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The general field of this research could be entitled : 

Graph structuring  and 

Monadic Second-order logic 

 
History : The confluence of 4 independent research 

directions,  presently intimately related : 

1. Polynomial  algorithms for NP-complete and other hard 

problems on particular classes of graphs, and especially 

hierarchically structured ones : series-parallel graphs, 

cographs, partial k-trees, graphs or hypergraphs of tree-width 

< k, graphs of clique-width < k. 

2. Excluded minors and related notions of forbidden 

configurations (matroid minors, « vertex-minors »). 

3. Decidability of Monadic Second-Order logic on classes 

of  finite  graphs, and on infinite graphs. 

4. Extension to graphs and hypergraphs of the main 

concepts of Formal Language Theory : grammars, 

recognizability, transductions, decidability questions. 
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Links  between  Monadic  Second-Order  Logic   

and  graph  structure  properties 

 
Tree-width Clique-width ≡ Rank-width 

Bounded tree-width 

⇔  bounded  nxn grids as  

minors 

Bounded  rank-width 

for bipartite graphs 

⇔  bounded “Sk” graphs 

as vertex-minors 

TWD(<k)  is characterized 

by  finitely many excluded 

minors 

RWD(<k)  is characterized 

by  finitely many excluded 

vertex-minors 

Monadic Second-Order  (MS2) 

problems are linear  on  

TWD(<k)  

Monadic Second-Order  (MS) 

problems are polynomial   

on  CWD(<k) 

A set of graphs  with a 

decidable MS2 satisfiability  

problem  has  bounded TWD 

A set of graphs  with a 

decidable C2MS satisfiability  

problem  has  bounded CWD  

G  Minors(G)  

is an MS2  transduction  

G  Vertex-Minors(G)  

is a C2MS  transduction 
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This lecture :  

Using  the algebraic notion of  Isotropic  

System, we  express the vertex-minor relation  

in C2MS logic  and  we  (almost)  prove  Seese’s 

Conjecture 
 

Main  definitions  and  steps : 

 

- local complementation, local equivalence,  vertex-minors 

- the example of circle graphs 

- informal and constructive introduction to Isotropic Systems,  

- and how they represent local equivalence  

- representation of these notions and constructions in C2MS 

logic 

- application to (a weakening of) Seese’s Conjecture 

- polynomial algorithm for “rank-width  <  k” 
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Quick  review  of definitions : Clique-width 
 

Tree-width : Well-known 

Clique-width : defined in terms of graph operations  
 

Graphs are simple, directed or not. 

We use  labels  :  a , b , c,  ..., h.   

Each vertex has one and only one label ; a label p may label 

several vertices. 

Binary operation :   disjoint  union     ⊕ 
 

Unary  operations :  Edge addition denoted by Add-edga,b 
 

Add-edga,b(G) is  G augmented with (un)directed edges   

from  every  a-labelled  vertex  to every  b-labelled  one. 

 

         G     Add-edga,b(G) 

Relaba,b(G)  is  G  with every  a-labelled  vertex  relabelled  

into b.  (The  effect  is to  merge  two  classes  of the  partition  of  the 

set  of  vertices  defined  by  the  labels.) 
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Basic graphs  are those with a single vertex. 

 

Definition:  A  graph  G  has  clique-width  ≤ k      

 ⇔ it can be constructed  from basic graphs 

     by using  ≤  k  labels  and  the 

     operations ⊕, Add-edga,b 

and   Relaba,b .  

 

  Its (exact) clique-width,  CWD(G),   is the   

minimum such  k. 

Example : Cliques have clique-width 2.  

 
 

   Kn  is   defined  by   tn  

tn+1  =   Relabb,a( Add-edga,b(tn  ⊕  b)) 

 

Bounded  tree-width implies bounded  CWD   but not vice-versa 
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Quick  review  of definitions : Logic  
 

Monadic Second-Order (MS)  logic  = First-Order logic with set 

 variables 

 

Example : Non connectivity of undirected graphs  : 
∃X ( ∃x ∈ X  &  ∃y ∉ X  &   

∀u,v (u ∈ X  &  edg(u,v) ⇒ v ∈ X)  ) 
 

C2MS = MS  with the set predicate    Even(X) 

MS2   =  MS logic  with edge set quantification  

=  MS logic for  graphs represented  by their  

(bipartite directed) incidence graphs  
 

The existence of a Hamiltonian circuit is MS2 but not MS. 

