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The general field of this research could be entitled : 

Graph structuring  and 

Monadic Second-order logic 
History : The confluence of 4 independent research 

directions,  now  intimately related : 

1. Polynomial  algorithms for NP-complete and other hard 

problems on particular classes of graphs, and 

especially hierarchically structured ones : series-parallel 

graphs, cographs, partial k-trees, graphs or hypergraphs of 

tree-width < k, graphs of clique-width < k. 

2. Excluded minors and related notions of forbidden 

configurations (matroid minors, « vertex-minors »). 

3. Decidability of Monadic Second-Order logic on classes 

of  finite  graphs, and on infinite graphs. 

4. Extension to graphs and hypergraphs of the main 

concepts of Formal Language Theory : grammars, 

recognizability, transductions, decidability questions. 
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Summary 

 

1. Introduction 

 
Extension of Formal  Language Theory  notions 

2. Recognizability,  an algebraic notion. 

3. Equational (context-free)  sets. 

4. The graph algebras VR and HR ; the  role of quantifier-

free  definable  unary  operations. 

 
An  essential  tool : 

5. Monadic Second-Order Transductions  

 
Monadic second-order  logic and combinatorics : 

6. Seese’s conjecture 

 

7. Open questions 
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1. Introduction 

Key  concepts of FLT  and  their  extensions 

 
Languages Graphs 

Algebraic structure : 

monoid  (X*,*,ε)  

Algebras based on graph 

operations : ⊕, ⊗, // 

quantifier-free definable 

operations 

Algebras : HR, VR, QF 

Context-free languages : 

Equational subsets of (X*,*,ε) 

Equational sets of the 

algebras   HR,VR,QF 

Regular languages : 

Finite  automata  ≡ 

Finite congruences   ≡ 

Regular expressions   ≡ 

Recognizable sets  

of the algebras  

HR, VR, QF 

defined by congruences 

≡   Monadic Second-order 

definable sets of words or 

terms 

∪ 
Monadic Second-order 

definable sets of graphs  

Rational and other types of 

transductions 

Monadic Second-order 

transductions 
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Relationships  between  algebraic  and  logical  notions 

for sets  of  graphs  (and  hypergraphs) 
 

 
 

Algebraic 
notions 

Algebraic 
characterizations

Logical  
characterizations

Closure 
properties 

  union,  ∩ Rec
equation systems MS-trans(Trees) homo 

 
EQ 

Val(REC(Terms))  MS-trans 

  Boolean opns
congruences MS-def ⊂ REC homo-1 

 
REC 

  MS-trans-1 
 
 
 
Signatures  for  graphs and hypergraphs : 
 
HR :  graphs  and  hypergraphs with “sources” 
 
 
VR :  graphs with  vertex  labels (“ports”) 
VR+ :  VR  with quantifier-free operations  

(ex. edge complement) 
 

QF :  hypergraphs  ( ≡   relational structures ) : 
 

   disjoint union   ⊕ , and   quantifier-free  definable  

unary  operations 
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Another  picture : 

 

        Value ( MS Trans) 

REC(Terms)           EQ 
          MS Trans 

   Coding     

( MS Trans)     MS Transduction 

 

       Binary trees 

 

Equational sets = MS-Trans(Binary Trees) 

 

Compare : 

Context-free  languages  =  images  of the Dyck  language 

(which encodes  trees)  under  rational  transductions 

 

Since MS  transductions are closed under composition, the  

class  of equational  sets  is closed under MS transductions 
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2. Recognizable  sets  :    algebraic   definition 
 

F :   a finite set of operations with (fixed) arity. 

 

M = < M, (fM)f ∈ F >  :   an F-algebra. 

Definition :  L  ⊆ M   is    (F-)recognizable if it is a union of 

equivalence classes for a finite congruence   ≈    on    M 

(finite   means  that   M / ≈   is  finite). 

