
Discrete Applied Mathematics 131 (2003) 129–150
www.elsevier.com/locate/dam

Query e!cient implementation of graphs of
bounded clique-width�

B. Courcelle∗ , R. Vanicat
Laboratoire d’Informatique (LaBRI), CNRS, UMR 5800, Universit e Bordeaux I,

351 Cours de la Lib eration, 33405 Talence, France

Received 5 June 2000; received in revised form 22 February 2001; accepted 5 May 2002

Abstract

If P(x1; : : : ; xk) is a graph property expressible in monadic second-order logic, where x1; : : : ; xk
denote vertices, if G is a graph with n vertices and of clique-width at most p where p is 2xed,
then we can associate with each vertex u of G a piece of information I(u) of size O(log(n))
such that, for all vertices x1; : : : ; xk of G, one can decide whether P(x1; : : : ; xk) holds in time
O(log(n)) by using only I(x1); : : : ; I(xk). The preprocessing can be done in time O(n log(n)).

One can do the same for any 2xed monadic second-order optimization function (like distance)
by using information of size O(log2(n)) for each vertex and computation time O(log2(n)). In
this case preprocessing time is O(–log2(n)).

Clique-width is a complexity measure on graphs similar to tree-width, but more powerful since
every set of graphs of bounded tree-width has bounded clique-width, but not conversely.

Similar results apply to graphs of tree-width at most w and to properties and functions ex-
pressed in the version of monadic second-order logic allowing quanti2cations on sets of edges.
? 2003 Elsevier B.V. All rights reserved.

1. Introduction

The starting point of this work is the notion of implicit representation of a graph, as
considered by Spinrad [15]. The idea is to associate with each vertex of a

� This work has been supported by the European Training and Mobility in Research Network Get Grats.
∗ Corresponding author.

E-mail address: courcell@labri.fr (B. Courcelle).

0166-218X/03/$ - see front matter ? 2003 Elsevier B.V. All rights reserved.
PII: S0166 -218X(02)00421 -3

mailto:courcell@labri.u-bordeaux.fr

130 B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150

graph of size n (number of vertices) a bit sequence of length O(log(n)) making it
possible to determine whether two vertices are adjacent just by processing (by some
2xed algorithm) the sequences attached to the two given vertices.
One may also wish to determine similarly the distance between two vertices, from

(hopefully short) bit sequences attached to them. See Gavoille et al. [13].
In this paper we consider similarly, and more generally, properties of k-tuples of

vertices (generalizing adjacency) formalized in monadic second-order (MS in short)
logic, and optimization functions (generalizing distance) on graphs also formalized in
MS logic.
Our proof technique is as follows. We 2rst prove the results for a-balanced binary

trees, i.e. trees with height at most a log(n) where n is the number of leaves and a is a
constant. Our proof uses the basic result according to which MS logic is equivalent to
2nite-state automata on 2nite trees (more precisely on trees representing terms written
with 2nitely many function and constant symbols).
For optimization functions, we use the algebraic methods of [8,14].
Certain graphs can be de2ned from trees by mappings from structures to struc-

tures formalized by MS logical formulas (they are called “MS transductions” in [5]).
The MS properties of the graphs (or the MS optimization functions on them) can
thus be formalized as MS properties of (or MS optimization functions on) the trees
de2ning them. In this way, the results for trees can be transferred to graphs. This
technique applies to graphs of tree-width at most k (for any 2xed k), because the
mapping from tree-decompositions (of width at most k) to the corresponding graphs
is an MS-transduction. (See the survey paper in [7] in this journal about MS logic
and algorithms.) It also applies to graphs of clique-width at most k, by the same
technique.

Clique-width is a complexity measure on graphs somewhat similar to tree-width,
but more powerful since every set of graphs of bounded tree-width has bounded
clique-width but not conversely (cliques have clique-width 2 but unbounded tree-width).
It is studied in Courcelle Olariu [9] and originates from [11].
In both case we need a-balanced tree decompositions (or a-balanced algebraic

expressions in the case of clique-width). But every tree has a 3-balanced tree-
decomposition of width at most 2 (this tree-decomposition is not optimal since trees
have tree-width one). Our initial result about balanced trees extends 2rst to arbi-
trary binary trees, and then to all graphs of clique-width bounded by a 2xed
value.
The paper is organized as follow. Section 2 recalls some de2nitions about MS logic

and MS-transductions. These notions are familiar to the reader of the paper [7] in this
journal. Section 3 deals with MS queries and MS-optimization functions on binary trees,
either balanced or not. Section 4 presents the transformation of a binary tree into a
3-balanced one in a framework that is suitable for logical manipulations. Section 5 gives
the application to graphs of bounded clique-width. Section 6 gives some comparison
with others work, and an open question.

B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150 131

2. De�nitions

2.1. Monadic second-order logic

We let R be a 2nite set of relation symbols, each of them, say r, being given with
an arity �(r) in N+. We denote by S(R) the set of 2nite R-structures, i.e., of tuples
of the form S = 〈DS , (rS)r∈R〉 where rS ⊆ D�(r)

S for r ∈R.
For two structures S and S ′ in S(R), we let S ⊆ S ′ (read S is included in S ′) if

DS ⊆ DS′ , and rS ⊆ rS′ for each r in R.
We recall that monadic second-order logic (MS logic for short) is 2rst-order logic

augmented with (uppercase) variables denoting subsets of the domain of the considered
structure, and new atomic formulas of the form x∈X expressing the membership of x
in a set X . We denote by MS(R;X) the set of MS formulas over R with free variables
in X (the set of all individual and set variables.)
A property of structures (or of elements and/or of sets of elements of a structure)

is MS-de:nable if it can be expressed by an MS formula.
We denote by S ≡ S ′ the existence of an isomorphism between two structures S

and S ′. If L; L′ ⊆ S(R), we write L ≡ L′ if every structure of L is isomorphic to a
structure in L′ and vice-versa.

2.2. Graphs

A graph is identi2ed with the {edg}-structure G= 〈VG; edgG〉 where VG is the set of
vertices and edgG ⊆ VG ×VG is a binary relation on VG representing the set of edges.
The MS formula ’(X) with free variable X :

∀x; y(edg(x; y) ∧ x∈X ⇒ y∈X)

expresses that a set of vertices X is closed under the edge relation.
The MS formula (x; y) with free variables x and y:

@(x = y) ∧ ∀X (x∈X ∧ ’(X) ⇒ y∈X)

expresses x and y are distinct vertices and that there is a directed path from x to y.
Let f be a mapping from graphs to positive integers. An f-annotation of a graph

G is a mapping � :VG → {0; 1}∗ such that, for every vertex v, the length of |�(v)| of
the word �(v) is at most f(G).
We say that a mapping g : (P(VG))k → N is computable from an annotation � of G

if there exists an algorithm A by which one can compute f(X1; : : : ; Xk) from the sets
{�(v)=v∈Xi}, i = 1; : : : ; k.
We will use these de2nitions in the following situation: g is 2xed, and de2nable in

MS logic (by letting 0=false, 1= true, we can handle logical properties as mappings
to integers), G ranges over a class of graphs C, an appropriate � can be computed
e!ciently from G where f(G)=O(log(|VG|)) or O(log(|VG|)2) and A is the same for
all graphs in C.

