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By considering graphs as logical structures, one can express formally their prop-
erties by logical formulas. We review the use of monadic second-order logic for
expressing graph properties, and also, graph transformations. We review the inti-
mate relationships of monadic second-order logic and context-free graph grammars.
‘We also discuss the definition of classes of graphs by forbidden configurations.

Introduction

By considering graphs as logical structures, one can express formally their properties
by logical formulas. One can thus describe classes of graphs by formulas of appropriate
logical languages expressing characteristic properties. There are two main motivations for
doing this : the first one, originating from the work by Fagin [39], consists in giving logical
characterizations of complexity classes ; the second one consists in using logical formulas
as finite devices, comparable to grammars or automata, to specify classes of graphs and to
establish properties of such classes from their logical descriptions.

We shall only consider here the second of these motivations. The ideal language is in this
respect monadic second-order logic, as we shall demonstrate. It is crucial for establishing
“easily” results like this one :

the set of planar graphs belonging to a HR set of graph¢® is HR,
or this one :
the set of Hamiltonian graphs belonging to a HR set of graphs is HR,

by essentially the same proof, using the fact that planarity and Hamiltonicity can both be
described by MS (Monadic Second-order) formulas. These two results do not concern logic,
but their proofs use logic as a tool. The deep reason why MS logic is so crucial is that it
replaces for graphs (and for the development of the theory of context-free graph grammars)
the notion of a finite automaton which is very important in the theory of formal languages.
It “replaces” because no convenient notion of finite automaton is known for graphs. The
notion of a transformation from words or trees to words or trees is also essential in language
theory (Berstel [4], Raoult [54]). These transformations are usually defined in terms of finite
automata, that produce an output while traversing the given word or tree. Since we have

“A HR set of graphs is a set of finite graphs generated by a Hyperedge Replacement graph grammar
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no notion of finite graph automaton, we cannot define graph transformations in terms of
automata. However, we can define such transformations in terms of M S-formulas. We call
them definable transductions. “Definable” refers to logic and “transduction” to the way
transformations of words and trees are usually named.

MS logic is thus an essential notion in the extension of formal language theory to graphs,
hypergraphs and related structures. Another important notion is that of a graph (or hy-
pergraph) operation. By using it, one can define context-free sets of graphs as components
of least solutions of systems of equations (without using any graph rewriting rule) and rec-
ognizable sets of graphs (without using any notion of graph automaton). Context-free and
recognizable sets can thus be defined and investigated in the general framework of Universal
Algebra. They instanciate immediately to graphs and hypergraphs of all kinds as soon as
appropriate operations on these structures are defined. Furthermore the notion of recogniz-
ability establishes the link between Logic and Universal Algebra because every MS-definable
set of graphs is recognizable : this result extends the result by Biichi saying that every MS-
definable set of finite words is as regular language.

This chapter is organized as follows. Section 1 reviews relational structures, first-order
logic, second-order logic and monadic second-order logic. Some basic lemmas helping in the
construction of logical formulas are proved. Section 2 introduces several possible representa-
tions of graphs, hypergraphs and partial orders by relational structures, and discusses how
the choice of a representation affects the expressive power of the three considered logical
languages. Section 3 discusses the expressibility in MS logic of the finiteness of a set and
of the parity of its cardinality when it is finite. Section 4 introduces definable transduc-
tions, reviews their basic properties and their application to the comparison of the different
relational structures representing partial orders, graphs and hypergraphs reviewed in Sec-
tion 2. Section 5 defines the hyperedge replacement (HR) hypergraph grammars and the
vertex replacement (VR) graph grammars, in terms of systems of recursive set equations, by
means of appropriate operations on hypergraphs and graphs respectively. Logical charac-
terizations of the HR sets of hypergraphs and of the VR sets of graphs in terms of definable
transductions are also given. These characterizations yield the stability of the corresponding
classes under the relevant definable transductions. Section 6 introduces the recognizability
of sets of graphs and hypergraphs. This notion is based on finite congruences relative to the
operations on graphs and hypergraphs introduced in Section 5. In general, the intersection
of an equational and a recognizable set is an equational set. (An instance of this result is
the fact that the intersection of a context-free language and a regular one is context-free).
The major result of this section says that a monadic second-order definable set of graphs or
hypergraphs is recognizable. This result yields in particular the two results mentioned at
the beginning of the introduction concerning HR sets of graphs, planarity and Hamiltonic-
ity. Section 7 deals with the logical aspect of the definition of sets of graphs by forbidden
minors. Kuratowski’s Theorem stating that a graph is planar iff it does not contain any
of the two graphs K5 and K33 as a minor is a well-known example of such a definition.
By using deep results by Robertson and Seymour, we relate definitions by forbidden minors
with definitions by MS formulas and/or by HR grammars.
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1 Relational structures and logical languages

In order to express graph properties by logical formulas, we shall represent graphs by re-
lational structures, i.e., by logical structures with relations only (without functions). We
shall review first-order logic, second-order logic and monadic second-order logic, which is an
extension of the former and a fragment of the latter. We shall review some basic tools that
will help in the construction of formulas in forthcoming sections.

1.1 Structures

Let R be a finite set of relation symbols. Each symbol R € R has an associated positive
integer called its arity, denoted by p(R). An R-structure is a tuple S =< Dg, (Rs)grer >
such that Dg is a possibly empty set called the domain of S and each Rg is a p(R)-ary
relation on Dg, i.e., a subset of Dg(R). We shall say that “R(dy,---,d,) holds in S” iff
(d1,---,d) € Rg, where, of course, dy,---,d, € Dg. We shall denote by STR(R) the class
of R-structures. Structures may have infinite domains.