 

Equivalently, L = h-1(D) for a homomorphism  h : M → A, 

where A is a finite F-algebra, D ⊆  A. 

 

REC(M) is the set of recognizable subsets of M,   

with respect to  the algebra M. 

 

 

Closure properties : REC(M) contains M and  ∅, and is 

closed under union, intersection and difference. 
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The  many-sorted  case  with  infinitely   many sorts  
 

S   :   the countable  set of sorts. 

 

F  :   an S-signature (means that each  f  in  F  has a type  

   s1s2 …sk → s,  with s, si ∈ S ) 

 

M = < (Ms)s ∈ S, (fM)f ∈ F  >  F-algebra, Ms ∩ Mt  = ∅, if s  ≠  t 

where fM : Ms1 X  Ms2 X … X  Msk →  Ms 

 

 

Definition : L  ⊆ Ms  is    (F-) recognizable  if it is a union of 

equivalence classes for a  congruence ≈ on M  such that 

equivalent  elements  are  of  the  same  sort and there are 

finitely  many  classes  of  each  sort. 
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3. Equational  (context-free) sets 
Equation  systems =  Context-Free  (Graph)  Grammars 

         in  an  algebraic  setting 
 

In the case of  words,   the  set of context-free  rules  

S  → a S T ;    S  → b  ;  T  → c T T T ;   T  → a 
is equivalent to  the system  of  two set  equations: 

  S  =  a S T     ∪    { b }  

  T  =  c T T T      ∪        { a } 

where S is the language generated  by S (idem for T and T). 

 

For  graphs we consider similarily  systems of equations like: 

  S  =  f( k( S ), T  )     ∪  { b }  

  T  =  f( T , f( g(T ), m( T ))) ∪ { a } 

where  f  is a binary operation,  g, k, m are unary operations on  

graphs,  a, b are basic graphs.  

 

An  equational set  is  a component  of the least  (unique)  

solution  of such  an  equation system. This  is  well-defined in 

any  algebra. 
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Closure properties and algebraic characterizations 

 
General  algebraic  properties 
 

Algebraic 
notions 

Algebraic 
characterizations

Closure 
properties 

equation systems union,  ∩ Rec EQ 
 Val(REC(Terms)) homomorphisms 

congruences Boolean operations REC 
  homomorphisms-1 

 
 
 
Theorem (Mezei and Wright) : 
 
1) In an algebra of  terms T(F) :  

EQ(T(F)) = REC(T(F)) 
 

2) In an F-algebra M : 
EQ(M) = ValM(REC(T(F)) 

 
where ValM : T(F)         M   is the evaluation mapping,  
 
the unique homomorphism. 
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4. The  graph algebras   VR   and    HR 

HR operations 
  (Origin :  Hyperedge Replacement hypergraph grammars ; 

associated complexity measure : tree-width) 
 

Graphs have  distinguished vertices called sources, 

pointed  to  by labels from  a  set of size k : {a, b, c,  ..., h}. 
 

Binary operation(s)  :  Parallel  composition 
G // H     is    the  disjoint  union of  G  and  H  

      and sources  with  same  

      label  are   fused. 
       (If  G  and  H are  not  disjoint, one 

       first  makes  a  copy of  H disjoint  

       from  G .) 
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Unary operations   :   

Forget   a  source  label  

 

Forgeta(G)    is    G     without  a-source  : 

      the  source  is  no longer 

distinguished ; it is  made  "internal". 

  

Source renaming : 

 

Rena,b(G)   renames  a  into b  (assuming  b is not a source 

   label in G). 

 

Nullary operations denote  basic graphs :  the connected 

graphs with at most one edge. 

 

For dealing with hypergraphs one takes more nullary 

symbols for denoting hyperedges. 