132 B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150

2.3. MS transduction

A transduction of structures is a multivalued mapping: S(R) → S(R′), formally
handled as a mapping f :S(R) → P(S(R′)), where P() denotes the power-set op-
eration, such that S ≡ S ′ implies f(S) ≡ f(S ′). We say that f as above is MS
compatible [10] if there exists a total recursive mapping f#: MS(R′;?) → MS(R;?)
such that S |= f#(’) iN S ′ |= ’ for some S ′ ∈f(S). We call f#(’) the backwards
translation of ’ relative to f.
We now consider transductions de2ned by MS formulas. A parameterless MS-

de:nable transduction f: S(R) → S(R′) is a partial function de2ned as follows, from
k ∈N+ and formulas � in MS(R;?); %1; : : : ; %k in MS(R; {x}); &r; i1 ;:::;in in
MS (R; {x1; : : : ; xn}), for r ∈R; n= �(r); 16 i1; : : : ; in6 k:

(1) f(S) is well de2ned iN S |= �:
(2) Assuming S |= �; then f(S) = T where T is constructed as follows:

• DT = D1 × {1} ∪ · · · ∪ Dk × {k} ⊆ DS × {1; : : : ; k};
• each Di is {x∈DS=S |= %i(x)};
• each relation r of T is de2ned as the union of the sets of tuples of the form
{((x1; i1); : : : ; (xn; in))=S |= &r; i1 ;:::;in(x1; : : : ; xn)}; for all i1; : : : ; in ∈{1; : : : ; k}.

In order to specify k we say that the transduction is k-copying (and noncopying if
k = 1).
Let f be a parameterless MS-de2nable transduction. It is MS-compatible [5,6]. One

can even de2ne a backwards translation f#(’) for MS formulas ’ over R′ with free
variables. If ’ has p free variables, then f#(’) has kp free variables. We refer the
reader to [5,6] for details.
We now extend the previous de2nitions in order to de2ne (by MS formulas) certain

transductions: S(R) → S(R′) that are not deterministic. Let p1; : : : ; pn be n unary
relation symbols, that we will call parameters (p1; : : : ; pn �∈ R∪R′): We let (R :S(R∪
{p1; : : : ; pn}) → S(R) be the mapping that “forgets” the relations p1; : : : ; pn: (It is
actually a noncopying MS-de2nable transduction.)
A transduction f :S(R) → S(R′) is MS-de:nable (we also say that it is an

MS-transduction) if there exists an MS-de2nable subset L of S(R ∪ {p1; : : : ; pn})
and a parameterless MS-de2nable transduction g :L → S(R′) such that:

f(S) = {g(S ′)=S ′ ∈L;(R(S ′) = S}:

It is k-copying or noncopying if g is so. The set {S ∈S(R)=f(S) �= ?} is MS-
de2nable: it is de2ned by the formula ∃X1; : : : ; Xn:�[X1=p1; : : : ; Xn=pn] where �∈MS(R∪
{p1; : : : ; pn};?) de2nes L and Xi=pi denotes the substitution of Xi for pi in �: (We
replace pi(x) by x∈Xi for every i and x.)
An MS-transduction f as above is MS-compatible: for every ’∈MS(R′;?) one

takes f#(’) equal to

∃X1; : : : ; Xn:(� ∧ g#(’))[X1=p1; : : : ; Xn=pn]:

B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150 133

If f :S(R) → S(R′) and g :S(R′) → S(R′′) are two MS-transductions then g ◦f,
the transduction h :S(R) → S(R′′) de2ned by

h(S) = ∪{g(S ′)=S ′ ∈f(S); S ∈S(R)}
is an MS-transduction. It is noncopying if f and g are so. See [5,6].

2.4. An example of MS transduction

Here is an example of an MS-transduction from graphs to graphs that associates
with a directed graph G = 〈VG; edgG〉 the set of its connected components.

We will use one parameter p; we let

L= {〈V; edg; p〉=p has one and only one element}:
The set L is MS (and even 2rst-order) de2nable.
We let g :S({edg; p}) → S({edg}) be the mapping that associates with 〈V; edg; p〉

the graph 〈V ′; edg′〉 such that:

• V ′ is the set of vertices x∈V that are linked in 〈V; edg; p〉 by an undirected 1 path
to some vertices of p,

• edg′ = edg ∩ (V ′ × V ′).

The mapping g is a parameterless noncopying transduction de2ned by the following
formulas (we let k = 1, % denote %1 and &edg denote &edg;1;1;1):

• � is true,
• &edg(x1; x2) is edg(x1; x2),
• %(x) is p(x) ∨ ∃y[p(y) ∧ ∀X (y∈X ∧ (X) ⇒ x∈X)],

where (X) is the formula ∀u; v(u∈X ∧ [edg(u; v) ∨ edg(v; u)] ⇒ v∈X)
Note that (X) is true iN the set X does not intersect properly a connected component

of the considered graph.
Hence g associates with 〈V; edg; p〉 the union of the connected components of G =

〈V; edg〉 containing elements of p.
Hence f(G) = {g(G′)=G′ ∈L;(edg(G′) = G}, because G′ is in L iN p is singleton.

3. Monadic second-order queries on trees

A binary tree is de2ned as a 2nite nonempty subset T of {0; 1}∗ such that for all
u; v (if we denote the pre2x order by 6):

• u∈T and v6 u implies v∈T ;
• u0∈T iN u1∈T .

1 A path such that edges can be traversed in either direction.

134 B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150

The elements of T are called nodes. We call u0 the :rst (left) successor of u, u1 its
second (right) successor. The empty word j is the root of T . A maximal node (for
6) is called a leaf.
We let u ⊥ v mean that neither u6 v nor v6 u.
If T is a binary tree and u∈T , we let T=u= {v∈{0; 1}∗=uv∈T} (if it is nonempty,

it is a binary tree) and T \ u = {v∈T=v6 u or u ⊥ v}. Note that u∈T \ u and that
T \ u is a binary tree.
The height of T is ht(T) = Max {|u|=u∈T} + 1. (The tree reduced to j has

height 1.)
Let F be a 2nite set of binary function symbols, and C be a 2nite set of constants;

we denote by T (F; C) the set of (2nite) terms written with F ∪ C.
It is well known that occurrences of the symbols of F ∪ C in a term t ∈T (F; C)

form a binary tree, denoted by Dom(t) (also called the domain of t; see e.g [4]).
We denote by Lab(t) the mapping from Dom(t) to F ∪ C that associates with each

node of Dom(t) the symbol of which it is an occurrence.
For the term t = f(a; f(a; b)) we have Dom(t) = {j; 0; 1; 10; 11}, Lab(t)(j) =

