Graph Operations and Monadic Second-Order
Logic: a Survey

Bruno Courcelle*

LaBRI (CNRS, UMR 5800), Université Bordeaux-I,
351 cours de la Libération,
33405 Talence, France,
email: courcell@labri.u-bordeaux.fr,
WWW: http://dept-info.labri.u-bordeaux.fr/~courcell/ActSci.html.

We handle finite graphs in two ways, as relational structures on the one hand,
and as algebraic objects, i.e., as elements of algebras, based on graph operations
on the other.

Graphs as relational structures

By considering a graph as a relational structure (consisting typically, of the set
of vertices as domain and of a binary relation representing the edges), one can
express graph properties in logical languages like First-Order Logic or fragments
of Second-Order Logic. The purpose of Descriptive Complezity is to relate the
complexity of graph properties (or more generally of properties of finite relational
structures) with the syntax of their logical expressions, and to characterize com-
plexity classes in logical terms, independently of computation models like Turing
machines.

The logical expression of graph properties raises also satisfiability problems
for specific classes of graph, namely the problems of deciding whether a given
formula of a certain logical language is satisfiable by some graph belonging to a
fixed class.

Monadic Second-Order Logic

As main logical language, we will consider Monadic Second-Order Logic, i.e., the
extension of First-Order Logic with variables denoting sets of elements of the
considered structures. Despite the fact that it does not correspond exactly to
any complexity class, this language enjoys a number of interesting properties.

First, it is rich enough to express nontrivial graph properties like planarity,
k-vertex colorability (for fixed k), connectivity, and many others (that are not
expressible in First-Order Logic).

Second, it is an essential tool for studying context-free graph grammars. In
particular, certain graph transformations expressible by Monadic Second-Order
formulas behave very much like Rational Transductions (or Tree Transductions)
used in the Theory of Formal Languages.

* This research is supported by the European Community Training and Mobility in
Research network GETGRATS.



Third, the verification, optimization and counting problems, expressible in
Monadic Second-Order logic are efficiently solvable for certain classes of ”hi-
erarchically structured graphs” i.e., of graphs built from finite sets of graphs
by means of finitely many graph operations. (This the case of the well-known
class of partial k-trees, equivalently, of graphs of tree width at most k). We
will discuss this second way of handling graphs shortly. Let us precise here that
a wverification (or model checking) problem consists in testing whether a given
graph from a certain class is a model of a fixed closed logical formula (here a
Monadic Second-Order formula). An optimization problem consists in computing
for a given graph (from a certain class), the minimum (or maximum) cardinality
of a set of vertices satisfying a fixed formula with one free set variable, again of
Monadic Second-Order Logic. The length of a shortest path between two spec-
ified vertices and the maximum size of a planar induced subgraph in a given
graph are expresible in this way. A counting problem consists in counting the
number of sets satisfying a given formula. The number of paths between two
specified vertices is of this form.

Graph operations

The algebraic approach to graphs pertains to the extension to sets of finite (and
even countably infinite) graphs of several notions of Formal Language Theory
based on the monoid structure of words. Two basic such notions are context-
freeness and recognizability (defined in terms of finite congruences). The graph
operations we will consider can be seen as generalizations of the concatenation
of words, or of the construction of a tree from smaller trees connected by a new
root.

From an algebra of finite graphs, generated by finitely many graph operations
and basic graphs, one obtains:

— a specification of its graphs by algebraic terms: this yields a linear notation
for these graphs, and also a background for inductive definitions and proofs,

— a notion of context-free graph grammar formalized in terms of systems of
recursive set equations having least solutions: this is, by far, the easiest and
most general way to handle context-free graph grammars,

— an algebraic notion of recognizability, defined in terms of finite congruences;
an algebraic notion is useful because there is no appropriate notion of finite-
state automaton for graphs except in very special cases; however, algebraic
recognizability yields finite-state tree automata processing the syntax trees
of the considered graphs.

Provided the graph operations are compatible with Monadic Second-order logic
(this notion has a precise definition), we also obtain linear algorithms for every
verification, optimization or counting problem expressed in Monadic Second-
Order Logic, on the graphs of the corresponding algebras. These algorithms
are based on tree automata traversing the syntax trees of the given graphs,
and these automata exist because Monadic Second-Order Logic is equivalent to
recognizability on finite graphs.



A drawback of this theory is that we cannot handle the class of all finite
graphs as a single finitely generated algebra based on operations compatible
with Monadic Second-Order Logic. But this is unavoidable, unless P = NP.

Context-free graph grammars and Monadic Second-Order Logic

There exist only two classes of context-free graph grammars. They are called the
HR Grammars (HR stands for hyperedge replacement) and the VR Grammars
(VR stands for vertex replacement). The corresponding classes of sets of graphs
are closed under graph transformations expressible in Monadic Second-Order
Logic, and are generated from the set of binary trees by such transformations.
Hence, the classes HR and VR are robust and have characterizations indepen-
dent of any choice of graph operations. This establishes a strong connection
between context-free graph grammars and Monadic Second-Order Logic, and,
more generally, between the two ways we handle graphs.