 

The proper algebraic framework : a many sorted algebra where 

each finite set of source labels is a sort. The  above operations 

are  overloaded. 
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Proposition:  A  graph  has  tree-width  ≤  k  if and only if  

    it  can  be  constructed   from  basic 

    graphs  with   ≤  k+1  labels  by  using  the 

    operations    // , Rena,b  and  Forgeta .  

 
Example : Trees are of tree-width 1, constructed with two source labels, 

r  (root) and n  (new root): 

 

Fusion of two trees at their roots  : 
 

 
Extension of a tree by parallel  

composition with a new edge,   

forgetting the old root, making  

the "new root" as current root :  

 

E  =  r  •_________•  n 

Renn,r (Forgetr (G // E)) 
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VR    operations  
 

(origin : Vertex Replacement graph grammars ; associated complexity 

measure :   clique-width ) 
 

Graphs are simple, directed or not. 

k   labels  :  a , b , c,  ..., h.   

Each vertex has one and only  one label ; a label p may label 

several vertices, called the   p-ports. 

 

Binary operation:   disjoint  union     ⊕ 
 

Unary  operations:  Edge addition denoted by Add-edga,b 
 

Add-edga,b(G) is  G augmented with (un)directed edges   

from every   a-port     to every  b-port. 
 

 

       G        Add-edga,b(G) 



 14

Relaba,b(G) is  G with every vertex labelled by a  relabelled  

into b 
 

Basic graphs  are those with a single vertex. 

 

Definition:  A  graph  G  has  clique-width  ≤ k      

 ⇔ it can be constructed  from basic graphs 

     by means  of  k  labels  and   the 

     operations ⊕, Add-edga,b 

and   Relaba,b   

 

  Its (exact) clique-width,  cwd(G),   is the   

smallest  such  k. 

Proposition :  (1) If  a  set of  simple graphs  has  bounded  tree-

width, it has  bounded  clique-width, but not  vice versa. 

 

(2) Unlike  tree-width, clique-width  is  sensible to edge 

directions :  Cliques have clique-width 2, tournaments have 

unbounded clique-width. 

 

(3) “Clique-width < 3” is polynomial. The complexity (polynomial 

or NP-complete) of  “Clique-width = 4” is unknown. 
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Example : Cliques have clique-width 2.  

 
 

   Kn  is   defined  by   tn  

tn+1  =   Relabb,a( Add-edga,b(tn  ⊕  b)) 

 

Another  example :  Cographs  
 

Cographs  are generated  by  ⊕  and  ⊗  defined by : 

 

G ⊗ H    =   Relabb,a ( Add-edga,b (G ⊕ Relaba,b(H)) 
 

= G ⊕ H  with  “all edges”  between  G and H. 
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Algorithmic  applications  
 

On  graphs  of  clique-width  ≤  k , 

each monadic  second-order  property, (ex. 3-colorability) 

each monadic  second-order optimization function, (ex. distance) 

each monadic  second-order  counting  function, (ex. #  of paths) 

is  evaluable : 

 

in  linear  time  on graphs  given  by a term in T(VR), 

in time  O(n9.log(n))  otherwise  (S. Oum, P. Seymour). 

 

This  is  possible  in linear  time  on graphs  of tree-width ≤  k 

        (Bodlaender) 
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Equivalent    signatures 

 

If  F  ⊂   G  are   two signatures on  M : 

EQ(F)  ⊆   EQ(G) 

REC(G)  ⊆  REC(F) 

 

 F  and  G are  equivalent (≡)  if  we have equalities. 
 

Extending  HR  : 
 

HRFuse  = HR  augmented  with the (quantifier-free  definable)  

unary  operations  : 

Fusea,b      fuses the  a-source  and  the  b-source, 

 and forgets  b. 