Lab(t)(1) = f, Lab(t)(0) = Lab(t)(10) = a, Lab(t)(11) = b.
We will rather represent a term in T (F; C) by the relational structure ‖t‖ de2ned as

follows:

‖t‖= 〈Nt; suc1; t(:; :); suc2; t(:; :); (labf; t(:))f∈F∪C〉:
where Nt = Dom(t), suc1; t(u; v) holds iN v= u0, suc2; t(u; v) holds iN v= u1, labf; t(u)
holds iN Lab(t)(u) = f.
We denote by roott the node of Dom(t) corresponding to the root (the word j). By

a leaf of t we mean a leaf of the underlying tree Dom(t). We denote by Lt the set of
leaves of t.
We will consider MS formulas expressing properties of terms t (represented by the

corresponding structures ‖t‖) and of subsets of their sets of leaves. Since MS formulas
do not distinguish between isomorphic structures, ‖t‖ can be replaced by any structure
isomorphic to it.
If t ∈T (F; C) and Z1; : : : ; Zk are subsets of Lt , we let t[Z1; : : : ; Zk]∈T (F; C×{0; 1}k)

be de2ned from t as follows: for each leaf v of t, we replace its label c by (c; 21; : : : ; 2k)
where 2i = 0 if v �∈ Zi and 2i = 1 if v∈Zi.
Let ’(X1; : : : ; Xk) be an MS formula over the relation symbols suc1, suc2, labf

for f∈F ∪ C, with free variables among X1; : : : ; Xk . One can construct a 2nite tree
automaton 2 A’ over F ∪ (C × {0; 1}k) such that for every t ∈T (F; C), for every
Z1; : : : ; Zk ⊆ Lt we have:

t[Z1; : : : ; Zk]∈L(A’)(⊆ T (F; C × {0; 1}k))
iN (‖t‖; Z1; : : : ; Zk) |= ’:

2 All tree automata will be frontier-to-root deterministic and complete. The set of trees accepted by an
automaton A is denoted by L(A).

B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150 135

Proposition 1. Let F be a :nite set of binary function symbols, let C be a :nite set
of constants, and P(X1; : : : ; Xk) be an MS-property of sets of leaves X1; : : : ; Xk . For
every t ∈T (F; C) one can compute in time O(ht(t):|t|) an O(ht(t))-annotation of t
from which one can determine P(Z1; : : : ; Zk) in time O(ht(t):| PZ |) where | PZ | = |Z1| +
· · ·+ |Zk |+ 1

Of course the algorithm that checks whether P(Z1; : : : ; Zk) holds true is constructible
from F; C and an MS formula ’ which speci2es P.

Proof. Let v be a leaf of t, labeled by c∈C. Let (f1; i1)(f2; i2) : : : (fn; in)c be its ac-
cess word representing the access path to v from the root of t; we let f1; : : : ; fn be the
function symbols on this path, and i1; i2; : : : ; in ∈{1; 2} represent the left–right branch-
ing. (We have ip = jp + 1 for each p= 1; : : : ; n if v is the word j1j2; : : : ; jn ∈{0; 1}∗)

For an example, if t = f(g(a; h(g(b; c); c)); a) and v is the (unique) leaf with label
b, then its access word is (f; 1)(g; 2)(h; 1)(g; 1)b.
Let A’ be the 2nite tree automaton constructed from ’ (by the classical result of

Doner, Thatcher, Wright; see for instance Thomas [16]) such that for every t ∈T (F; C)
for all X1; : : : ; Xk ⊆ Lt , we have t[X1; : : : ; Xk]∈L(A’) iN ‖t‖ |= ’(X1; : : : ; Xk).

Let Q be its set of states.
Let us run A’ over t0 = t[∅; : : : ; ∅]. Each node u of t (i.e. of t0) gets one and only

one state q(u)∈Q.
Let v be a leaf of t, with access word: (f1; i1)(f2; i2) : : : (fn; in)c. The corresponding

nodes of the path are, say, u1; u2; : : : ; un; v where u1 is the root, u2 its left or right son
depending on i1, etc.
We now let

I(v) = (f1; i1)q(s3−i1 (u1))(f2; i2)q(s3−i2 (u2))

: : : (fn; in)q(s3−in(un))cq(v);

where we denote by s1(u) (resp. s2(u)) the left (resp. the right) son of u. The states
q(s3−i1 (u1)); : : : ; q(s3−in(un)) are the states of nodes at distance one to the path from
the root of t to v.
Then I(v) is the information of size O(ht(t)) we attach to v (note that n6 ht(t)).

Assume A’ computed once for all, this step takes O(|t|) for running A’ on t and time
O(ht(t):|Lt |) = O(ht(t):|t|) for constructing all words I(v) for v∈Lt .

We claim that for every Z1; : : : ; Zk ⊆ Lt we can determine whether ‖t‖ |=
’(Z1; : : : ; Zk) by processing the words I(v) for all v∈Z1 ∪ · · · ∪ Zk . Let us consider
2rst the simple case where Z1 = {v1}, Z2 = {v2}, Zi = ∅, for i¿ 2.
In order to know whether t′=t[Z1; : : : ; Zk]∈L(A’) we have to run A’ on t′. However,

the run of A’ on t′ diNers from the one on t only on the paths between the root and
v1, and the root and v2. We can compute the states of the run of A’ on these paths of
t′ as follows:

1. Looking at the longest common pre2x of I(v1) and I(v2) we can determine the node
w at which the paths diNer.

136 B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150

2. Using the table of A’ and the states q(s3−ij (uj)) for uj between v1 and w and
between v2 and w, (these states are available from I(v1) and I(v2)) we can determine
the states of the run of A’ on t′ between v1 and w, and v2 and w (w excluded).

3. We obtain the state of w from the two states at the sons of w.
4. By going on the path between w and the root of t′ as in step 2, we obtain the state

at the root of t′ for the run of A’.

And whence the conclusion.
All this can be done in time O(n1 + n2) where ni is the distance of vi to the root.
In the general case we have to do a similar computation with the (at most) | PZ | paths

from the leaves in Z1 ∪ · · · ∪ Zk to the root instead of with the two paths from v1 and
v2 to the root.
In time O(ht(t):| PZ |) we can build the tree of these paths and traverse it bottom up

in order to compute the state at roott′ for the run of A’ on t′.

For the next proposition, we let again ’(X1; : : : ; Xk) be an MS formula with free
variables among {X1; : : : ; Xk} and we let for 2xed t ∈T (F; C) and Zi ⊆ Lt :

Min(’)(Z1; : : : ; Zk−1) = Min {|Zk |=Zk ⊆ Lt; ‖t‖ |= ’(Z1; : : : ; Zk)}:

We call Min(’) an MS-optimization function.