We give two examples of the use of structures. A word u in A* is usually defined as a
sequence of letters from A, equivalently as a mapping {1,---,n} — A for some n € N (with
n = 0 for the empty word). In order to represents words by relational structures we let
Ruw,a = {suc,labg,---,labs} where A = {a,---,d} (A can have more than 4 letters), suc
is binary and labg, - - -,laby are unary. For every word u € A*, we let || u || € STR(Ry,4)
be the structure S such that :

Dgs = 0 if u is the empty word ¢ ; otherwise Dg = {1,---,n} if u has length n;
sucs = {(172)7 (273)7 o '7(" - 17")}7

i € labys iff y is the i-th letter of u.

In order to represent graphs by relational structures, we let Ry, = {edg} where edg is
binary. With a directed graph G, we associate the Rs-structure | G |1 = < Vg, edge >
where Vi is the set of vertices of G (and the domain of | G |1) and (z,y) € edgq iff there
is in G an edge from z to y. We do the same if G is undirected and we let (z,y) € edga
iff there is in G an edge linking = and y : it follows that edgq is in this case symmetric.
The structure | G |; does not contain information concerning the multiplicity of edges. It
is thus appropriate to represent simple graphs only because two simple graphs G and G’
are isomorphic iff the structures | G |; and | G' |; are isomorphic. (In Section 2, we shall
define another representation, denoted by | G |2, which will be appropriate for graphs with
multiple edges). For directed graphs, we shall sometimes use suc instead of edg. We call y
a successor of x if (x,y) € sucg.

Relational structures form the basis of the theory of relational databases (Abiteboul et
al. [1]). More precisely, a finite R-structure S can be considered as a state of a relational
database describing relations between the objects of Dg. The relations Rg for R € R are
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the various relations of the database. A finite structure S is represented by means of some
coding of the objects of Dg and for each R € R a list of p(R)-tuples of “codes” of the
elements of Dg. The study of query languages for relational databases has also been a
motivation for finite model theory. (See the survey by Kannellakis [48] and the book by
Abiteboul et al. [1]).

1.2 First-order logic

We let X' be a countable alphabet of lowercase letters called individual variables. Let
R be a finite set of relation symbols. The atomic formulas are z = y, R(z1,---,%,) for
T, Y, L1, -,y € X, R € R, n = p(R). The first-order formulas are formed from atomic
formulas with the propositional connectives A,V,—, =, <, and quantifications 3z, Vz (for
z € X).

We shall denote by FO(R,Y) where Y C X the set of first-order formulas over R with
free variables in }. In order to specify the free variables that may occur in a formula ¢
we shall write it ¢(x1,---,2,) if ¢ € FO(R, {®1,---,2,}). (Some variables in {z1,---,2,}

may have no free occurrence in ). If @(x1,---,x,) is a first-order formula over R, if
S € STR(R), and if dy,---,d,, € Dg, we write S |= ©(dy,--+,dy) or (S,dyi,---,d,) E ¢ to
mean that ¢ is true in S if z; is given the value d; for i = 1,---,n. If ¢ has no free variables,

i.e., if it is closed, then it describes a property of S and not of tuples of elements of S. Here
is an example. The formula ¢(x) over R defined as :

Vy1,y2, ysledg(z,y1) Aedg(z,y2) Aedg(x,y3) = y1 =y2 Vy1 = Y3 V y2 = y3]

expresses that the vertex = of the represented graph has out-degree at most 2. The
closed formula Vz.p(x) expresses thus that the considered graph has outdegree at most 2.

We now give an example concerning words. We let A = {a,b,c}. The formula 6 below
is constructed in such a way that, for every word u € A* :

|u]|l E6iff u € ab*c.
Here is 6 :

Fz[lab, (x) A Vy(—suc(y, z))] A Va[laby(z) = Fy(suc(z,y) A (laby(y) V lab.(y)))]

AYz[laby(z) = y(suc(z,y) A (laby(y) V lab.(y)))] AVz[lab.(z) = Yy(—suc(z,y))].

Let us remark that 6 has models that are not representations of words. So, 8 character-
izes ab*c as a subset of A* ; it does not characterize the structures representing the words of
ab*c among those of STR(R,, 4). The languages characterized in this way by a first-order
formula form a subclass of the class of regular languages, called the class of locally threshold
testable languages (see Thomas [63] or the survey by Pin [52]).
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1.3  Second-order logic

We now let X' contain individual variables as in Subsection 1.2 and also relation wvari-
ables, denoted by uppercase letters, X,Y, X1, ---,X,,. Each relation variable has an ar-
ity which is a positive integer (p(X) is the arity of X). We let R be a finite set of
relation symbols and we now define the second-order formulas over R. The atomic for-
mulas are : ¢ = y,R(z1,- -, z,), X (21, -+, 2,), where z,y,21, -+, 2,, X € X, R € R
and n = p(R) = p(X). The formulas are constructed from the atomic formulas with the
propositional connectives (as in Subsection 1.2) and the quantifications 3z, Vz, 3X, VX over
individual and relation variables. (We do not give a formal syntax ; see the examples below).
We shall denote by SO(R,)) the set of second-order formulas over R with free variables
in ). The notation ¢(x,y,z, X1, -, X,) indicates that the free variables of ¢ belong to
{x7y7Z7X17"'7Xn}‘