Proposition : HRFuse   ≡   HR 

Proof : For  REC(HRFuse) = REC(HR) , we use  : 

Fusea,b (G // H)  = Fusea,b (G) // Fusea,b (H) 

Fusea,b (Forgetc (G)) = Forgetc (Fusea,b (G)) 

Fusea,b (Renc,a (G)) = Renc,a (Fusec,b (G)) 

 

Proposition : HR = {//, Forget, Ren}  ≡  {⊕, Fuse, Forget, Ren}
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Extending  VR  : 
 

We enrich  VR  by  new unary  operations of several  types  
 

(1)   Quantifier-free  definable operations, giving   VR + 
 

Example : the edge complement for loop-free undirected graphs  
 

If G  = <VG, edgG (.,.) > then  Compl(G) = G' = <VG, edg G'(.,.)>  
 

where   :        edgG'(x,y) : ⇔  x  ≠  y  ∧ ¬ edgG(x,y). 
 

Proposition :    VR   ≡ VR + 

 

(2)   Fusion : a non-quantifier-free  definable operation: 

Fusea(G)  is obtained from G  by  fusing  all a-ports   

into a single vertex. 
 

Proposition  :    VR+ + Fusion  ≡ VR 

           (A. Blumensath, B.C., J.Makowsky, P.Weil)  

 

Significance  of  these  results  

 Robustness  of  the  formal  framework 
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Why  quantifier-free  unary operations ? 
 

To  have   the inclusion :  

Monadic Second Order  ⊆   Recognizable 
(for  appropriate  precise definitions). 

 

Monadic Second-Order (MS) Logic  
 
=  First-order logic on power-set structures  
 
=  First-order logic extended with (quantified) variables  

denoting subsets  of the domains. 
 
MS properties :  
 

transitive closure,  properties of paths, connectivity,  
 
planarity       (via Kuratowski, uses connectivity), 
 
k-colorability. 
 
 

Examples  of formulas for   G =  < VG , edgG(.,.) >, undirected 
 
Non connectivity : 
∃X ( ∃x ∈ X  &  ∃y ∉ X  &   

∀u,v (u ∈ X  &  edg(u,v) ⇒ v ∈ X)  ) 
 
2-colorability (i.e.  G  is   bipartite) : 
∃X ( ∀u,v (u ∈ X  &  edg(u,v) ⇒ v ∉ X) & 

∀u,v (u ∉ X  &  edg(u,v) ⇒ v ∈ X)   ) 
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Definition :  A set  L   of words,  of trees,  of graphs  is 
 

Monadic Second-Order  (MS)  definable  iff  
 

L  =  { S  /  S  =  ϕ }  for an MS formula  ϕ 
 
 
 

Theorem  :  (1) A  language  or  a set  of finite  terms  is  
recognizable   ⇔   it  is  MS  definable  

 
 

(2) A set  of finite  graphs  is  VR-  or  VR+-recognizable   
 

         ⇐  it  is  MS  definable  
  

Basic  facts  for   (2) : 

Let  F  consist  of  ⊕  and  unary  quantifier-free  definable  operations f. 

For every  MS  formula  ϕ  of quantifier-height  k, we  have  

(a) for  every   f , one can construct  a formula  f#(ϕ)  

such that :    f(S)  =  ϕ  ⇔  S  =  f#(ϕ) 

(b)(Fefermann-Vaught-Shelah) one can construct formulas   

ψ1,…,ψn,θ1,…,θn     such that :   

S⊕T  =  ϕ  ⇔  for some i,  S  =  ψi  & T  =  θ i 

where f#(ϕ), ψ1,…,ψn, θ1,…,θn  have quantifier-height  <  k. 

(c) Up  to  equivalence, there  are  finitely many  formulas  of quantifier-

height  <  k   forming a set  Φk. One builds an automaton with states  

the  subsets of  Φk (the MS-theories of quantifier-height < k of the 

graphs defined by the subterms of  the term  to be processed). 
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5.  Monadic  Second-Order Transductions  

STR(Σ): the set of finite  Σ-relational  structures (or finite 
directed ranked   Σ-hypergraphs). 
 