Proposition 2. Let F be a :nite set of binary function symbols, let C be a :nite set
of constants, let f(Z1; : : : ; Zk−1) be an MS-optimization function on trees in T (F; C),
where Z1; : : : ; Zk−1 are sets of leaves. For every t ∈T (F; C) one can compute in time
O(ht(t):log(|t|):|t|) an O(ht(t):log(|t|))-annotation of t from which we can compute
f(Z1; : : : ; Zk−1) in time O(ht(t):| PZ |:log(|t|)) where Z1; : : : ; Zk−1 ⊆ Lt (and as in Propo-
sition 1 we let | PZ |= |Z1|+ · · ·+ |Zk−1|+ 1).

(We denote by |t| the size of t, which is 2|Lt | − 1 since Dom(t) is a binary tree).

Proof. We 2rst consider the case when k = 1, hence where Min(’) has no argument.
We can assume that ‖t‖ |= ∃X:’(X), this can be checked by Proposition 1, hence

we can consider that Min(’) is well de2ned. We can also take Min(’) =∞ if t has
no set of leaves satisfying ’.
We construct A’.
For every Z ⊆ Lt the run of A’ on the subtree of t[Z] issued from a node u of t

depends only on Lt=u ∩ Z , i.e. on the set of leaves in Z that are below u.
For every node u of t we let Mt(u; q) be the minimum cardinality of Z ⊆ Lt=u such

that q(u) = q for the run of A’ on t[Z]. We take it equal to ∞ if no such Z do
exist.
Hence Min(’) =Min {Mt(roott ; q)=q is an accepting state of A’}.
The values Mt(u; q) can be computed bottom-up in the tree t as follows.
If u is a leaf then Mt(u; q) is 0, 1 or ∞ and this value can be obtained from the

table of A’ and the label c of u.

B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150 137

If u is an internal node labeled by f we have

Mt(u; q) =Min




Mt(s1(u); q1) +Mt(s2(u); q2)=

we have in A’ a transition

(q1; q2) → q for symbol f




: (1)

Hence, we can compute Min(’) by a bottom-up traversal of t.
For each node u we compute the total mapping: Q → N∪{∞} (with 2nite domain),

that associates Mt(u; q) with each q∈Q. The size of the piece of information associated
to each node is thus at most |Q|:log(|t=u|)6 |Q|:log(|t|). The time is thus O(|t|:log(|t|))
for 2xed formula ’ and automaton A’. We can consider this computation as that of an
in2nite tree automaton with set of states Q× (N∪ {∞|}), and transition table de2ned
by (1).
We consider now the general case of ’(X1; : : : ; Xk). We let A’ be the automaton

associated with this formula. We let t ∈T (F; C). For every Z1; : : : ; Zk−1, every node
u of t we let Mt; PZ(u; q) (where PZ = (Z1; : : : ; Zk−1)) be the minimum cardinality of
Z ⊆ Lt=u such that the run of A’ on t[Z1; : : : ; Zk−1; Z] yields q as state of u. We take
∞ as value if no such Z do exist.
The values Mt; PZ(u; q) satisfy the same computation rules as in (1) above. The de-

pendence on PZ is handled as in Proposition 1.
We 2rst compute the values Mt; P∅(u; q) for all u and q (where P∅= (∅; ∅; : : : ; ∅)). We

store them along access words of leaves as in Proposition 1.
For PZ = (Z1; : : : ; Zk−1), Z1 ∪ · · · ∪ Zk−1 �= ∅, the values of Mt; PZ(u; q) diNer from

those of Mt; P∅(u; q) only at the nodes u on the paths between the root and the leaves
in Z1 ∪ · · · ∪ Zk−1. These new values can be obtain from the pieces of information
attached to the leaves and the transition table of A’. Since they have total size at
most O(ht(t):log(|t|)) (instead of O(ht(t)) as in Proposition 1) we use a global time
O(ht(t):| PZ |:log(|t|)).
Remark. We will be interested in classes of balanced trees, i.e., in classes of trees t
such that ht(t) = O(log(|t|)). In these cases we get for Proposition 1 processing time
O(|t|:log(|t|)) and query time O(log(|t|)| PZ |). For Proposition 2 we get processing time
O(|t|:log2(|t|)) and query time O(log2(|t|)| PZ |).
In many cases we will consider queries such that each set Zi consists of a single

vertex. In these cases, the factor | PZ | disappears in the evaluation of query times.
An example is the distance function on a tree or a graph, that is Min(’) where

’(Z1; Z2; Z3) means: “Z1 is {x1}, Z2={x2}, Z3 induces a connected subgraph containing
x1 and x2, for some x1 in Z1 and x2 in Z2”.

4. Balanced trees and terms

It is known (see [1]) that every tree which has tree-width at most 1, also has a tree
decomposition of width 2 (which is thus not optimal regarding width) and of height
O(log(n)), where n is the number of nodes of the tree.

138 B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150

We give a proof of this result which 2ts our purpose to deal with MS formulas. We
2rst give a few lemmas for binary trees, and then we apply them to terms. We recall
that binary trees are de2ned as subsets T of {0; 1}∗.

From the de2nitions we have, if u∈T and u is not a leaf:

T = T \ u ∪ u:T=u0 ∪ u:T=u1 hence

|T |= |T \ u|+ |T=u0|+ |T=u1| (2)

since the sets T \ u, u:T=u0 and u:T=u1 are disjoint. We recall that u∈T \ u and that
T \ u is T minus the strict descendants of u.

Lemma 1. Let T be a tree with n nodes, n¿ 3, n= 2p+ 1, let l∈T be an internal
node (i.e., a node that is not a leaf).

(i) l has a successor l′ such that |T=l′|6p;
(ii) If |T \l|¿p, there is a node s such that j6 s¡ s′6 l, where s′ is the successor

of s on the path from the root j to l, |T \ s|6p and |T=s′|6p+ 1

Proof. (i) We have by (2) 2p + 1 = |T \ l| + |T=l0| + |T=l1|. Hence at least one of
|T=l0| and |T=l1| is less than or equal to p.
(ii) We let s be the longest pre2x of l such that |T \ s|6p. Hence s¡ l, and we

let s′ be the successor of s such that s′6 l and s′′ be the other successor. We have
|T \s′|¿p and 2p+1=|T \s′|+|T=s′|−1. Hence |T=s′|6 2p+1+1−(p+1)=p+1.

De�nition 1. Let T be a binary tree as in Lemma 1 and l be one of its internal nodes
then:

1. If |T \ l|6p we let Cut(T; l) = l, Main(T; l) = T=l′ where l′ is a successor (say
the 2rst one) such that |T=l′|6p; we let Rem(T; l) = T=l′′ where l′′ is the other
successor and Ctx(T; l) = T \ l.