Consider a formula ¢(z1, -, &, X1, -+, X,). It S € STR(R) if dy,---,d, € Dsg,
if Ey,---,E, are relations on Dg of respective arities p(X1),---,p(X,) then the nota-
tion S E ¢(dy,---,dm, E1,---, E,) means that ¢ is true in S for the values dy,---,dy,
ofxy, -+, xm and By, -+, E, of Xy,---, X, respectively. Let Y = {z1, -+, Zpm, X1, -+, Xpn}.
A Y-assignment in S is a mapping v with domain Y such that v(z;) € Dg fori =1,---,m
and v(X;) is a p(X;)-ary relation on Dg for each j = 1,---,n. We shall also use the notation
(S,7) = ¢ instead of S = p(d1, -, dm, Er, - -, E,) where y(z;) = d; and y(X;) = Ej.

We now give some examples. Let 8(X) be the formula in SO(@,{X}) :

Va,y, 2[X(z,y) AN X(2,2) =y = 2] AVa,y,2[X(2,2) A X(y,2) =z = y],

where X is binary. It expresses that X is a functional relation, and that the corresponding
function is injective on its domain. (This domain may be strictly included in the domain of
the considered structure). Hence the following formula a(X) of SO(Rs,{X}) expresses that
X is an automorphism of a simple graph G represented by the structure |G|; in STR(Rs).
Here is a(X) :

B(X) AVaIyX (2,y) AVzIyX (y, z)
AV, y, o',y ledg(z,y) A (X (2,2) A X(y,y') V(X (@', 2) A X(y',y))) = edg(a', y')].
Hence, G has a nontrivial automorphism iff |G|; satisfies the closed formula
AX[e(X) ATz, y(-z =y A X (2,9))]-
Consider now the formula v(¥7,Y2) € SO(0,{Y1,Y>}) :

AX[B(X) AVz(Yi(2) <= FyX(z,y)) AVa(Yz(2) <= FyX(y,2))].

It expresses that there exists a bijection (namely the binary relation defined by X)
between the sets Y7,Ys (handled as unary relations). One can thus characterize by the
following second-order formula the nonregular language {a™b™/n > 1} :
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Jz[lab,(x) A Vy(—suc(y, z))] A Vz[lab,(x) = Ty(suc(z,y) A (laby(y) V laby(y)))]
Az, y[laby(z) A suc(x,y) = laby(y)]A
V1, Yo [y(Yh,Y2) A Va[laby(z) <= Yi(x)] A Vz[laby(z) <= Ya(x)]].

The main logical language to be used in this paper is monadic second-order logic which
lies inbetween first-order and second-order logic.

1.4 Monadic second-order logic

Let R be a finite set of relation symbols. Let A contain individual variables and relation
variables of arity one. Since a relation with one argument is nothing but a set, we shall
call these variables set variables. A monadic second-order formula over R is a second-order
formula written with R and X : the quantified and free variables are individual or sets
variables ; there is no restriction on the arity of the symbols in R. In order to get more
readable formulas, we shall write € X instead of X (x) where X is a set variable. We
denote by MS(R,Y) the set of monadic second-order formulas (MS formulas for short) over
R, with free variables in ).

We give some examples. The MS formula § € M S({suc}, ) below expresses that a word
in A* has an odd length. Since this property does not depend on the letters, the formula §
does not use the relations lab,,x € A. Here is ¢ :

AX,Y[6(X,Y) A Fz(z € X AVy(—suc(z,y)))]
where §'(X,Y) is

Jz(z € X AVy(—suc(y, z))) AVz,y(z € X A suc(z,y) =y € Y)A
Va,y(z € Y A suc(z,y) = y € X).

For every word w € A*, there is a unique pair X,Y with X,Y C D, satisfying ¢
the elements of X are the odd rank positions in w and the elements of Y are the even rank
ones. The formula § expresses that the last position is odd, i.e., that the considered word
has odd length. A theorem by Biichi and Elgot [8], [31] (see Thomas [62], Thm 3.2) says
that the languages defined by MS formulas are exactly the regular languages.

We now consider an example concerning graphs. The following formula 73 € M S({Rs})
expresses that the considered graph is 3-vertex colorable (with every two adjacent vertices
of different colors ; one may have loops). Here is 73 :

Ele,XQ,Xg[V.’IJ(CU eXjvVereXaVae Xg)/\\V/CU(.’L' eXi =€ XoAN2x € Xg)
ANVz(x € Xo = € X1 A2 € X3)AVe(x € X3 = v € X1 A—z € Xy)

AVz,y(edg(z,y) N -z =y



ﬁ"(CUEXl/\yEXl)/\_'(.’IJEXQ/\yEXQ)/\"(.’L’EXg/\yEXg))]

A triple of sets X, Xo, X3 satisfying this condition is a partition of the set of vertices.
Considering i such that x € X; as the color of z, the formula expresses that adjacent ver-
tices have different colors. For each positive integer k, one can write a similar formula 7y
expressing that the considered graph is k-vertex colorable.

