⊗g (and disjoint union since  ⊗∅   =  ⊕ ) : 
 
Facts : 1) tp0(G ⊗g H, a)  =  tp0(G, a),   tp0(G ⊗g H, a,b)  =  tp0(G, a,b) 
     if a,b ∈ G 

2) an R-edge  a  b  is defined  from  ctp(G,a) and ctp(H, b) 
3) ctp(G ⊗g H, a)  is  defined  from  ctp(G,a)  and CTP(H). 

 
 
Hence :  
 

CTP(G ⊗g H)  =  h(CTP(G), CTP(H)) 
 
C(G ⊗g H) = k[CTP(G),CTP(H)](C(G), C(H)) 
 

where :  
h is a fixed function and  
k[p,p’]  is  a composition of VR-operations :  
disjoint union of C(G) and C(H),  
addition of edges between them,  
relabellings for updating  local information. 
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ii)  For  unary operations  f  we  want (cf. page 25)  : 
 

C(f(G)) = Cf [CTP(G)] (C(G))  
 

where  Cf  is a composition of QF operations, depending on 
CTP(G). 
 
a) Deletion of elements  by  f  = delµ  (µ  is a  (0,1)-type) : 
 
Facts : 

tp0(f(G), a) = tp0(G, a) ≠ µ,  (a is deleted if µ(a) holds in G) 
 
tp0(f(G), a,b) = tp0(G, a,b)  if tp0(G, a) ≠ µ, tp0(G, b) ≠ µ 
 
ctp(f(S),a) contains  no formula   ∃y.γ(x,y) such that  
γ1 or γ2 is equal to µ  

Hence : 
CTP(f(G)) = CTP(G) – everything “containing”  µ 
 
Cf  deletes  the elements labelled  by δ containing 
∃y.γ(x,y) such that  γ1  =  µ , and updates the labels δ by 
removing  formulas  ∃y.γ(x,y) such that  γ2  =  µ 
 

  
b)  f  is nondeleting and quantifier-free  
 

Cf   updates the labels δ by using  the updating function 
f@ on 0-types, cf. p. 12. 
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Fusion  operation fuseµ  is  a composition of  QF and 

Glue operations : 
 
fuseµ(G) = delµ(G ⊗g s) 
 
where s is a singleton graph, possibly with loops and 

vertex labels, cf. page 28, and   g  define edges between G 
and  s 

 
 
Hence we have the equivalence  of the signatures : 
 

VR, QFgraphs, QFgraphs ∪ Fuse,  QFgraphs ∪ Glue 
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7. « Sources »  are dispensable 
 
 Constant  symbols  a , b, c, … in relational  structures  
denote  unique  elements  called  « sources »  in the graph 
grammar  terminology.  
 
 The  typical  use  is for  parallel  composition  of  
(hyper)graphs : 
 

G // H  =   
G  ⊕  H  with fusion of  sources with same names. 

 
 
 Quantifier-free  operations  may  use  constants  in 
redefinitions  like  : 
 

edg(x,y)  :  ⇔ edg(x,a) ∧  edg(y,b) 
 

 but  are  no  longer  quantifier-free  if  written : 
edg(x,y):  ⇔ ∃u,v (edg(x,u)∧Pa(u)∧ edg(y,v)∧Pb(v)) 

 
by the obvious  coding of constants by unary predicates  
  
 
 
 We  get  a signature  QF-C 
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A  coding  of S in STR(Σ,C)  into S in STR(Σ) 

 
 We delete CS, the elements denoted by constants in C 
 
 We replace  a tuple  (x, aS, y, bS, bS) in a relation RS 
where x,y  are not in CS by the pair (x,y)  in a new relation 
R[♣a♣bb]. 
 
 Hence Σ is the set of relations R[w] where : 

w is a word in (C∪{♣})*  of length the arity of R  
containing at least one  ♣  and  
the arity of  R[w] is the number of occurrences of ♣. 
 

 
Fact  :  S can be reconstructed in a unique way from S and 
S[CS], by  an operation in QF-C  (one for each S[CS]). 
 
 
  We let  L/ϑ = { S ∈ L  /   S[CS] =  ϑ }. 
 
 
Theorem : Let  L ⊆ STR(Σ,C):  
 
1) L  ∈ EQ(QF-C)  iff  L/ϑ  ∈ EQ(Σ)  for each ϑ. 
 
2) L  ∈ REC(QF-C)  iff  L/ϑ  ∈ REC(Σ)  for each ϑ. 
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Reminder : Parallel  Composition   // 
 

(Hyper)graphs have distinguished vertices called 

sources, designated by labels from  a  set of size k : 

{a, b, c,  ..., h}. 

 
G // H     is    the  disjoint  union of  G  and  H  

      and sources  with  same  

      label  are   fused. 
       (If  G  and  H are  not  disjoint, one 

       first  makes  a  copy of  H disjoint  

       from  G .) 
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8. Open questions 
 
 
 
 1. Are  the signatures   QF and  QF ∪ Fuse  equivalent,  
 
(without restriction to   binary structures) ? 
 
 
 
 2. Which  quantifier-free  operations  on  relational  
 
structures  preserve  recognizability ? 
 
 
 
 3. Can one define on relational  structures a complexity  
 
measure  generalizing  clique-width  for  graphs  and  “nicely”  
 
related  with a signature  equivalent  to  QF  ? 
 
 
 
 
  
 
 
 This document  and  the  base  article  are available from  
 
 http://www.labri.fr/~courcell/ActSci.html 

 