2. If |T \l|¿p we let Cut(T; l) be the node s de2ned by (ii) of Lemma 1, Main(T; l)=
T=s′, Rem(T; l) = T=s′′ where s′′ is the other successor of s and Ctx(T; l) = T \ s.

In both cases we say that l is ‘good’ if |Rem(T; l)|6p+ 1.

Remark. In both cases, |Ctx(T; l)|6p, |Main(T; l)|6p+1 and Cut(T; l) is an internal
node.

Lemma 2. Let T be a binary tree with at least 3 nodes. It has a good node l.

Proof. One can 2nd a longest s∈T such that |T \s|6p. Let s′ and s′′ its two succes-
sors: |T \ s′|¿p hence |T=s′|6p+1 (as in case (ii) of Lemma 1) and |T=s′′|6p+1
with same argument.
Hence we take l= s as ‘good’ node. It satis2es case 1 of De2nition 1.

We now apply these lemmas to terms in T (F; C) where we recall that all symbols
in F are binary.

B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150 139

The idea is as follows. Let t ∈T (F; C) and T =Dom(t) be the corresponding binary
tree. Let s∈Dom(t) be an internal node. We can write t=t1[t2=u] where T \s=Dom(t1),
T=s=Dom(t2), t1 ∈T (F; C ∪{u}) where u is a special nullary symbol with s as unique
occurrence, and t1[t2=u] denotes the result of the substitution of t2 for u in t1. To
complete the de2nition of t1 and t2 we let

Lab(t1)(x) = Lab(t)(x) if x∈T \ s; x �= s;

Lab(t1)(s) = u;

Lab(t2)(x) = Lab(t)(sx) if x∈T=s:

(We recall that s; x are words.)
We de2ne a context as a term in T (F; C ∪ {u}) with one and only one occurrence

of u. The trivial context is u denoted by Id (we think of Id as denoting the identity
function). We denote by Ctxt(F; C) the set of these terms.
On contexts we have the following operations: if c∈Ctxt(F; C), t ∈T (F; C) and

f∈F then f(c; t)∈Ctxt(F; C) and f(t; c)∈Ctxt(F; C).
We let also c ◦ t ∈T (F; C) denote c[t=u] for c∈Ctxt(F; C) and t ∈T (F; C) and

c ◦ c′ ∈Ctxt(F; C) denote c[c′=u] for c; c′ ∈Ctxt(F; C).
We can thus build terms with the operations of F∪{◦} and the constants of C∪{Id}.

De�nition 2. We let eval :T (F ∪ {◦}; C ∪ Id) → T (F; C) ∪ Ctxt(F; C) be the partial
function de2ned as follows:

• eval(Id) = u∈Ctxt(F; C),
• if c∈C then eval(c) = c∈T (F; C),
• if f∈F , sp1 and sp2 belong to T (F ∪ {◦}; C ∪ {Id}) then

eval(f(sp1; sp2)) = f(eval(sp1); eval(sp2)). If both eval(sp1) and eval(sp2) are
in T (F; C) then eval(f(sp1; sp2)) is in T (F; C), if one and only one of them is in
Ctxt(T; F) then eval(f(sp1; sp2)) is in Ctxt(F; C), otherwise it is not de2ned (sp1

and sp2 are then both contexts),
• if sp1 and sp2 belong to T (F ∪ {◦}; C ∪ {Id}), eval(sp1) = c is in Ctxt(F; C) and

eval(sp2) = t then eval(sp1 ◦ sp2) is c[t=u]. The object c[t=u] is in Ctxt(T; F) if
t ∈Ctxt(T; F), it is in T (F; C) if t ∈T (F; C).

We let SPE(F; C) denote the set of special terms, i.e. of those for which eval is well
de2ned. See the Fig. 1 for an example of a special term, and Fig. 2 for its evaluation.
By the size of a term, we mean the number of nodes of its underlying tree.

Theorem 1. For every term t ∈T (F; C) or every context c∈Ctxt(F; C) of size n =
2p+ 1, one can build a term t′ ∈ SPE(F; C) that is equivalent to t or to c, i.e. such
that eval(t′) = t (or c), and of height at most 3 log(p) + 3 for the case of a term
and 3 log(p) + 5 for the case of a context. 3 This term can be constructed in time
O(|t| log(|t|)).

3 Logarithms are always in base 2.

140 B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150

Fig. 1. A special term.

Fig. 2. Evaluation of the special term of Fig. 1.

Proof. We will make the proof by induction on p simultaneously for terms and con-
texts.
If p6 1, the result holds trivially.
Let t be a term or a context of size 2p+ 1, we let l be:

• a good node of t if t is a term (we use Lemma 2 to 2nd it)
• the node which is the occurrence of u if t is a context.

Let s be the node Cut(t; l), then t = c′ ◦ t′ where Dom(c′) = T \ s; then t′ = f(t1; t2)
for some f∈F where either

Dom(t1) =Main(t; l) and

Dom(t2) = Rem(t; l)

or vice-versa (see De2nition 1).

B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150 141

By using induction we have special terms c′, t1, t2, respectively, equivalent to c, t1
and t2 satisfying the conditions on heights of the theorem.
We let then

Pt = c′ ◦ f(t1; t2)

and we claim it satis2es the desired conditions.
It is clear that eval(Pt) = t.
If t is a term, then by the de2nition we are in the good case, so |c′|, |t1| and |t2|

are at most p+ 1. So by induction we have:

• ht(c′)6 3 log(p=2) + 5 = 3 log(p) + 2,
• ht(t1)6 3 log(p=2) + 3 = 3 log(p),
• ht(t2)6 3 log(p=2) + 3 = 3 log(p).

So ht(Pt)6Max(3 log(p) + 2; 3 log(p) + 1) + 1
We have

ht(Pt)6 3 log(p) + 3:

If t is a context, then we only know that |c′|6p, |t1|6p+1 and t26 2p+1 (or
vice-versa). So by induction we have:

• ht(c′)6 3 log(p=2) + 5 = 3 log(p) + 2,
• ht(t1)6 3 log(p=2) + 3 = 3 log(p),
• ht(t2)6 3 log(p) + 3.

So ht(Pt)6Max(3 log(p) + 2; 3 log(p) + 1; 3 log(p) + 3 + 1) + 1 = 3 log(p) + 5.
For the time complexity of the construction, we note that we can 2nd the cut node

in time O(|t|), and that we can apply again the same algorithm to three trees of size
at most |t|=2 (or if we are not in the good case, then the bigger subtree will be in
the good case, and we will have to 2nd another cut node (in time O(|t|)) and we will
have to apply the same algorithm to 5 subtrees of size at most |t=2|). So the total time
is in O(|t| log(|t|)).

We now consider the mapping eval from the logical point of view. We let
SPE(F; C)term be the set of special terms that evaluate to terms (and not to contexts).