MS  transductions  are  multivalued mappings   
τ  : STR(Σ)  STR(Γ) 

 

               S                 T  =  τ (S)         
where   T  is  : 

a) defined by  MS formulas 
 

b) inside  the  structure:  S ⊕ S ⊕ ... ⊕ S  
    (fixed  number  of disjoint "marked" copies of S) 

 
   c) in terms  of "parameters"  i.e.  subsets  

 X1, …,Xp   of  the  domain  of  S 
  
Proposition  :  The  composition  of  two   
 

MS  transductions  is  an  MS  transduction. 
 

Remark  :   For  each tuple of parameters X1, …,Xp 
   

satisfying  an MS  property, T is uniquely defined.   
 

τ  is multivalued  by  the  different choices of parameters. 
 

Examples : (G,{x})        the connected  component containing x. 
  

(G,X,Y)         the minor  of G  resulting from  contraction of 
edges in X  and deletion of edges  and vertices  in Y. 
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Example  of  an  MS  transduction   (without parameters) 
 
The  square  mapping  δ  on  words:  u  →   uu 
 
 We  let  u  =    aac  
 
  S     •  →  • → •    
       a      a      c      
     
  S ⊕ S    •  →  • → •              •  →  • → • 

     a       a     c             a        a     c  
     p1     p1    p1           p2      p2    p2 

 

 
  δ(S)   •  →  • → •  →  • → • →  •  

     a        a      c        a      a        c  
 

 
 In δ(S) we  redefine Suc (i.e., →  ) as  follows : 
 
 
Suc(x,y) :  ⇔   p1 (x) & p1 (y) & Suc(x,y) 
     v p2 (x) & p2 (y) & Suc(x,y) 
      v p1 (x) & p2 (y) & "x has no  successor"  

& "y has no  predecessor" 
 
 We also  remove  the  "marker" predicates p1, p2. 
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The fundamental property of MS  transductions :  
 
     S                      τ (S) 
 
     τ #(ψ)                ψ 
 

Every  MS  formula  ψ  has  an effectively  computable  
backwards  translation τ #(ψ), an MS formula, such that : 
 

S   =  τ #(ψ)    iff    τ (S)   =  ψ 
 
 The verification of ψ  in  the object structure τ(S)  reduces  
to  the  verification  of  τ #(ψ)   in  the  given structure S. 
 
Intuition : S  contain all necessary information to describe  τ(S) ;  
the MS properties of τ(S)   are expressible by MS formulas in S 
 
 
Consequence : If L ⊆ STR(Σ) has a decidable  MS satisfiability 
problem,  so has  its image  under  an MS  transduction.  
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Other results  
 

 1)  A set  of graphs  is VR -equational  iff  it is the image of  
(all) binary trees under an  MS transduction.  
 

VR-equational  sets  are  stable  under  MS-transductions. 
 

A  set  of graphs has bounded clique-width  iff  it is  the 
image  of  a  set  of binary  trees  under  an MS transduction. 
 
 
2)  A  set  of graphs is HR-equational   iff  it is  the image 
of   (all) binary trees  under  an MS2 transduction. (MS2 = MS 
with edge set  quantifications). 
 

HR-equational  sets  are  stable under  MS2-transductions. 
 

A  set  of graphs has bounded tree-width  iff  it is  the image 
of  a  set  of binary trees  under  an MS2 transduction.  
 
 
3) A  set  of hypergraphs is QF-equational   iff  it is  the image 
of  (all) binary trees  under  an MS-transduction.  
 

QF-equational  sets  are  stable under  MS-transductions. 
 