 

The L  satisfiability  problem  for  a  logical language L  and a 

set of structures C  is  :  

the problem of deciding  whether a given formula in L is 

satisfied by some structure in C (it is decidable  iff   the L -theory 

of C is decidable  when  L   is closed under negation). 
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Definitions : MS  transductions  
 
STR(Σ) : the set of finite  Σ-relational  structures. 
 
Multivalued mappings  τ  : STR(Σ)  STR(Γ)  
 
   S                 T  =  τ (S)         

 
where   T  is  : 

a) defined by  MS formulas 
 

b) inside  the  structure:  S ⊕ S ⊕ ... ⊕ S  
    (fixed  number  of disjoint "marked" copies of S) 

 
   c) in terms  of "parameters"  i.e.  subsets  

 X1, …,Xp   of  the  domain  of  S 
  
 
Proposition  :  The  composition  of  two   
 

MS  transductions  is  an  MS  transduction. 
 

Remark  :   For  each tuple of parameters X1, …,Xp 
   

satisfying  an MS  property, T is uniquely defined.   
 

τ  is multivalued  by  the  different choices of parameters. 
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Example  of  an  MS  transduction :  Minors  
 
 
The  incidence  graph Inc(G)  of  G (undirected)  is 
 
the directed bipartite  graph  : 
 

<VG∪EG, incG(.,.) >     where 
 

incG(v,e)  ⇔   v is a vertex incident with edge e. 
 
The  mapping  : (Inc(G), X, Y)                    Inc(H)   
 
where   X  ⊆  VG∪EG  :   vertices and edges to delete 

Y  ⊆  EG            :   edges to contract 
H   is  the  resulting minor  

 
is an MS2 transduction. 
 

(Because transitive closure   and paths  are expressible  
in MS logic.) 
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The fundamental property of MS  transductions :  
 
     S                      τ (S) 
 
     τ #(ψ)                ψ 
 

Every  MS  formula  ψ  has  an effectively  computable  
backwards  translation τ #(ψ), an MS formula, such that : 
 

S   =  τ #(ψ)    iff    τ(S)   =  ψ 
 
 The verification of ψ  in  the object structure τ(S)  reduces  to  
the  verification  of  τ #(ψ)   in  the  given structure S. 
 
Intuition : S  contain all necessary information to describe  τ(S) ;  
the MS properties of τ(S)   are expressible by MS formulas in S 
 
 
Some  results :  
 
1) If  a  set  of  graphs  C  has a  decidable MS satisfiability 
problem, so  has  its image τ(C)   under  an  MS  transduction τ. 
 
2) A  set  of  graphs has  bounded  tree-width  iff it is the image of 
a set of trees  under  an MS2 transduction   (graphs  are  handled  
through incidence graphs, this permits edge set  quantifications). 
 
3) A  set  of  graphs has  bounded  clique-width (or rank-width)  iff 
it is the image of a set of trees  under  an MS transduction.  
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Theorem (Seese 1991) :  

If a set of graphs  has  a decidable MS2 satisfiability 

problem, it has  bounded tree-width. 
 

Conjecture (Seese 1991) :  

If a set of graphs  has  a decidable MS satisfiability 

problem, it  is  the  image  of a set of trees under an 

MS  transduction, equivalently, has  bounded clique-

width. 
 

Theorem (B.C., S. Oum 2004)  : 

If a set of graphs  has  a decidable C2MS satisfiability 

problem, it has  bounded clique-width. 

 

 
Reminder : 
 

MS  = (Basic) MS logic without edge  quantifications 

MS2 = MS logic  with  edge  quantifications  

C2MS = MS logic with even cardinality set  predicates 
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Proof  of  Seese’s  Theorem : 

MS2 transduction 

C            Minors(C ) 

a) decidable    ⇒    decidable  

MS2 sat. problem      MS2 sat. prob. 