Theorem 2. The mapping eval : SPE(F; C)term → T (F; C) is an MS-transduction.

Proof. We recall that a term t is handled as a relational structure ‖t‖. Hence we need
prove that:

(1) {‖t‖=t ∈ SPE(F; C)term} is MS-de2nable
(2) the mapping ‖t‖ �→ ‖eval(t)‖ (for t ∈ SPE(F; C)term) is an MS-transduction.

We 2rst consider the second point.

142 B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150

We will express this mapping as the composition of two MS-transductions:

‖t‖ �→ S(t)

and

S(t) �→ ‖eval(t)‖;
where S(t) is an intermediate structure, intuitively a tree with certain edges labeled by
j that we will contract in the 2nal step to get ‖eval(t)‖.
Let t ∈ SPE(F; C)term. Since t ∈T (F ′; C′) where F ′=F ∪{◦} and C′=C ∪{Id} the

structure representing it is

‖t‖= 〈Nt; suc1; t ; suc2; t ; (labf; t)f∈F′∪C′〉:
We let Ct ⊆ Nt be the set of nodes w such that eval(t=w) is a context. Since t

evaluates to a term, the root is not in Ct . We let S(t) be the following structure:
S(t) = 〈D; suc′1; t ; suc

′
2; t ; j; (labf; t)f∈F∪C〉 where j is a new binary relation and we let

D = Nt ∪ (Ct × {i}) (i is a label; not an integer);

suc′1; t = suc1; t ∩



 ⋃

f∈F

labf; t


× Nt


 ;

suc′2; t = suc2; t ∩



 ⋃

f∈F

labf; t


× Nt


 :

Intuitively, each node w in Ct is “duplicated” and its copy is (w; i) (where i means:
“input to the context t=w”).
Note that relations lab◦; t and labId; t do not exist any longer in S(t).
The binary relation j is de2ned as follows: j(x; y) holds iN

(i) either suc1; t(x; y) and lab◦; t(x) hold,
(ii) or x = (x′; i) for some x′ ∈Ct and z ∈Nt such that lab◦; t(z), suc1; t(z; x′) and

suc2; t(z; y) hold,
(iii) or x= (x′; i), y= (y′; i) for some x′; y′ ∈Ct such that labo; t(y′) and suc2; t(y′; x′),
(iv) or x=(x′; i), y=(y′; i) for some x′; y′ ∈Ct and j∈{1; 2} such that labf; t(y′) and

sucj; t(y′; x′) hold,
(v) or y′ = (x; i) and x∈Ct and labId; t(x) holds.

All cases of the de2nition of the relation j are illustrated in Figs. 3 and 4. Here are
a few comments about those 2gures:

• the edges marked 1; 2 correspond to pairs satisfying suc1, suc2, respectively, in Fig.
3 and satisfying suc′1, suc

′
2 in Fig. 4,

• a new element (x; i) for x∈Ct is represented by , close to the element x,
• the labels ◦ and Id do not exist any longer in Fig. 4.

B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150 143

Fig. 3. The structure ‖t‖ for a special term t.

Fig. 4. The structure S(t) for t as in Fig. 3.

144 B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150

Fig. 5. The 2nal term for Fig. 3.

In order to prove that the transformation that maps ‖t‖ to S(t) is an MS-transduction,
it is enough to check that the set Ct is MS-de2nable in ‖t‖.

This is true since a node w of Nt belongs to Ct iN there is in ‖t‖ a path from w to

a leaf labeled by Id, that does not use any edge x 1→y where x is labeled by ◦.
Since the notion of a path is MS-de2nable this property of w can be expressed by

an MS-formula.
Furthermore, if t ∈T (F ∪ {◦}; C ∪ {Id}) then t ∈ SPE(F; C)term iN

(i) the root is not in Ct ,
(ii) there is no node labeled by f∈F with its two successors both in Ct .

From the above remark this property is MS-expressible.
Hence the mapping ‖t‖ �→ S(t) for t ∈ SPE(F; C)term is an MS-transduction. It re-

mains to prove that the mapping S(t) �→ ‖eval(t)‖ is also a MS-transduction.
But this mapping is nothing but the simultaneous contraction of all j-edges, which

is an MS-transduction. The two successor relations are suc′1 and suc′2 (see Fig. 5).

5. E&cient implementation of graph queries

We consider loop-free simple undirected graphs. Graphs with loops and directed
edges can be considered similarly.
We 2rst review the graph expressions upon which the complexity measure named

clique-width is de2ned.
Let C be a countable set of labels,

B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150 145

De�nitions.

• A labeled graph is a triple G = (V; E; :) where V is the set of vertices, E is the
edge relation and : is a mapping from V to C. A labeling function : is denoted
by :(G) whenever the revelant graph G must be speci2ed. We say that G is
C-labeled if C is a 2nite subset of C and :(G)(V) ⊆ C.

• If G1=(V1; E1; :1) and G2=(V2; E2; :2) are two C-labeled graphs with V1∩V2=∅
then G = G1 ⊕ G2 is the labeled graph G = 〈V; E; :〉 de2ned by:
◦ V = V1 ∪ V2,
◦ E = E1 ∪ E2,
◦ if v∈V1 then :(v) = :1(v),
◦ if v∈V2 then :(v) = :2(v).

• If G = (V; E; :) is a C-labeled graph, p; q∈C then addp;q(G) is the C-labeled
graph G′ = (V; E′; :) with

E′ = E ∪ {{v; w}=v; w∈V; v �= w; :(v) = p and :(w) = q}:
• If G = (V; E; :) is a C-labeled graph, p; q∈C then renp→q(G) is the C-labeled

graph G′ = (V; E; :′) with for all v, :′(v) = :(v) if :(v) �= p, and :′(v) = q if
:(v) = p.

• if p∈C we denote cp the C-labeled graph G=({v}; ∅; :) such that :(v)=p (for
any object v).

• A graph (V; E) is considered as labeled with all vertices having the same label.

We now de2ne the graphs of clique-width at most k as those that can be constructed
by successive applications of the operations ⊕; addp;q; renp→q where p; q are in a set
C of labels of size at most k.
We denote by val(t) the graph which is the result of the evaluation of a term t over

the operations and constants ⊕; addp;q; renp→q; cp . It is not a loss of generality to as-
sume that C ⊆ {1; : : : ; k}. We denote by Fk the set {⊕; addp;q; renp→q=p; q∈{1; : : : ; k};
p �= q} and by Ck the set {c1; c2; : : : ; ck}. Hence cwd(G)6 k iN G = val(t) for some
t ∈T (Fk; Ck).
Basic properties of graphs of clique-width at most k can be found in Courcelle and

Olariu [9].
We cannot apply directly the results of the previous section to terms in T (Fk; Ck)

because some of the operations (namely addp;q; renp→q) are unary.
However we can replace the set {⊕; addp;q; renp→q; cp=p; q∈C;p �= q} by a 2-

nite set of binary operations and constants, built by combining these operations and
constants, and that de2ne the same graphs.
We do that as follows, for each 2xed 2nite set C.
For every composition ; of unary operations (i.e. operations of the forms addp;q

and renp→q) we introduce a new binary operation say ⊕; de2ned by:

G1 ⊕; G2 = ;(G1 ⊕ G2):

Although there are in2nitely many sequences ;, the graphs ;(cp) have a single
vertex, hence each of them is actually of the form cq for some q.