Let L be any of the languages FO, M S and SO. We write L(R) for L(R, ). A
property P of structures in STR(R) is L — expressible iff there exists a formula ¢ in L(R)
such that, for every structure S € STR(R), P(S) holds iff S |= ¢. A class of structures C is
L — definable iff it is the class of structures satisfying an L — definable property. These
definitions can be relativized to specific classes of structures. Let 7 C STR(R). Then, a
property P of structures in T is L—expressible iff there exists a formula ¢ in L(R) such that,
for every S in T, P(S) holds iff S |= . One obtains similarly the notion of a subclass C of
T that is L — de finable with respect to T. A property P of tuples (di,---,dy, E1,---, Ey)
in the structures S of a class T is L — expressible iff there exists a formula ¢ € L(R,
{z1, -, xn, X1, -+, X;n}) such that forall S € T, all (dy,---,dn, E1,---, Ep) of appropriate
type, P(S,dy,- -+, Ey,) holds iff S |= ¢(dy, ..., En).

One obtains thus a hierarchy of graph properties linked with the hierarchy of languages:
FO C MS C SO. In Sections 2 and 3, we shall introduce intermediate languages between
M S and SO and discuss the strictness of the corresponding hierarchy of graph properties,
relativized to various classes of graphs or related objects like words, partial orders and
hypergraphs. The languages defined by monadic second-order formulas are the regular
languages by a theorem of [8] (see also the survey by Pin [52]).

1.5 Decidability questions

Let R be a finite set of relation symbols. Let £ be a class of closed formulas expressing
properties of the structures in STR(R). Let C C STR(R). The £ —theory of C is the set :

The(C):={p € LIS = ¢ for every S € C}.

We say that the L-theory of C is decidable if this set is recursive. The L-satisfiability
problem for C is the problem of deciding whether a given formula belongs to the set

Satp(C) :={p € L] S| for some S € C}.

If £ is closed under negation, the L£-theory of C is decidable iff its L-satisfiability prob-
lem is decidable. We shall consider some conditions on a class of graphs C ensuring that its
monadic theory (i.e., the M S-theory) is decidable.

If C = {S} where S is a finite (and effectively given) structure then the property S = ¢
is decidable for every formula ¢ of the languages £ we have considered, or we will consider.
The L-theory of C is thus (trivially) decidable. An interesting question is thus the com-
plexity of this problem. For an example, the property S |= ¢ is polynomial in size(S) if ¢
is a fixed first-order formula and S is the input ; it is NP if ¢ is existential second-order
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(Fagin [39]), where again ¢ is fixed and S is the input. Conversely, every NP property can
be described in this way. More generally, a property belongs to the polynomial hierarchy
iff it can be described by a second-order formula (see Stockmeyer [60], Immerman [46] or
Abiteboul et al. [1]).

If C = {S} where S is infinite, then the £-theory of C may be undecidable. However
the study of the theories of infinite structures and especially of their monadic (second-order)
theories is a very rich topic that we cannot even touch here. We refer the reader to survey
papers like those of Gurevich [44], Courcelle [10], Thomas [62].

Proposition 1.1 (Trakhtenbrot [64]) : The first-order theory of the class of finite graphs
is undecidable.

So are a fortiori its monadic and its second-order theories. The following result is a ba-
sic tool for obtaining undecidability results. It concerns square grids. A grid is a di-
rected graph isomorphic to G, for some n,m € Ny where Vg, . = [n] x [m] and
Eq,,, = {((4,7),@",3)/1 <i <i'" < n,1 <j <j < m and, either i' = i + 1 and
j'=j,ori =iand j' =j+1}. (M1 denotes the set of positive integers and for n € N4 ;
[n] denotes {1,2,---,n}). A square grid is a graph of the above form where m = n.

Proposition 1.2 The monadic (second-order) satisfiability problem of every class of graphs
C containing graphs isomorphic to G, for infinitely many integers n is undecidable.

Proof sketch : One first constructs an MS formula y that defines the square grids among the
finite simple loop-free directed graphs (see Subsection 1.9). Consider now a Turing machine
M with total alphabet A (input letters, states, end markers) and an initial configuration
wyr. Let A= {ay,---,an}t. I (X1, ---,X,,) is a partition of the set of vertices of a square
grid G, ,, then one can consider that this partition defines a sequence of n words of length
n in A*. (Each line of the grid represents a word where a line of Gy, is a subgraph with
set of vertices {i} x [n] for some i ; the first line represents the configuration wjs). One can
construct an MS-formula ¢ (X1, -+, X,,) such that, for every Xy, -, X,, C Vg, .

Gn,n |: SDM(XD o ')Xm)

iff (Xy,---,Xp) is a partition of Vi, , which defines the sequence of configurations of a
terminating computation of M. (Configurations of length smaller than n can be extended
to the right by a special symbol). It follows that if C contains infinitely many square grids,
then M terminates iff some graph G in C satisfies the formula

YyAIX1, o Xm0 (1)

Hence the halting problem of Turing machine reduces to the monadic satisfiability prob-
lem of any class C containing infinitely many square grids. This latter problem is thus un-
decidable. O



Remark : In this construction, one may assume that the machine M is deterministic and
one can write ¢s in such a way that the square grid on which its (unique) computation is
encoded is minimal. It follows that there exists at most one graph satisfying formula (1).
Hence, even if we know that a M S-formula ¢ has only finitely many finite models (up to
isomorphism), we cannot construct this set by an algorithm taking ¢ as input.

