Vertex-minors, Monadic second-order logic, Polynomial algorithms and Seese's Conjecture

Bruno Courcelle, (Bordeaux)

joint work with Sang-il Oum, (Princeton)

Based on :

André Bouchet : Various articles on isotropic systems

B.C., S.O. : Vertex-minors, MS logic and a conjecture by D. Seese, July 2004, submitted http://www.labri.fr/~courcell

Sang-il Oum : Several articles, see above

The general field of this research could be entitled :

Graph structuring and Monadic Second-order logic

History : The confluence of 4 independent research directions, presently intimately related :

- Polynomial algorithms for NP-complete and other hard problems on particular classes of graphs, and especially hierarchically structured ones : series-parallel graphs, cographs, partial k-trees, graphs or hypergraphs of tree-width < k, graphs of clique-width < k.
- 2. Excluded minors and related notions of forbidden configurations (matroid minors, « vertex-minors »).
- 3. <u>Decidability of Monadic Second-Order logic on classes</u> of finite graphs, and on infinite graphs.
- Extension to graphs and hypergraphs of the main concepts of Formal Language Theory : grammars, recognizability, transductions, decidability questions.

Links between Monadic Second-Order Logic and graph structure properties

Tree-width	$Clique-width \equiv Rank-width$	
Bounded tree-width	Bounded rank-width	
\Leftrightarrow bounded nxn grids as	for bipartite graphs	
minors	\Leftrightarrow bounded "S _k " graphs	
	as vertex-minors	
TWD(<u><</u> k) is characterized	RWD(<u><</u> k) is characterized	
by finitely many excluded	by finitely many excluded	
minors	vertex-minors	
Monadic Second-Order (MS ₂)	Monadic Second-Order (MS)	
problems are linear on	problems are polynomial	
TWD(<u><</u> k)	on CWD(<u><</u> k)	
A set of graphs with a	A set of graphs with a	
decidable MS ₂ satisfiability	decidable C ₂ MS satisfiability	
problem has bounded TWD	problem has bounded CWD	
$G \rightarrow Minors(G)$	$G \rightarrow Vertex-Minors(G)$	
is an MS ₂ transduction	is a C ₂ MS transduction	

This lecture : Using the algebraic notion of Isotropic System, we express the vertex-minor relation in C₂MS logic and we (almost) prove Seese's Conjecture

Main definitions and steps:

- local complementation, local equivalence, vertex-minors
- the example of circle graphs
- informal and constructive introduction to Isotropic Systems,
- and how they represent local equivalence
- representation of these notions and constructions in C₂MS logic
- application to (a weakening of) Seese's Conjecture
- polynomial algorithm for "rank-width

Quick review of definitions : Clique-width

- 5 -

Tree-width : Well-known Clique-width : defined in terms of graph operations

Graphs are simple, directed or not. We use labels : a, b, c, ..., h. Each vertex has one and only one label ; a label p may label several vertices. Binary operation : disjoint union \oplus

Unary operations : Edge addition denoted by Add-edga, b

Add-edga, b(G) is G augmented with (un)directed edges

from every *a*-labelled vertex to every *b*-labelled one.

G

Add-edga,b(G)

Relaba,b(G) is G with every *a*-labelled vertex relabelled into *b*. (The effect is to merge two classes of the partition of the set of vertices defined by the labels.)

Basic graphs are those with a single vertex.

Definition: A graph G has clique-width $\leq k$

 \Leftrightarrow it can be constructed from basic graphs

by using \leq k labels and the

and Relaba,b.

Its (exact) clique-width, CWD(G), is the

minimum such k.

Example : Cliques have clique-width 2.

 K_n is defined by t_n $t_{n+1} = Relab_{b,a}(Add-edg_{a,b}(t_n \oplus b))$

Bounded tree-width implies bounded CWD but not vice-versa

Quick review of definitions : Logic

Monadic Second-Order (MS) logic = First-Order logic with set variables

 $\begin{array}{l} \textit{Example : Non connectivity of undirected graphs :} \\ \exists X \ \big(\ \exists x \in X \ \& \ \exists y \not\in X \ \& \\ \forall u, v \ (u \in X \ \& \ edg(u, v) \Longrightarrow v \in X) \ \big) \end{array}$

 $C_2MS = MS$ with the set predicate Even(X)

 MS_2 = MS logic with edge set quantification

 MS logic for graphs represented by their (bipartite directed) incidence graphs

The existence of a Hamiltonian circuit is MS₂ but not MS.

The *L* satisfiability problem for a logical language *L* and a set of structures *C* is :

the problem of deciding whether a given formula in L is satisfied by some structure in C (it is decidable iff the L -theory of C is decidable when L is closed under negation).

Definitions : MS transductions

 $STR(\Sigma)$: the set of finite Σ -relational structures.