146 B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150

Furthermore it follows from Lemma 3 below that there are only 2nitely many dif-
ferent operations ⊕;. Hence, the operations de2ning graphs of clique-width at most k
can be replaced by 2nitely many binary operations de2ning exactly the same graphs
(together with the constants cp).

Lemma 3. There are :nitely many operations ⊕; for each :xed set C of labels.

Proof. Let PC = { Pc=c∈C}. Let GC be the labeled graph with PC as set of vertices,
no edge and each vertex Pc has label c. Let ; and ;′ be two compositions of unary
operations such that ;(GC) = ;′(GC). Then for every graph G, ;(G) = ;′(G), by the
following fact:

Fact 1. Let H=(V; E; :) be a C-labeled graph, ; be a composition of unary operations,
let H ′ = (V; E′; :′) = ;(H) and (PC; E;; :;) = ;(GC) then:

• :′(x) = c i> :(x) = c′ and :;(c′) = c,
• (x; y)∈E′ i> (x; y)∈E or :(x) = c, :(y) = c′ and (Pc; c′)∈E;, for some c; c′ ∈C,

c �= c′.

Proof. This is true if ;= Id, and one can easily see that if this is true for a particular
; then it is true for all compositions of the forms addp;q ◦ ; and renp→q ◦ ;

As there are only 2nitely many labeled graphs of size |C|, there are only 2nitely
many diNerent functions obtained by composition of unary operations among addp;q

and renp→q, for p; q∈C.
We let F ′

k denote the 2nite set of operations ⊕; de2ned as above for C=Ck . Hence
val(T (Fk; Ck)) = val(T (F ′

k ; Ck)).

5.1. Main theorems

Theorem 3. Let P(X1; : : : ; Xn) be an MS-property of graphs. For every graph G of
cwd at most k, given as val(t) for some t ∈T (Fk; Ck) one can compute in time
O(s:log(s)) where s = |VG| an O(log(s))-annotation of G from which one can com-
pute in time O(log(s):| PZ |) whether P(Z1; : : : ; Zn) holds in G (where | PZ | = |Z1| + · · ·
+ |Zn|+ 1)

Let P be described by the MS-formula ’(Z1; : : : ; Zk). Of course as in Proposition 1
of Section 3 the algorithm that checks whether ‖G‖ |= ’(Z1; : : : ; Zk) is the same for
all graphs of clique-width k and is constructible from ’ and k

Proof. From the given term t ∈T (Fk; Ck) such that val(t) = G we construct t′ ∈
T (F ′

k ; Ck) such that val(t′) = val(t).
Note that all operations in F ′

k are binary.
We can construct a balanced term t′′ in SPE(F ′

k ; Ck) such that eval(t′′) = t′ by
applying Theorem 1 to t′.

B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150 147

Since val and eval are MS-transductions, so is their composition [6]. Hence every
graph G of clique-width at most k is the image of a balanced term t′′ belonging to
SPE(F ′

k ; C
′
k) under an MS-transduction.

Let us now consider ’. By backwards translation the property it de2nes can be
expressed by an MS-formula ’′′ on t′′. Then we build labels for the leaves by using
Proposition 1. As each leaf of t′′ corresponds to a vertex of G and the height of t′′ is
O(log(s)), the property holds directly.

As in Section 3 there is another result:

Theorem 4. Let f(X1; : : : ; Xn−1) be an MS-optimization function on graphs. For every
graph G of clique-width at most k, given as val(t) for some t ∈T (Fk; Ck), one can
compute in time O(log2(s):s) where s = |VG| an O(log2(s))-annotation of G from
which one can compute f(Z1; : : : ; Zn−1) in time O(| PZ |:log2(s)) (where as in Theorem
3 we let | PZ |= |Z1|+ · · ·+ |Zn−1|+ 1).

The proof is similar to the previous one, but uses Proposition 2.

5.2. Monadic second-order logic with edge set quanti:cations

In an MS formula expressing a property of a graph G de2ned as a structure 〈VG;
edgG〉, the set variables necessarily denote sets of vertices.
One might need to use variables denoting sets of edges, and this is actually necessary

for expressing by an MS formula Hamiltonicity (to take only this example).
We can also represent an undirected graph G by the structure I(G)=〈VG∪EG; incG〉

where EG is the set of edges and incG is the binary relation such that incG(e; x) holds
iN e is an edge and x is one of its vertices. Hence I(G) can be seen as a directed
bipartite graph sometimes called the incidence graph of G.
Monadic second-order logic is more expressive if the considered graphs G are rep-

resented by I(G) rather than as in the previous section. We will note this variant by
MS2.
However, the mapping that associates I(val(t)) with t ∈T (Fk; Ck) is not an MS

transduction. Hence Theorems 3 and 4 do not extend to MS2 formulas. However, if
we consider graphs of bounded tree-width (as opposed to bounded clique-width) we
obtain the following result (graphs are simple and undirected).

Theorem 5. Let P(X1; : : : ; Xn) be a graph property, and f(X1; : : : ; Xn) an MS-optimi-
zation function both expressed by MS-formulas over the relation symbol inc, and let
k ∈N.

1. For each graph G of tree-width at most k and of size s, one can compute in
time O(s:log(s)) an O(log(s))-annotation of the graph I(G) from which one can
determine P(Z1; : : : ; Zn) in time O(log(s):| PZ |) where | PZ |= |Z1|+ · · ·+ |Zn|+ 1.

2. One can compute in time O(s:log2(s)) an O(log2(s))-annotation of the graph I(G)
from which one can compute f(Z1; : : : ; Zn−1) in time O(| PZ |:log2(n))

148 B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150

Proof (sketch). The proof is an immediate adaptation of those of Theorems 3 and 4
based on the following two facts:
First we need not be given a tree-decomposition of G (or an algebraic term rep-

resenting it) because it can be constructed in time O(s) (for 2xed k) where s is the
number of vertices of G (we also recall that the number of edges is O(s) for G of
tree-width at most k, since we consider simple graphs) see [1].
Second, graph operations can be de2ned (see [6]) so that the mapping from a term

t to the structure I(G) where G is the value of this term is an MS transduction. Hence
the proofs of Theorems 3 and 4 go through. We omit further details.

