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The general field of this r_e_search could be entitled :

Graph structuring and

Monadic Second-order logic

History : The confluence of 4 independent research

directions, presently intimately related :

1.

Polynomial algorithms for NP-complete and other hard

problems on particular classes of graphs, and especially

hierarchically structured ones: series-parallel graphs,

cographs, partial k-trees, graphs or hypergraphs of tree-width
< k, graphs of clique-width < k.

. Excluded minors and related notions of forbidden

configurations (matroid minors, « vertex-minors »).

. Decidability of Monadic Second-Order logic on classes

of finite graphs, and on infinite graphs.

. Extension to graphs and hypergraphs of the main

concepts of Formal Language Theory: grammars,

recognizability, transductions, decidability questions.
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Links between Méﬁadic Second-Order Logic

and graph structure properties

Tree-width

Clique-width = Rank-width

Bounded tree-width
<> bounded nxn grids as

minors

Bounded rank-width
for bipartite graphs

< bounded “S¢” graphs

as vertex-minors

TWD(<k) is characterized
by finitely many excluded

minors

RWD(<k) is characterized
by finitely many excluded

vertex-minors

Monadic Second-Order (MS»)

problems are linear on
TWD(<k)

Monadic Second-Order (MS)
problems are polynomial
on CWD(<k)

A set of graphs with a
decidable MS, satisfiability
problem has bounded TWD

A set of graphs with a
decidable CoMS satisfiability
problem has bounded CWD

G - Minors(G)

is an MS» transduction

G - Vertex-Minors(G)

is a CoMS transduction




This lecture :
Using the algebraic notion of Isotropic

System, we express the vertex-minor relation
in CoMS logic and we (almost) prove Seese’s

Conjecture

Main definitions and steps:

local complementation, local equivalence, vertex-minors
the example of circle graphs
informal and constructive introduction to Isotropic Systems,

and how they represent local equivalence

representation of these notions and constructions in CoMS

logic

application to (a weakening of) Seese’s Conjecture

polynomial algorithm for “rank-width < k”



-5-
Quick review of definitions : Clique-width

Tree-width : Well-known

Cliqgue-width : defined in terms of graph operations

Graphs are simple, directed or not.
We use labels : a,b,c, ..., h.
Each vertex has one and only one label ; a label p may label

several vertices.

Binary operation : disjoint union @
Unary operations : Edge addition denoted by Add-edga,b

Add-edga,b(G) is G augmented with (un)directed edges

from every a-labelled vertex to every b-labelled one.
a
b
a
a b

G Add-edga,b(G)

Relaba,p(G) is G with every a-labelled vertex relabelled

into b. (The effect is to merge two classes of the partition of the

set of vertices defined by the labels.)
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Basic graphs are those with a single vertex.

Definition: A graph G has cliqgue-width <k
<> it can be constructed from basic graphs
by using < k labels and the
operations @, Add-edga,b
and Relaba,b .

Its (exact) clique-width, CWD(G), is the

minimum such K.

Example : Cliques have clique-width 2.

a a a a

K. is defined by t,
the1r = Relabp,a( Add-edga,b(t, © b))

Bounded tree-width implies bounded CWD but not vice-versa
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Quick review of definitions : Logic

Monadic Second-Order (MS) logic = First-Order logic with set

variables

Example : Non connectivity of undirected graphs :
IX(IxeX & Jyg X &
Yu,v (ue X & edg(u,v)=v e X))

CoMS = MS with the set predicate Even(X)

MS2> = MS logic with edge set quantification
= MS logic for graphs represented by their

(bipartite directed) incidence graphs

The existence of a Hamiltonian circuit is MS, but not MS.

The L satisfiability problem for a logical language L and a
set of structures C is :
the problem of deciding whether a given formula in L is

satisfied by some structure in C (it is decidable iff the L -theory

of C is decidable when L is closed under negation).
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Definitions : MS transductions

STR(X) : the set of finite X-relational structures.

Multivalued mappings T : STR(2) 2 STR(I)
S |—— T =1(S)

where T is :
a) defined by MS formulas

b) inside the structure: S®@S®...® S
(fixed number of disjoint "marked" copies of S)

c) in terms of "parameters” i.e. subsets

X1, ...,.Xp of the domain of S

Proposition : The composition of two

MS transductions is an MS transduction.
Remark : For each tuple of parameters Xy, ..., X,
satisfying an MS property, T is uniquely defined.