- 8 -

Multivalued mappings $\tau : STR(\Sigma) \rightarrow STR(\Gamma)$

 $S \mid \longrightarrow T = \tau(S)$

where T is :

a) defined by MS formulas

- b) inside the structure: S ⊕ S ⊕ ... ⊕ S
 (fixed number of disjoint "marked" copies of S)
- c) in terms of "parameters" i.e. subsets X_1, \ldots, X_p of the domain of S

Proposition : The composition of two
MS transductions is an MS transduction.
Remark : For each tuple of parameters X₁, ..., X_p
satisfying an MS property, T is uniquely defined.

 τ is multivalued by the different choices of parameters.

Example of an MS transduction : Minors

The incidence graph Inc(G) of G (undirected) is the directed bipartite graph :

- 9 -

 $<V_G \cup E_G$, inc_G(.,.) > where

 $inc_G(v,e) \Leftrightarrow v$ is a vertex incident with edge e.

The mapping : $(Inc(G), X, Y) \longrightarrow Inc(H)$

where $X \subseteq V_G \cup E_G$: vertices and edges to delete $Y \subseteq E_G$: edges to contract H is the resulting minor

is an MS₂ transduction.

(Because transitive closure and paths are expressible in MS logic.)

The fundamental property of MS transductions :

τ[#](ψ) ← ____ | ψ

Every MS formula ψ has an effectively computable *backwards translation* $\tau \#(\psi)$, an MS formula, such that :

S \mid = $\tau \#(\psi)$ iff $\tau(S) \mid$ = ψ

The verification of ψ in the object structure $\tau(S)$ reduces to the verification of $\tau \#(\psi)$ in the given structure S.

Intuition : S contain all necessary information to describe $\tau(S)$; the MS properties of $\tau(S)$ are expressible by MS formulas in S

Some results :

1) If a set of graphs *C* has a decidable MS satisfiability problem, so has its image $\tau(C)$ under an MS transduction τ .

2) A set of graphs has bounded tree-width iff it is the image of a set of trees under an MS_2 transduction (graphs are handled through incidence graphs, this permits edge set quantifications).

3) A set of graphs has bounded clique-width (or rank-width) iff it is the image of a set of trees under an MS transduction.

Theorem (Seese 1991):

If a set of graphs has a decidable MS₂ satisfiability problem, it has bounded tree-width.

- 11 -

Conjecture (Seese 1991) :

If a set of graphs has a decidable MS satisfiability problem, it is the image of a set of trees under an MS transduction, equivalently, has bounded cliquewidth.

Theorem (B.C., S. Oum 2004) :

If a set of graphs has a decidable C₂MS satisfiability problem, it has bounded clique-width.

Reminder :

MS = (Basic) MS logic without edge quantifications $MS_2 = MS \text{ logic with edge quantifications}$ $C_2MS = MS \text{ logic with even cardinality set predicates}$

- 12 -

Proof of Seese's Theorem :

MS₂ transduction

C –		$\longrightarrow Minors(C)$
a) decidable	\Rightarrow	decidable
MS ₂ sat. problem		MS ₂ sat. prob.
b) TWD(C) = ∞	\Rightarrow	contains all kxk-grids
		(Robertson, Seymour)
c)	\Rightarrow	undecidable MS ₂ satisfiability
		problem, (because on arbitrary
		large square grids one can
		encode, by MS formulas,
		arbitrary long Turing Machine
		computations, whence the
		undecidable Halting Problem.

Hence "TWD(C) = ∞ " and "C has a decidable MS₂ satisfiability problem" yield a contradiction for the decidability of the MS₂ satisfiability problem of Minors(C). Proof of Courcelle-Oum's Theorem :

C ₂ MS	transd	uction
-------------------	--------	--------

- 13 -

C —		Vertex-Minors(C)
bipartite graphs		
a) decidable	\Rightarrow	decidable
C ₂ MS sat. problem		MS sat. problem
b) RWD(C) = ∞	\Rightarrow	contains all Sk
		(by S. Oum)
c)	\Rightarrow	yields all kxk grids
		by MS transduction
d)	\Rightarrow	undecidable
		MS sat. problem

There are MS transductions encoding :

Bipartite undirected graphs Undirected graphs Bipartite undirected graphs Directed graphs

They preserve "bounded clique-width" and decidability of the C₂MS satisfiability problem This gives the proof.

Definition : Vertex-Minor

(a notion already considered by A. Bouchet, 1987-1994)

Graphs : finite, undirected, simple, loop-free

Local complementation of G at vertex v

G * v = G with edge complementation of $G[n_G(v)]$, the subgraph induced by the neighbours of v

- 14 -

Local equivalence (\approx_{loc}) = transitive closure of local complementation (at any vertex).

Vertex-minor relation :

H \leq_{VM} G : \Leftrightarrow H is an induced subgraph of some G' \approx_{loc} G

Theorems (S. Oum) : 1) Vertex-minor relation is work on graphs of rank-width \leq k.

2) These graphs are defined by finitely many excluded vertexminors with at most $\leq 6^{k+1}/5$ vertices.

3) Rank-width is equivalent to clique-width.