5.3. The special case of distance

The distance between two vertices is an MS de2nable optimization function, hence
the last theorem is applicable to it. However, in some cases, an information of size
O(log(n)) attached to each vertex is enough.
Here is one of these cases.
We 2x an integer k. We consider graphs G built from “basic” connected graphs H

with at most k vertices, each of them having two distinguished distinct vertices called
the begin and the end vertices denoted, respectively, by b(H) and e(H). Then G is a
connected graph consisting of m such graphs H1; : : : ; Hm, where e(Hi)=b(Hi+1) for all
i=1; : : : ; m− 1 and these graphs are otherwise disjoint. Hence, G is a sort of chain of
connected graphs, each of size at most k. We let b(G) = b(H1).
The key observation is that for a vertex x in Hi (where i is minimal so) and y in

Hj, i¡ j, x �= y then d(x; y) = d(y; b(G))− d(e(Hi); b(G)) + d(x; e(Hi)).
Hence, it is enough to store, for each vertex x, its distance to b(G), the distance

d(e(Hi); b(G)), and its distances to the at most k vertices in the element H of the chain
to which it belongs. This can be done using for each vertex a piece of information of
size O(log(n)) where n is the number of vertices of G.
A new result by Gavoille [12] shows that for graphs of pathwidth 2 (such graphs have

bounded clique-width) we may need space O(log(n)2), hence that even for distance,
Theorem 4 is optimal. The graphs used to prove this fact are built as follows: the
vertices are 1; 2; : : : ; n, 1′; : : : ; p′; and the edges link i and i + 1, j′ and j′ + 1, and
i and f(i)′ (where f is a partial, strictly increasing mapping from {1; 2; : : : ; n} to
{1; 2; : : : ; p}) for i∈{1; : : : ; n} and j∈{1; : : : ; p}. The proof transfers a similar result
for trees obtained in [13].

6. Conclusion

We 2rst compare our results with those of Hagerup [14] who extends previous results
by Chaudhuri and Zaroliagis [2,3] concerning querying distances in graphs. As we do
in this paper, he considers MS queries.
His work diNers from our in three respects. First, he considers graphs of bounded

tree-width, whereas we consider graphs of bounded clique-width, so that we cover
more classes of graphs.

B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150 149

Second, he builds a “global data structure”, as we do in Propositions 1 and 2 of
Section 3, whereas our ultimate goal is to distribute information on all vertices. We do
not see how his global information can be distributed on vertices, as we do in Section
5.1.
This may explain, at least partially, the fact that his data structure is more e!cient

than ours: its initialization time is in O(nIk(n)) where k¿ 1 is an arbitrary constant,
and Ik are functions de2ne as:

• I0(n) = �n=2� for n∈N
• Ik(n) =Min {i∈N=I (i)k−1(n) = 1} for k¿ 1 and n¿ 0

where I (i)k−1 denote the i-fold iteration of Ik−1.
Third, his method is implementable by a parallel algorithm to build the data structure,

and makes it possible to handle modi2cations of the considered graph.

By Theorems 1, 2 and Lemma 3 we have the following:
For every k there exists a 2nite set of labels =k and an MS-transduction > from

binary trees with nodes labeled in =k (denoted T (=k)) to graphs such that:

(1) >(T (=k)) is the set of graphs of cwd6 k,
(2) every graph of cwd6 k is the value under > of a 3-balanced tree in T (=k).

It follows from the proof of Theorem 5.8 of [6] that there exists a function f(k)
such that every graph G of cwd6 k is val(t) for some t ∈T (F ′

f(k); Cf(k)) (cf. Section
5 for F ′

k) such that t is 3-balanced.

Question. Find a construction of t not using the logical tools of [6] that could give a
good (if not optimal) function f.

References

[1] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209
(1998) 1–45.

[2] S. Chaudhuri, C.D. Zaroliagis, Shortest paths in digraphs of small treewidth, Part II: optimal parallel
algorithms, Theoret. Comput. Sci. 203 (1998) 205–223.

[3] S. Chaudhuri, C.D. Zaroliagis, Shortest paths in digraphs of small treewidth, Part I: sequential
algorithms, Algorithmica 27 (2000) 212–226.

[4] B. Courcelle, Fundamental properties of in2nite trees, Theoret. Comput. Sci. 25 (1983) 95–169.
[5] B. Courcelle, Monadic-second order graph transductions: a survey, Theoret. Comput. Sci. 126 (1994)

53–75.
[6] B. Courcelle, The expression of graph properties and graph transformations in monadic second-order

logic, in: G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by Graph Transformation,
Foundations, Vol. I, World Scienti2c, Singapore, 1997, pp. 313–400 (Chapter 5).

[7] B. Courcelle, J. Makowsky, U. Rotics, On the 2xed parameter complexity of graph enumeration
problems de2nable in monadic second-order logic, Discrete Appl. Math. 108 (2001) 23–52.

[8] B. Courcelle, M. Mosbah, Monadic second-order evaluations on tree-decomposable graphs, Theoret.
Comput. Sci. 109 (1993) 49–82.

150 B. Courcelle, R. Vanicat / Discrete Applied Mathematics 131 (2003) 129–150

[9] B. Courcelle, S. Olariu, Upper bounds to the clique-width of graphs, Discrete Appl. Math. 101 (2000)
77–114.

[10] B. Courcelle, I. Walukiewicz, Monadic second-order logic, graph coverings and unfoldings of transition
systems, Ann. Pure Appl. Logic 92 (1998) 35–62.

[11] J. Engelfriet, G. Rozenberg, Node replacement graph grammars, in: G. Rozenberg (Ed.), Handbook
of Graph Grammars and Computing by Graph Transformation, Foundations, Vol. I, World Scienti2c,
Singapore, 1997, pp. 1–94 (Chapter 1).

[12] C. Gavoille, Private communication and paper in preparation.
[13] C. Gavoille, D. Peleg, S. PUerennes, R. Raz, Distance labeling in graphs, in: Proceedings of the 12th

Symposium on Discrete Algorithms (SODA), ACM-SIAM, 2001, pp. 210–213.
[14] T. Hagerup, Dynamic algorithms for graphs of bounded treewidth, Algorithmica 27 (2000) 292–315.
[15] J. Spinrad, Implicit graph representation, Book in preparation, http://www.vuse.vanderbilt.edu/

∼spin/persinfo.html.
[16] W. Thomas, Automata on in2nite objects, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer

Science, Elsevier Science Publishers., Amsterdam, 1990, pp. 133–191 (Chapter 4).

http://www.vuse.vanderbilt.edu/~spin/research.html
http://www.vuse.vanderbilt.edu/~spin/research.html

	Query efficient implementation of graphs of bounded clique-width
	Introduction
	Definitions
	Monadic second-order logic
	Graphs
	MS transduction
	An example of MS transduction

	Monadic second-order queries on trees
	Balanced trees and terms
	Efficient implementation of graph queries
	Main theorems
	Monadic second-order logic with edge set quantifications
	The special case of distance

	Conclusion
	References