 

b) TWD(C ) = ∝  ⇒    contains all kxk-grids  

         (Robertson, Seymour) 

c)      ⇒  undecidable MS2 satisfiability  

problem, (because on arbitrary  

large square grids one can  

encode, by MS formulas,  

arbitrary long Turing Machine  

computations, whence the  

undecidable Halting Problem. 

 

Hence  “TWD(C ) = ∝“ and  “C has a decidable  MS2 

satisfiability problem”  yield  a contradiction  for the decidability of 

the   MS2 satisfiability problem  of  Minors(C ). 
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Proof  of  Courcelle-Oum’s  Theorem : 

C2MS transduction 

C            Vertex-Minors(C ) 

bipartite graphs 

a) decidable    ⇒    decidable  

C2MS sat. problem      MS sat. problem 

 

b) RWD(C ) = ∝  ⇒    contains all  Sk 

         (by S. Oum) 

c)      ⇒    yields all kxk grids 

by MS transduction 

d)      ⇒    undecidable  

MS sat. problem 
 

There  are  MS  transductions  encoding  : 

 

Bipartite  undirected  graphs             Undirected  graphs 

Bipartite  undirected  graphs             Directed  graphs 

 

They  preserve  “bounded  clique-width” 

and  decidability  of the C2MS  satisfiability  problem 

This  gives  the  proof. 
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Definition  :  Vertex-Minor   
(a notion already considered by A. Bouchet, 1987-1994)  

 

Graphs  :  finite, undirected, simple, loop-free 
 

Local  complementation of  G  at vertex  v  

G * v   =  G  with edge complementation of  G[nG(v)], 

     the subgraph induced  by the neighbours of v 

 

Local equivalence (≈ loc ) = transitive closure of local  

complementation (at  any  vertex). 

 

Vertex-minor  relation : 

H  <VM  G  : ⇔ H  is an induced  subgraph  of  some G’ ≈ loc G 

 

Theorems (S. Oum) :  1) Vertex-minor relation is wqo  on graphs  

of  rank-width   < k. 

2)  These  graphs  are defined  by finitely many excluded vertex- 

minors with at most   <  6 k+1 / 5  vertices. 

3)  Rank-width is equivalent to clique-width. 
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Properties  of  local  complementation and vertex  minors   
 

Facts : G * v * w   =  G * w * v      if   v, w  not adjacent  (easy) 

 G * v * w   =  G * w * v * w * v      if   v, w  adjacent  (harder)    

G * X  easy  to  define  in G  by a  C2MS formula  if  X  is  stable 

G * X  is  not well-defined    if  X  is  not  stable 

Notation : ⊆ i  induced  subgraph  

Facts :  G ≈ loc G’ ⊆ i H   ⇒ G ⊆ i H’ ≈ loc H  for some H’ 

      <VM is the transitive closure  of      ≈ loc  ∪  ⊆ i 

Proposition : The mappings  from G to its locally equivalent 

graphs, and to its  vertex  minors  are  C2MS  transductions. 
 

Why  the even cardinality  set predicate  is   necessary ? 

 

 u                               Consider G * X for X ⊆ Y : 

                    

                                  u  is  linked  to  v  in G * X 

 v                                ⇔    Card(X)  is even 

    Y 

G 
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Proposition : The mappings  from G  to its locally equivalent 

graphs  is  a  C2MS  transduction. 

 

Proof : It is the composition  of  two transductions : 

 

a) G, graph  S(G), isotropic system  : a C2MS transduction, 

b) S,  isotropic system  graphs H definable from it : an MS 

transduction. 

 

The  graphs  H  are  the  graphs  locally  equivalent to G. 

 

 

Consequences (with other results)  :  

1) The set  of graphs of rank-width  at most k is characterized by 

a C2MS  formula.  

2) So is the set of circle graphs. 

3) It is decidable in polynomial time if  a graph has rank-width < k, 

for each  fixed k.  
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Seese’s  Conjecture  : Some lemmas  
 

 

(1) MS transductions  can encode/decode  graphs  into bipartite  

graphs. They  preserve  “bounded rank-width/clique-width” 

and “having a decidable C2MS satisfiability problem”  in both  

directions 
u                         t                             u4                                                      t1  

                                                           v4         x1             y4                         

v          x          y                                    w4                                              z1  

                                                                                      x2            y3                

w                         z                                                                                  

                                                                       u1          x3            y2           t4  

                                                                       v1                                           

                                                                      w1          x4           y1         z4   

             G         H 

 From  H  to  G : contract  the  blue  edges, fuse  parallel  red edges. 