 
4) (A.B.,B.C.,2004) : QF-recognizable sets are  
                preserved  under inverse  MS transductions. 
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Relationships  between  algebraic   

and  logical  notions 
 
 
 

Algebraic 
notions 

Algebraic 
characterizations

Logical  
characterizations

Closure 
properties 

  union,  ∩ Rec
equation systems MS-trans(Trees) homo 

 
EQ 

Val(REC(Terms))  MS-trans 

  Boolean opns
congruences MS-def ⊂ REC homo-1 

 
REC 

  MS-trans-1 
 
 
 
Signatures  for  graphs and hypergraphs : 
 
HR :  graphs  and  hypergraphs with “sources” 
 
 
VR :  graphs with  vertex  labels (“ports”) 
VR+ :  VR  with quantifier-free operations  

(ex. edge complement) 
 

QF :  hypergraphs, i.e., relational structures 
   (disjoint union ⊕ and  quantifier-free  definable  

unary  operations) 
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Theorem (A. Blumensath, B.C.,2004) : QF-recognizable 

sets are preserved  under inverse  MS  

transductions. 
 

This is already known (1) for MS definable sets and (2) for 

the recognizable sets of graphs of bounded tree-width. 
 

Proof sketch : Every MS transduction is the composition of  
MS   transductions of 3 types : 
 

- Copyk 
- Guess  of   unary  relations 
- Parameterless noncopying  MS  transductions. 
 
 
For each  of them  we  establish  the closure  result by a 

specific   proof. 
 
1) Copyk  (a  kind  of  homomorphism) : 
 

S         S ⊕ S ⊕  … ⊕  S   (k times) 
 

augmented with binary  relations  Yi,j for 1 ≤ i < j ≤ k   
 
defined  as   

 

{(x,y)  /  x is the i-copy, y is the j-copy of some u in DS} 
 

This step  handles  the  “domain extension”  possibility. 
 
The  class  of recognizable  sets  is  closed  under  inverse 
homorphisms. 
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2) Guessing   unary  relations  
 

« Guessing »  the relations  in Π  can be done by means  
of parameters  of an MS transduction. 

 
Lemma : Its  inverse, “forgetting”  unary relations  preserves   
 

recognizability.   
 

We let fgtΠ  : STR(Σ ∪ Π)  STR(Σ)  « forget »  Π,  
where  Π is a finite  set of unary relations.   
 

 
This  step  handles  the use  of parameters  in MS 

transductions. 
 

 
3)  Parameterless  noncopying  MS transductions. 
 

Lemma : If  L ∈ REC(QF)Γ, and  τ  is a  parameterless  
noncopying  MS transduction :  STR(Σ)  STR(Γ),  
then     τ -1(L) ∈ REC(QF)Σ 
 
(See  the  slides  of  my  DLT lecture  for  a proof  sketch) 
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6.  Links between MS logic and combinatorics :    

Seese’s  Conjecture  
 

Theorem (Seese 1991) :  

If  a set of graphs  has  a decidable MS2 satisfiability 

problem, it has  bounded tree-width. 
 

Conjecture (Seese 1991) :  

If  a set of graphs  has  a decidable MS satisfiability 

problem, it  is  the  image  of a set of trees under an 

MS  transduction, equivalently, has  bounded clique-

width. 
 

Theorem (B.C., S. Oum 2004)  : 

If a set of graphs has a decidable C2MS satisfiability 

problem, it has  bounded clique-width. 
 

MS  = (Basic) MS logic without edge  quantifications 

MS2 = MS logic  with  edge  quantifications  

C2MS = MS logic with even cardinality set  predicates 

A set C  has  a  decidable L  satisfiability  problem  if one can decide for 

every  formula  in L   whether  it  is  satisfied  by some graph in C 
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Proof  of  Seese’s  Theorem : 

A) If  a  set  of  graphs  C  has unbounded  tree-width, the 

set of its  minors  includes  all kxk-grids  (Robertson, 

Seymour) 

B) If  a  set  of  graphs   contains  all kxk-grids,  its MS2 

satisfiability  problem is undecidable  

C) If C has  decidable MS2 satisfiability  problem, so has  

Minors(C), because   C                Minors(C)  is an  

    MS2 transduction. 