1.6  Some tools for constructing formulas

Two formulas ¢, € SO(R, {z1, -+, 2xn, X1, -, Xn}) are equivalent if for every S €
STR(R), for all dy,---,d, € Dg, for all relations Ei,---, FE,, on Dg of respective arities
p(X1), -, p(X,,) we have :

SIZQO(dl,"',dn,E]_,"‘,Em) ift S ':Qol(dlf"adnaEl?‘“?Em)-

Clearly, two equivalent formulas express the same properties of the relevant tuples (dy, - - -, dp,
Ey,---,Ep) in every structure S € STR(R).

In some cases equivalence is relativized to a subclass S of STR(R) : equivalent formulas
express the same properties of the relevant tuples in the structures of S, not in all structures.

Lemma 1.3 Let ¢ € SO(R,Y) and Z be a finite set of variables. One can transform ¢
into an equivalent formula ¢' in SO(R,Y) in which no variable of Z is bound. If ¢ is M S,
then @' is M S ; if ¢ is FO, then ¢’ is FO.

Proof : One simply renames the bound variables belonging to Z. Of course, one renames
a variable into one of same type (individual or relational) and arity (in case of a relation
variable). This is possible because our “universal” set of variables contains countably many
variables of each type and arity. O

For readibility, one usually writes a formula by choosing bound variables that are not
free in the formula. This is always possible without loss of generality.

We now recall the definition of first-order substitutions in formulas. Let ¢ be a second-
order formula ; let z1,---,x, be pairwise distinct variables ; let y;,---,y, be variables,
not necessarily pairwise distinct. (In order to avoid double subscripts, we do not index the
variable in X' ; hence x4, - - -, z,, are metavariables denoting variables of X' ; they are not the
variables x1, -+, x, ; in the generic such list, we may have two variables equal). We denote
by ©ly1/x1, -+, Yn/xy] the formula obtained as follows :

e using Lemma 1.3, one takes ¢’ equivalent to ¢ with no bound variable in {y1,---,yn};
e then one substitutes in ¢ the variable y; for each occurrence of z;,i =1,--- n.

Finally, if ¢ has been previously described as a formula ¢(x1, - -, Zpn, X1, -, Xpm) (which
indicates that its free variables are among x1, - - -, ©p, X1, - -, Xp) then, o(y1, -, yn, X1, -,
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X) will be another notation for ¢[y1/x1, -, yn/xy]. With this notation, we have the fol-
lowing lemma, giving the semantics of substitution.

Lemma 1.4 Let ¢ € SO(R, {®1, -, &n,Tnt1, -+, Tp}) With x1,- -, xp pairwise distinct.
Let y1,---,yn be variables. Let {z1,---,24} be an enumeration of the set of variables
{ylv"'vyn)anrlv"'va}’ so that So[yl/ml""vyn/mn] € SO(R’ {Zl)"')zq})' For every
S € STR(R), for every dy,---,d, € Dg we have

SEelyi/z, - yn/a)(di, -, dy) iff S ‘P(dllv"Vd;))

where d; =d; iff l<i<nandz; =y; orn+1<i<pandz =uz;.
Proof : The sequence di,---,d,, is well-defined because {z1,---,2,} is an enumeration of
the set {y1,- -, Yn, Tnt1, -+, xp}. The verification is easy. O

We now define second-order substitutions, by which relation symbols can be replaced by
formulas, intended to define the corresponding relations. Let ¢ € SO(R, {x1, -, Tm, X1, -,
Xp}). For each i = 1,---,p, we let ¢y € SO(R, {1, -, Zm, Y1, ", Yp(x,)} Where the
listed variables are pairwise distinct. We let [1)1/X1, - -, 9,/ X,] be the formula in SO(R,
{z1,---,xm}) constructed as follows :

e by using Lemma 1.3 one first constructs ¢’ equivalent to ¢ where no variable of

{z1, -,z } is bound ;
e then one replaces every atomic formula X;(ui,---,u,(x,)) of ¢' (where the variables
ug, - -+, Uy(x;) need not be pairwise distinct) by the formula ¢;[us /y1, - - -, o x,) /Yo x1))-

With this notation, we have the following lemma.

Lemma 1.5 Let S € STR(R), let dy,---,d,, € Dg. For each i = 1,---,p let T; be the
p(X;)-ary relation on Dg defined by (a1, -, a,x;)) € T; iff S = i(dy, -+, dmy a1, -+ apx;))-
Then

S|:(10[1/)1/X17'"71/)17/Xp](d17"'7dm) foS|=Q0(d17"',dm7T1,"‘,Tp),

Proof : Straightforward verification from the definition, by using an induction on the struc-
ture of p. O

Let S € STR(R) and E be a subset of Dg. We denote by S[E] the restriction of S
to E, i.e., the structure S’ € STR(R) with domain E and such that Rs: = Rg N E**) for
every R. (Since our structures are relational the restriction of a structure to a subset of its
domain is always well-defined : this would not be the case if we had to ensure that some
functions have a well-defined image.) If S represents a graph G, i.e., S = | G |1, then S[E]
represents the induced subgraph of S with set of vertices E which will be denoted by G[E].
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Lemma 1.6 Let ¢ € SO(R, {1, ---,2n}) ; one can construct a formula ¢' € SO(R,
{z1, -+ ,2n, X}) such that the following holds for every S € STR(R). For every E C Dg,
for every dy,---,d, € E :

S |: Sol(dlv""de) ZﬁS[E] |: So(dlv"'vdn)
If ¢ is MS or FO then ¢' is MS or FO respectively.