Properties of local complementation and vertex minors

- 15 -

Facts: G * v * w = G * w * vif v, w not adjacent (easy)G * v * w = G * w * v * w * vif v, w adjacent (harder)G * X easy to define in G by a C2MS formula if X is stableG * X is not well-defined if X is not stableNotation : \subseteq_i induced subgraphFacts: $G \approx_{loc} G' \subseteq_i H \implies G \subseteq_i H' \approx_{loc} H$ for some H'

 \leq_{VM} is the transitive closure of $\approx_{loc} \cup \subseteq_i$ *Proposition :* The mappings from G to its locally equivalent graphs, and to its vertex minors are C₂MS transductions.

Why the even cardinality set predicate is necessary?

Y

Consider G * X for $X \subseteq Y$:

u is linked to v in G * X \Leftrightarrow Card(X) is even

G

Proposition : The mappings from G to its locally equivalent graphs is a C_2MS transduction.

Proof : It is the composition of two transductions :

a) G, graph \rightarrow S(G), isotropic system : a C₂MS transduction, b) S, isotropic system \rightarrow graphs H definable from it : an MS transduction.

The graphs H are the graphs locally equivalent to G.

Consequences (with other results) :

1) The set of graphs of rank-width at most k is characterized by a C_2MS formula.

2) So is the set of circle graphs.

3) It is decidable in polynomial time if a graph has rank-width \leq k, for each fixed k.

Seese's Conjecture : Some lemmas

(1) MS transductions can encode/decode graphs into bipartite graphs. They preserve "bounded rank-width/clique-width" and "having a decidable C₂MS satisfiability problem" in both directions

From H to G : contract the blue edges, fuse parallel red edges.

(2) It remains to show the graphs S_k and the MS transduction that transforms them into $k \times k$ -grids.

Definition of S_k :

bipartite : A = $\{1, ..., (k+1)(k-1)\}$, B = $\{1, ..., k(k-1)\}$

for $j \in A, i \in B$: edg(i,j) $\Leftrightarrow i \le j \le i+k-1$

From S_k to Grid_{kxk} by an MS transduction

1) One can define the orderings of A and B :

x, y are consecutive \Leftrightarrow Card(n_G(x) Δ n_G(y)) = 2 2) One can identify the edges from $i \in B$ to $i \in A$, and from $i \in B$ to $i+k-1 \in A$ (thick edges on the left drawing) 3) One can create edges (e.g. from $1 \in A$ to $2 \in A$, from $2 \in A$ to $3 \in A$ etc...and similarly for B, and from $1 \in B$ to $4 \in A$, etc...) and delete others (from $4 \in B$ to $6 \in A$ etc...), and vertices like 7,8 in A, to get a grid containing Grid_{kxk} - 19 -

Theorem : If a set of (finite, simple, undirected) graphs has a decidable C_2MS satisfiability problem, then :

it has bounded rank-width,

it has bounded clique-width,

it is the image of a set of trees under an MS transduction.

Corollary : If a set of (finite, simple), directed graphs has a decidable C_2MS satisfiability problem, then :

it has bounded clique-width,

it is the image of a set of trees under an MS transduction.

Proof : By using codings between directed and undirected graphs by MS transductions (B. Courcelle, 2002-2004, submitted) showing that Seese's Conjecture holds for directed graphs iff it holds for undirected ones.

Corollary : If a set of directed acyclic graphs, each of them having a directed Hamiltonian path, has a decidable MS satisfiability problem, then it has bounded clique-width.

Proof : Since on these graphs a linear order is MS definable, MS and C_2MS logics are equivalent (every C_2MS formula is translatable into an equivalent MS formula).

Algorithmic applications

On graphs of clique-width $\leq k$, each monadic second-order property, (ex. 3-colorability) each monadic second-order optimization function, (ex. distance) each monadic second-order counting function, (ex. # of paths) is evaluable :

(1) in linear time on graphs given by a term over

the clique-width operations

(2) in time $O(n^9.log(n))$ otherwise (S. Oum, P. Seymour).

Proof sketch of (2) : For each k, there is a $O(n^9.log(n))$ algorithm that gives for any graph G :

either that RWD(G) (or CWD(G)) > k

or a decomposition of width \leq 3k +1 for RWD ($\leq 2^{3k+2}$ for CWD)

In the second case we get, by using (1), the correct answer in polynomial time, although the decomposition is not optimal.

Corollary : This applies to the question "RWD(G) \leq k" since this class is MS definable (through finitely many excluded vertex minors).

Open problems

- 1) Can one find a good sounding name in French for "vertexminor" ?
- 2) Does the original conjecture by Seese hold (with MS instead of C₂MS) ?
- 3) Does it hold for relational structures (i.e., directed ranked hypergraphs) ?
- 4) Can one defined rank-width for directed graphs ? and for hypergraphs ?
- 5) If two graphs G, H are locally equivalent, they have the same rank-width RWD(G) but clique-widths such that : $RWD(G) \leq CWD(G), CWD(H) \leq 2^{RWD(G)+1}-1$ What are the maximum and minimum values of CWD(H)? Can one characterize the graphs that realize these values?
- 6) Can one characterize RWD(<k) in terms of graph operations?
- 7) Is "CWD(\leq k)" polynomial ?