T is multivalued by the different choices of parameters.
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Example of an MS transduction : Minors

The incidence graph Inc(G) of G (undirected) is

the directed bipartite graph
<VgUEg, incg(.,.) > where

incg(v,e) < vis a vertex incident with edge e.

The mapping : (Inc(G), X, Y) > Inc(H)

where X VgUEG : vertices and edges to delete

-
Y C Eg . edges to contract
H is the resulting minor

Is an MS» transduction.

(Because transitive closure and paths are expressible
in MS logic.)
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The fundamental property of MS transductions :

S | > T(S)

) ——I v

Every MS formula y has an effectively computable
backwards translation t #(y), an MS formula, such that :

S |=t#(y) iff ©(S) |= vy

The verification of v in the object structure t(S) reduces to
the verification of t#(y) in the given structure S.

Intuition : S contain all necessary information to describe t(S) ;
the MS properties of 1(S) are expressible by MS formulas in S

Some results :

1) If a set of graphs C has a decidable MS satisfiability
problem, so has its image ©(C) under an MS transduction .

2) A set of graphs has bounded tree-width iff it is the image of

a set of trees under an MS, transduction (graphs are handled
through incidence graphs, this permits edge set quantifications).

3) A set of graphs has bounded clique-width (or rank-width) iff
it is the image of a set of trees under an MS transduction.
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Theorem (Seese 1991) :

If a set of graphs has a decidable MS, satisfiability

problem, it has bounded tree-width.

Conjecture (Seese 1991) :

If a set of graphs has a decidable MS satisfiability
problem, it is the image of a set of trees under an
MS transduction, equivalently, has bounded clique-
width.

Theorem (B.C., S. Oum 2004) :
If a set of graphs has a decidable C,MS satisfiability

problem, it has bounded clique-width.

Reminder :

MS = (Basic) MS logic without edge quantifications
MS, = MS logic with edge quantifications

C,MS = MS logic with even cardinality set predicates
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Proof of Seese’s Theorem :

MS» transduction

C > Minors(C )

a) decidable — decidable

MS, sat. problem MS, sat. prob.

b) TWD(C )= aC = contains all kxk-grids

(Robertson, Seymour)
C) = undecidable MS» satisfiability

problem, (because on arbitrary

large square grids one can
encode, by MS formulas,
arbitrary long Turing Machine
computations, whence the

undecidable Halting Problem.

Hence “TWD(C )= oc” and “C has a decidable MS;

satisfiability problem” yield a contradiction for the decidability of

the MS, satisfiability problem of Minors(C).
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Proof of Courcelle-Oum’s Theorem :

CoMS transduction

C > Vertex-Minors(C )

bipartite graphs

a) decidable — decidable

CoMS sat. problem MS sat. problem

b) RWD(C ) = oc = contains all Sy
(by S. Oum)

C) — yields all kxk grids

by MS transduction
d) — undecidable

MS sat. problem

There are MS transductions encoding :

Bipartite undirected graphs *Undirected graphs

Bipartite undirected graphs Directed graphs

They preserve “bounded clique-width”

and decidability of the CoMS satisfiability problem
This gives the proof.
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Definition : Vertex-Minor

(a notion already considered by A. Bouchet, 1987-1994)

Graphs : finite, undirected, simple, loop-free

Local complementation of G at vertex v
G*v = G with edge complementation of G[ng(Vv)],

the subgraph induced by the neighbours of v

Local equivalence (= |o¢ ) = transitive closure of local

complementation (at any vertex).

Vertex-minor relation :

H <ym G : < H isaninduced subgraph of some G’ ~|oc G

Theorems (S. Oum) : 1) Vertex-minor relation is wqo on graphs
of rank-width <Kk.

2) These graphs are defined by finitely many excluded vertex-
minors with at most < 6 ket /' 5 vertices.

3) Rank-width is equivalent to clique-width.
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Properties of local complementation and vertex minors

Facts:G*v+w = G*w=*v if v,w notadjacent (easy)
G*v+*w = G*wx*v*w=*v if v,w adjacent (harder)
G+ X easy to define inG bya CoMS formula if X is stable

G * X is not well-defined if X is not stable

Notation : — ; induced subgraph
Facts: Grio,c G ciH =GciH ~|ocH forsome H’

<vm is the transitive closure of Rloc U Cij
Proposition : The mappings from G to its locally equivalent

graphs, and to its vertex minors are CoMS transductions.

Why the even cardinality set predicate is necessary ?

| Consider G* Xfor X Y :

u is linked to v in G * X

Y < Card(X) is even
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Proposition : The mappings from G to its locally equivalent

graphs is a CoMS transduction.