Proof: We can assume (by Lemma 1.3) that X does not occur in . We let ¢’ be associated
with ¢ by the following inductive definition, where ¢ may have free variables of all types
(relation variables as well as individual variables).

(VYap) = VY

(AY.ap) = IV

(Vzp) =Va. [z € X = ']

(Fz) = Jzfz € X A9

(Yrop2)’ = Yiopyy where op € {A,V, =, <}
() =~

Y’ =1 for every atomic formula . O

The formula ¢’ is called the relativization of ¢ to X and will be denoted by p[X.

1.7  Transitive closure and path properties
We denote by T the transitive closure of a binary relation 7.

Lemma 1.7 Let S be an {R}-structure where R is binary. The transitive closure of Rg is
defined in S by the following formula ¢o of MS({R},{x1,22}) :

VX[{Vy,z2(y € X AR(y,z) = z € X) AVy(R(z1,y) = y € X)} = 22 € X]

Proof : Let di,d» € Dg such that S | ¢o(dy,d2). The set D = {d/R&(dy,d)} satisfies
the property Vy,z(y € X A R(y,z) = z € X) AVy(R(z1,y) = y € X). Hence dy € D,
i.e. R&(di,d2). Conversely, if RE(di,ds) then do must belong to every set D such that
Rs(dy,d) for all d € D and that is closed under Rg, i.e., is such that d € D and Rg(d,d’)
implies d' € D. This shows that S = ¢g(dy,ds).0

11



We now discuss some applications of this lemma to path® properties in graphs. We shall
write formulas relative to R,.

Lemma 1.8 One can write M S formulas expressing in | G |1 the following properties of

vertices x,y and sets of vertices X, where G is an arbitrary directed graph, represented by
the structure | G |1 in STR(R).

P1 : x =y or there is a nonempty path from x to vy,

P2 : G is strongly connected,

P3 : G is connected,

PJ : x #y and there is a path from x to y, all vertices of which belong to the set X,
P5 : X is a connected component of G,

P6 : G has no circuit,

P7 : G is a directed tree,

P8 : G has no circuit, x #y and X is the set of vertices of a path from x to y,

P9 : G is planar.

Proof: We shall denote by ¢;,7 = 1, ---,9 the formula expressing property P4, in a structure
S € STR(Rs).

1) ¢4 is the formula z = y V po(z,y) where g is constructed in Lemma 1.7 with R = edg.

(1)

(2) 2 is the formula Va, y[p1(z,y)].

(3) 3 is the formula @2[f/edg] where 8(z1,x2) is edg(z1,x2) V edg(xa, z1).

(4) @4 is the formula -z =yAz € X Ay € X A1 X hence ps(x,y, X) says that z,y are
vertices of G[X] and that there is a path in G[X] from « to y; this is equivalent to the

property of the statement. (We recall that we denote by G[X] the induced subgraph
of G with set of vertices X.)

(5) @5(X) is the formula o3[ X AYY[X C Y Ap3[Y = Y C X]; (note that @3] X expresses
that G[X] is connected) ; the subformula X C Y stands for : Vu[u € X = u € Y.

(6) e is the formula Vz, yledg(x,y) = —p1(y, z)].

(7) 7 is the formula g AJzVy[p1 (2, y)| AV, y, z[edg(z, z) Nedg(y, z) => x = y] expressing
that G has no circuit, that every vertex is reachable from some vertex (the root) by
a directed path and every vertex is of indegree at most 1 : we consider directed trees
with edges directed from the root, towards the leaves.

bA nonempty path in G is here a sequence of vertices (z1,22,---,2s) with n > 2 such that (z;,2;11) €
edgg for all ¢ and x; = x; = ¢ = j or {i,j} = {1,n}; if 1 = xn, this path is a circuit. We consider () as
an empty path for every vertex x.
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(8) The construction of g is more complex. We let ¢§(X) express that X is linearly
ordered by the relation edg, y) where G is assumed to have no circuit, i.e. ¢g(X) is
Va:,y[m €X ANy € X=z= yv 304($>y7X) V304(y)$>X)]
Let ¢f(x,y, X) be the formula defined as

we\ps (X)Az € XAy € XA~z = yAVz € X[(pa(z, 2, X)VT = 2)A(pa(z,y, X)Vz = y)].

It says that the considered graph has no circuit, that X is linearly ordered by edgz,[ X]
with first element x and last element y with y # z. If X is finite, this is enough to
express that X is the set of vertices of a path from x to y. But this is not true if X is
infinite. (Take for example G with set of vertices N and set of edges {(¢,7)/i # 0,5 €
{0,i + 1}}, take X = N, 1 = 1 and x5 = 0.) We let 8(z1,22,X) be the following
formula :

w6 N pg(X) A @a(x1, 19, X) AVww € X A ps(z1,w,X) = 23 = w V pg(22,w, X)]

expressing that z1,z2 € X and x5 is the successor of x; in X with respect to the linear
order edgz‘;[ X7 Let E be the binary relation on X defined by #. Then X is the set of

vertices of a path from z to y iff (z,y) € ET. Hence the following formula pg(z,y, X)
expresses the desired property :
where g is from Lemma 1.7.

(9) This will be proved in Section 7 by using Kuratowski’s theorem. O

The condition that G be acyclic is important in P8 : we shall prove in the next propo-
sition that one cannot express by an MS formula that, in a finite directed graph, a given set
X is the set of vertices of a path from z to y.

We now review some properties that are provably not MS-expressible. A directed graph
is Hamiltonian if it has at least 2 vertices and a circuit passing through all vertices.