 

 

(2)  It remains to  show  the graphs  Sk  and the MS transduction 

that transforms them  into  k x k -grids. 
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Definition of Sk : 

bipartite : A = {1,…,(k+1)(k-1)} , B =  {1,…,k(k-1)} 

for  j  ∈  A, i ∈  B : edg(i,j) ⇔  i ≤ j ≤ i+k-1 

From Sk to Gridkxk by an MS transduction  

   S3        Grid3x4 

1) One can define the orderings of A and B :   

x, y  are  consecutive   ⇔   Card(nG(x) ∆ nG(y)) = 2 

2) One can identify the edges from i ∈ B to i ∈ A, and  

from i ∈ B to i+k-1 ∈ A (thick edges on the left drawing) 

3) One can create edges (e.g. from  1 ∈ A to 2 ∈ A, from  2 ∈ A 

to 3 ∈ A etc…and similarly for B, and from  1 ∈ B to 4 ∈ A, 

etc…)  and delete others (from 4 ∈ B to 6 ∈ A etc…), and 

vertices like 7,8 in A, to get  a grid containing Gridkxk 
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Theorem : If a set of (finite, simple, undirected) graphs has a 

decidable C2MS satisfiability problem, then : 

it has bounded rank-width,  

it has bounded clique-width, 

it is the image of a set of trees under an MS transduction.  

 

Corollary : If a set of (finite, simple), directed graphs has a 

decidable C2MS satisfiability problem, then : 

it has bounded clique-width, 

it is the image of a set of trees under an MS transduction.  
 

Proof : By using codings between directed and undirected graphs by MS 

transductions (B. Courcelle, 2002-2004, submitted) showing that Seese’s 

Conjecture holds for directed graphs iff it holds for undirected ones. 

 

Corollary : If a set of directed acyclic graphs, each of them having 

a directed Hamiltonian path,  has a decidable MS satisfiability 

problem, then   it has bounded clique-width.  

 

Proof : Since on these graphs a linear order is MS definable, MS and 

C2MS  logics are equivalent (every C2MS formula is translatable into an 

equivalent MS formula). 
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Algorithmic  applications  
 

On  graphs  of  clique-width  ≤  k , 

each monadic  second-order  property, (ex. 3-colorability) 

each monadic  second-order optimization function, (ex. distance) 

each monadic  second-order  counting  function, (ex. #  of paths) 

is  evaluable : 

 (1) in  linear  time  on graphs  given  by a term over  

the clique-width operations 

(2) in time  O(n9.log(n))  otherwise  (S. Oum, P. Seymour). 

 
Proof  sketch of  (2)  : For each k, there  is a O(n9.log(n))  algorithm that 

gives  for any  graph G  : 

 either  that  RWD(G) (or CWD(G) )  > k 

 or  a  decomposition  of  width <  3k +1 for RWD (< 23k+2 for CWD) 

  
In the  second case  we  get, by using (1),  the  correct  answer  in 

polynomial  time,  although the  decomposition is not optimal. 

 

Corollary :  This applies  to  the  question “RWD(G) < k”  since 

this class  is  MS  definable  (through  finitely many excluded 

vertex minors). 
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Open problems 
 

1) Can one  find  a good sounding name  in French  for “vertex-

minor”  ? 

 

2) Does the original conjecture by  Seese  hold (with MS instead 

of C2MS) ? 

 

3) Does it hold for relational structures (i.e., directed ranked 

hypergraphs) ? 

 

4) Can one  defined  rank-width  for  directed graphs ? and  for  

hypergraphs ? 

 

5) If two graphs G, H are locally equivalent, they have the same 

rank-width   RWD(G)   but  clique-widths  such that : 

RWD(G) ≤ CWD(G), CWD(H) ≤ 2 RWD(G)+1-1 

 What are the maximum and minimum values of CWD(H) ?  

 Can one characterize the graphs that realize these values ? 

 

6) Can one characterize RWD(<k) in terms  of graph operations? 

 

7) Is  “CWD(< k)”  polynomial  ?  