Proof : It is the composition of two transductions :

a) G, graph = S(G), isotropic system : a CoMS transduction,
b) S, isotropic system - graphs H definable from it : an MS

transduction.

The graphs H are the graphs locally equivalent to G.

Consequences (with other results)

1) The set of graphs of rank-width at most k is characterized by
a CoMS formula.

2) So is the set of circle graphs.

3) It is decidable in polynomial time if a graph has rank-width <k,

for each fixed k.
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Seese’s Conjecture : Some lemmas

(1) MS transductions can encode/decode graphs into bipartite

graphs. They preserve “bounded rank-width/clique-width”
and “having a decidable CoMS satisfiability problem” in both

y4<

Y X y w4 z1
/ \ > X2 y3

w z

directions
t1

ul x3 y2 t4

v1 \

w1 x4 y1 74
G H

From H to G :contract the blue edges, fuse parallel red edges.

(2) Itremains to show the graphs Sk and the MS transduction

that transforms them into k x k -grids.
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Definition of Sk :

bipartite : A = {1,...,(k+1)(k-1)}, B = {1,....k(k-1)}
for j € Aie B:edg(ij) < i<j<i+k-1

From Sk to Gridkxk by an MS transduction

A123456?8 1 2 3 4 5 6

B

1 2 3 4 5 6 1 2 3 4 5 6
S3 Grid3ya

1) One can define the orderings of Aand B :

X,y are consecutive < Card(ng(x) A ng(y)) =2
2) One can identify the edges fromi € Btoi € A, and
fromi € B to i+k-1 € A (thick edges on the left drawing)
3) One can create edges (e.g. from 1 € Ato2 € A,from 2 € A
to 3 € A etc...and similarly for B, and from 1 € Bto4 € A,
etc...) and delete others (from4 € Bto 6 € A etc...), and

vertices like 7,8 in A, to get a grid containing Gridkxk
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Theorem : If a set of (finite, simple, undirected) graphs has a

decidable Co2MS satisfiability problem, then :

it has bounded rank-width,
it has bounded clique-width,

it is the image of a set of trees under an MS transduction.

Corollary : If a set of (finite, simple), directed graphs has a
decidable C2MS satisfiability problem, then :

it has bounded clique-width,

it is the image of a set of trees under an MS transduction.

Proof : By using codings between directed and undirected graphs by MS
transductions (B. Courcelle, 2002-2004, submitted) showing that Seese’s

Conjecture holds for directed graphs iff it holds for undirected ones.

Corollary : If a set of directed acyclic graphs, each of them having
a directed Hamiltonian path, has a decidable MS satisfiability

problem, then it has bounded clique-width.

Proof : Since on these graphs a linear order is MS definable, MS and
CoMS logics are equivalent (every Co.MS formula is translatable into an

equivalent MS formula).
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Algorithmic applications

On graphs of clique-width < k,
each monadic second-order property, (ex. 3-colorability)
each monadic second-order optimization function, (ex. distance)
each monadic second-order counting function, (ex. # of paths)
is evaluable :

(1) in linear time on graphs given by a term over

the clique-width operations

(2) in time O(ng.log(n)) otherwise (S. Oum, P. Seymour).

Proof sketch of (2) : For each k, there is a O(n”.log(n)) algorithm that
gives forany graph G :
either that RWD(G) (or CWD(G) ) >k

or a decomposition of width < 3k +1 for RWD (< 2°¢* for CWD)

In the second case we get, by using (1), the correct answer in

polynomial time, although the decomposition is not optimal.

Corollary : This applies to the question “RWD(G) < k" since
this class is MS definable (through finitely many excluded

vertex minors).
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Open problems

1) Can one find a good sounding name in French for “vertex-

minor” ?

2) Does the original conjecture by Seese hold (with MS instead

of CoMS) ?

3) Does it hold for relational structures (i.e., directed ranked

hypergraphs) ?

4) Can one defined rank-width for directed graphs ? and for

hypergraphs ?

5) If two graphs G, H are locally equivalent, they have the same
rank-width RWD(G) but clique-widths such that :

RWD(G) < CWD(G), CWD(H) < 2 "WP(E*1 4

What are the maximum and minimum values of CWD(H) ?

Can one characterize the graphs that realize these values ?
6) Can one characterize RWD(<k) in terms of graph operations?

7)1s “CWD(< k)" polynomial ?