Proposition 1.9 The following properties are not MS-expressible :
1. two sets X and Y have equal cardinality,
2. a directed graph is Hamiltonian,
3. in a directed graph a set X of vertices is the set of vertices of a path from x to y,

4. a graph has a nontrivial automorphism.
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Proof : We shall use the following result of Biichi and Elgot (see Thomas [62], Thm 3.2):
if L C {a,b}* is the set of words u such that || u || = ¢ where ¢ is a closed MS-formula,
then L is a regular language.

(1) Assume that we have a formula ¢» € MS(0,{X,Y}) such that for every set S, for
every VW C S :

S E¢(V,W) if and only if Card(V) = Card(W).

Then the MS-formula ¢[lab,(21)/ X, laby(x1)/Y] of MS(Ry {a,p3) Would characterize (as a
subset of {a,b}*) the language L of words having as many a's as b’'s. This language is not
regular, so we get a contradiction.

(2) With every word w € {a, b} represented by the structure || w || = < {1,---,n}, suc|y,
labgjw|; laby|w|| > We associate the graph K., with set of vertices {1,---,n} and an edge
from i to j iff i € lab,) and j € laby), or vice-versa. Hence K, is a complete bipartite
directed graph. It is Hamiltonian iff w belongs to the language L already used in (1).

Let us now assume the existence of a formula n in MS(R,, 0) that would characterize
the Hamiltonian graphs among finite graphs. Let pu(z1,z2) be the FO formula defined as :

(labg(z1) A laby(z2)) V (labp(z1) Alaby(z2))

This formula defines in || w || the edges of K, (note that Dy, = Vg, ). It follows that for
every word w € {a,b}* of length n > 2 we have
w € L iff K, is Hamiltonian iff || w || |= n[p/edy],
and the set of words in L of length at least 2 is regular, a contradiction.

(3) Assume we have a formula ¢ € MS(Rs,{z,y,X}) expressing that in a directed
graph, X is the set of vertices of a directed path from z to y. Then the MS formula :

IXVu(u € X) A Jz,y(o(z,y, X) A2 =y Aedg(y,z))]

expresses that the considered graph has at least two vertices and is Hamiltonian. This is
not possible by (2) hence no such formula ¢ does exist.

(4) The proof is very much like that of (2). With every word of the form a"™bca™ with n >
2,m > 2 one associates the graph H,, ,,, with set of vertices {—n, —n+1,---,-1,0,1,2,---,m}
U{0'} and undirected edges between 0 and 0’ and between i and i+1 for every i, —n < i < m.
This graph has a nontrivial automorphism iff n = m iff the given word belongs to the non-
regular language {a"bca™/n > 2}. Hence, no MS formula can express that a graph has a
nontrivial automorphism. We omit details. O

Remark : The structure representing H, ,, can be obtained from the structure
[| a™bea™ || by a definable transduction using quantifier-free formulas (to be introduced
in Section 4 below).
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1.8 Monadic second-order logic without individual variables

This technical subsection may be skipped on first reading. We define a syntactical variant
of MS logic where all variables denote sets. The corresponding formulas are less readable
than those used up to now, but the proofs concerning them and the properties they define
will be easier, because the syntax is limited.

We let R be as before ; we shall only use set variables. We define MS"(R, {X1,---,Xyn})
by taking atomic formulas of the forms :

X CY where X,Y are variables,
R(Y1,---,Y,) where R € R, n = p(R) and Y1, ---,Y,, are variables.

The formulas are constructed with the usual propositional connectives and set-quantifications
3X and VX. We denote by MS (R, {X1,---,X,}) the set of such formulas with free vari-
ables among X;,---, X,,.

Let S € STR(R). The meaning of X C Y is set inclusion. If Dy,---, D, are sets
denoted by Y3,---,Y, then R(Y1,---,Y,) is true in S iff (dy,---,d,) € Rg for some d; €
Dy,---,d, € D,,. The validity of formulas in MS'(R, {X1,---,X,}) in a structure S and
for an assignment v : {Xy,---, X} — S follows immediately.

Lemma 1.10 For every formula ¢ € MS'(R, {X1,---,Xn}) one can construct an equiva-
lent formula ¢ in MS(R, {X1,---,X,}).

Proof: Onereplaces X CY by Ve[z € X =z € Y] and R(Y1,---,Y,) by Jy1, -+, ynly1 €
YiAN--Ayn €Y, AR(y1, -, yn)]. We omit details.O

Lemma 1.11 For every formula ¢ € MS(R,{z1, -, zn, Y1, -+, Y;n}) one can construct
a formula ¢ € MS'(RAXy, -, Xn, Y1, -+, Yn}) such that for every S € STR(R) for
every assignment vy : {1, -+, Tp, Y1, -+, Y} — S then (S,7) |E ¢ iff (S,7") E ¢ where
V'(Xs) = {y(@i)} and 5" (Vi) = y(Y3).

Proof : We first let X = ) be the formula VY [X C Y] in MS'(),{X}) which characterizes
the empty set. We let also Sing(X) € MS'(0,{X}) be the formula VY[V C X = X C
Y VY = ] which characterizes the singleton sets.