Graph operations compatible with Monadic Second-Order Logic

The graph operations we know enjoying the desired ”compatibility properties”
are the following ones, dealing with k-graphs, i.e., with graphs the vertices of
which are colored with k colors (neighbour vertices may have the same color):

(a) disjoint union of two k-graphs,

(b) uniform change of color (i.e., all vertices of the input k-graph colored by p
are then colored by q), for fixed colors p, g,

(¢) redefinition of the (binary) edge relation of the structure representing the
input k-graph by a fixed quantifier-free formula using possibly the & color
predicates,

(d) an operation that fuses all vertices of the input k-graph having color p into
a single one, for fixed color p.

The edge complement is an example of an operation of type (c) (its definition
needs no color predicate).

For generating graphs, the operations of the forms (¢) and (d) can be replaced
by operations of the restricted form:

(¢’) addition of edges between any vertex colored by p and any vertex colored by
q,

at the cost of using (many) more colors. (See [6]).

The clique-width of a graph G is defined as the minimal number k of colors
that can be used in an algebraic expression denoting this graph and built from
one-vertex graphs and operations of the forms (a), (b), (¢’) (using only these k
colors). This complexity measure is comparable to tree-width, but stronger in
the sense that, for a set of finite graphs, bounded tree-width implies bounded
clique-width, but not vice versa. (See [1,6,7]).



The HR context-free graph grammars are those defined as systems of equa-
tions using operations (a), (b) and (d). The VR context-free graph grammars
are those defined as systems of equations using operations of all four types. (See

[6])-

Summary of the lecture

In a first part, we will review these notions, we will give various examples of
graph operations and of Monadic Second-Order graph properties ([2,5,6,7]). In
a second part, we will focus our attention on the ”compatibility” conditions
mentioned above and on operations of type (¢) and (d): we will review results
from [5]. In a third part, we will present the following open problems:

1. The parsing problem: What is the complexity of deciding whether the clique-
width of a given graph is at most k7 It is polynomial for k at most 3, NP
otherwise ([1]). Is it NP complete for fixed values of k? For the algorithmic
applications, one needs an algorithm producing not only a ”yes/no” answer
but also an algebraic expression in case of ”yes” answers.

2. Alternative complezity measure: Can one define a complexity measure equiv-
alent to clique-width (equivalent in the sense that the same sets of finite
graphs have bounded ”width”), such that the corresponding parsing prob-
lem is polynomial for each value k?

3. Countable graphs: From infinite expressions using the operation of types (a),
(b), (c’), one can define the clique-width of a countable graph G. It may be
finite but strictly larger than the maximum clique-width of the finite induced
subgraphs of G. How large can be the gap? Is there an equivalent complexity
measure for which there is no gap? Preliminary results can be found in [4].

4. An open conjecture by Seese: If a set of finite or countable graphs has a
decidable satisfiability problem for Monadic Second-Order Formulas, then it
has bounded clique-width. The result of [4] reduces this conjecture to the
case of sets of finite graphs, but the hard part remains; partial results have
been obtained in [3].

More open problems can be found from: http://dept-info.labri.u-bordeaux.fr/
“courcell/ActSci.html. A list of results on clique-width is maintained on the
page: http://www .laria.u-picardie.fr/~vanherpe/cwd/cwd.html

References:

[1] D. Corneil, M. Habib, J.M. Lanlignel, B. Reed, U. Rotics, Polyno-
mial time recognition of clique-width at most 3 graphs, Conference LATIN 2000,
to appear.

[2] B. Courcelle: The expression of graph properties and graph transformations
in monadic second-order logic, Chapter 5 of the "Handbook of graph grammars
and computing by graph transformations, Vol. 1 : Foundations”, G. Rozenberg
ed., World Scientific (New-Jersey, London), 1997, pp. 313-400.



[3] B. Courcelle: The monadic second-order logic of graphs XIV: Uniformly
sparse graphs and edge set quantifications, 2000, submitted.

[4] B. Courcelle: Clique-width of countable graphs: a compactness property.
International Conference of Graph Theory, Marseille, 2000.

[5] B. Courcelle, J. Makowsky: Operations on relational structures and their
compatibility with monadic second-order logic, 2000, submitted.

[6] B. Courcelle, J. Makowsky, U. Rotics: Linear time solvable optimiza-
tion problems on certain structured graph families Theory of Computer Science
(formerly Mathematical Systems Theory) 33 (2000) 125-150.

[7] B. Courcelle, S. Olariu: Upper bounds to the clique-width of graphs,
Discrete Applied Mathematics 101 (2000) 77-114.

Full texts of submitted or unpublished papers and other references can be
found from: http://dept-info.labri.u-bordeaux.fr/~courcell /ActSci.html.