 Hence, if   C  has unbounded  tree-width and a 

decidable MS2 satisfiability  problem, we have a 

contradiction  for the decidability of the  MS2 satisfiability  

problem of Minors(C). 

Proof  of  Courcelle-Oum’s  Theorem : 

D) Equivalence  between  the cases  of all  (directed and 

undirected) graphs  and bipartite  undirected graphs. 

A’)  If a  set  of  bipartite graphs  C  has unbounded  clique-

width, the set of its  vertex-minors  contains  all “Sk“ graphs  

C’)  If C has  decidable C2MS satisfiability  problem, so has  

Vertex-Minors(C), because  C         Vertex-Minors(C)  is 

a   C2MS transduction. 

E)  An   MS transduction  transforms Sk into the kxk-grid. 
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Definitions  and  facts   
 

Local  complementation of  G  at vertex  v  

G * v   =  G  with edge complementation of  G[nG(v)], 

     the subgraph induced  by the neighbours of v 
 

Local equivalence  ( ≈ loc )  = transitive closure of local  

complementation (at  all  vertices) 
 

Vertex-minor  relation : 

H  <VM  G  : ⇔ H  is an induced  subgraph  of  some G’ ≈ loc G 
 

Proposition : The  mapping  associating  with  G  its locally  

equivalent  graphs  is a   C2MS transduction.  
 

 

Why is  the  even cardinality  set predicate  necessary ? 

 

 u                               Consider G * X for X ⊆ Y : 

                    

                                  u  is  linked  to  v  in G * X 

 v                                ⇔    Card(X)  is even 

G        Y 
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Definition of   Sk : 

bipartite : A = {1,…,(k+1)(k-1)} , B =  {1,…,k(k-1)} 

for  j  ∈  A, i ∈  B : edg(i,j )   ⇔   i ≤ j ≤ i+k-1 

From Sk  to  Gridkxk   by an MS transduction  

   S3       (folded)  Grid3x4 

1) One can define the orderings of A and B :   

x, y  are  consecutive   ⇔   Card(nG(x) ∆ nG(y)) = 2 

2) One can identify the edges from i  ∈ B  to  i   ∈ A, and  

from i ∈ B to i+k-1 ∈ A (thick edges on the left drawing) 

3) One can create edges (e.g. from  1 ∈ A to 2 ∈ A, from  2 ∈ A 

to 3 ∈ A etc…and similarly for B, and from  1 ∈ B to 4 ∈ A, 

etc…)  and delete others (from 4 ∈ B to 6 ∈ A   etc…), and 

vertices like 7,8 in A, to get  a grid containing Gridkxk 
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 Corollary : If a set of directed acyclic graphs having 

Hamiltonian directed  paths has a decidable MS satisfiability 

problem, then : 

it has bounded clique-width, 

it is the image of a set of trees under an MS transduction.  

 

Proof : Since on these graphs a linear order is MS definable, 

MS and C2MS   are equivalent. 

 

 

 The  previously known  techniques for similar results (in 

particular for line graphs or interval  graphs,  B.C. 2004)  do not 

work in this case. 
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7. Some  open  questions 

 
 

Question 1 : Which  operations, quantifier-free definable or not, 

yield extensions  of VR, HR, QF  that are equivalent ? 
 

 

Question 2 : Under which operations, quantifier-free definable 

or not, are  REC(VR)  and  REC(HR)  closed ? 

 
(The case of REC(HR) is  considered in B.C.: (HR-)Recognizable 

sets of graphs, equivalent definitions and closure properties, 

1994. It is not hard to see that REC(VR)  is closed under ⊕ 

(disjoint union)  but not under the operations   Add-edga,b. ) 

 

Question 3 : Is  it  true  that  the decidability  of  the MS (and not 

the C2MS)  satisfiability  problem for a set of graphs implies 

bounded clique-width, as conjectured by D. Seese  ? 

 