We now translate ¢ into ¢'. For each individual variable z, we let X denote a new set
variable. (“New” means distinct of any variable in ). We obtain ¢’ from ¢ by the following
inductive construction :

(z=y)=XCYANY CX,
(R(ylv o 'ayn))l = R(lev o '7Yn)7
(zeY)=XCY,
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(prope2)’ = @lopgy

for every binary connective op equal to V, A\, = or <=,
(m1)" = et
(VX.p1)" =VX.1,
(3X.p1) =3X .,
(Va.p1)' = VX [Sing(X) = ¢1],
(Fz.1)" = IX[Sing(X) A ¢4].

We omit details. O

1.9 A worked example : the definition of square grids in MS logic

The rectangular grid G, is the graph with set of vertices V' = {0,1,---,m — 1} x
{0,1,2,---,n — 1} and set of edges E = {((4,7), (i',7"))/(i,4), (i',5') € V and either i’ =1
and ' =j+1lori =i+ 1andj =j}. Its north-, west-, south, and east-borders are the
sets of vertices :

Xn=10,---,m—-1} x {n—1}
Xw=A{0} x{0,---,n—1}
Xs=40,---,m—1} x {0}
Xe={m—-1}x{0,---,n—1}.
Its well-coloring is the 4-tuple of sets of vertices Yy, Y7, Ys, Y3 such that :

(i,7) € Y iff k = mod(i) + 2(mod(j))
where mod(i) is the remaining (in {0,1}) of the integer division of ¢ by 2.

We claim that for every positive integer m there exists an MS; formula 6 with free
variables Yy, Y1, Y5, Y3, X, Xy, X, X that characterizes (among the finite directed simple
graphs) those isomorphic to Gapm 2m where, in addition, Yy, Y7, Y5,Y; form a well-coloring
and X,,, Xy, X, X, are the four borders.

We let 6 express the following conditions concerning a simple graph G given with sets
Of Vertices %7}/17}/27}/37XH7XE7X87XU1
(1) G has no circuit;

(2) Yo,Y1,Y5,Y3 form a partition of Vi; ; assuming this we shall call i-vertex, i-successor
of y, i-predecessor of y a vertex, or a successor of y, or a predecessor of y that belongs
to Y; ;
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(3) every vertex has at most one i-successor and at most one i-predecessor for each %;
(4) a 0- or a 3-vertex has no 0- or 3-successors ; a 1- or a 2-vertex has no 1- or 2-successor;

(5) G[X,] is a path consisting alternatively of 2- and 3-vertices ; its origin is a 2-vertex
and its end is a 3-vertex ; the origin is the unique element of X,, N X,, and the end is
the unique element of X,, N X,;

(5’) G[X,] is a path consisting alternatively of 1- and 3- vertices ; its origin is a 1-vertex
which is the unique element of X, N X,; its end is a 3-vertex which is the unique
element of X,, N X,;

(57) and (5”) state similar conditions on the sets X and X,;

(6) each 2-vertex in X,, has a 3-successor and no 0-successor ; each 3-vertex in X,, — X,
has a 2-successor and no 1-successor;

(6”) (6”) (6”°) state similar properties of X, X, Xy;
(7) each vertex in Vi — (X,, U X, U XU X,) has two predecessors and two successors;

(8) there exists a path from the vertex in X; N X, to the one in X,, N X, the vertices of
which have the colors 0,1,3,2,0,1,3,2,---0,1, 3 in this order.

It is not hard to see that conditions (1) to (7) characterize the well-colored grids of the
form Gy 2m for n > 1,m > 1. Condition (8) implies furthermore that m = n. It is not hard
to modify this construction in order to characterize the grids of the form Ga,41,Gon41 for
n>1.0

In view of the proof of Proposition 1.2, a line of G given with Yy, Y7, -+, Xy, as above
is a set L C Vg such that

(1) G[L] is a path from a vertex in X,, to a vertex in X,

(2) either LC YoUY; or LC Y, UY53.

2 Representations of partial orders, graphs and hypergraphs by relational
structures

In this section we discuss more in detail the various possibilities of representing a partial
order, a graph or a hypergraph by a relational structure. The choice of the representation
is important for the possibility of expressing a given property by some formula of the three
logical languages we have introduced.
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2.1 Partial orders

The simplest way to represent a partial order <p on a set D is by the structure < D, <p>.
If D is finite, one can also represent < D, <p> by a graph < D, S > where S is binary, such
that <p is the reflexive and transitive closure of S. There is even a unique minimal such
relation (minimal for inclusion) that we shall denote by sucp (where suc means successor)
and the corresponding graph < D, sucp > is the classical Hasse-diagram of the partial order
< D,<p>. A property of partial orders representable by a formula ¢ with respect to the
representation < D, <p> will be representable by another (perhaps more complex) formula
1) with respect to the representation < D, sucp >.

Proposition 2.1 (1) A property of a finite partial orders is MS with respect to the repre-
sentation < D,<p> iff it is MS with respect to the representation < D, sucp > .
(2) Furthermore, it is FO with respect to the representation < D,<p> if it is FO with
respect to the representation < D, sucp >.

If a property is FO with respect to the representation < D, <p> we can only conclude
(by (1)) that it is MS with respect to the representation < D,sucp >. We have actually
the proper hierarchy :

FOgy C FOS C MSgye = MSS,

where the subscripts indicate the considered representation. The languages defined by first-
order formulas in terms of < (as opposed to in terms of the successor relation) are the
star-free languages. This class is a proper subclass of the class of regular languages (de-
finable by M Sgy. or M S< formulas) and contains properly the class of locally threshold
testable languages (definable by F'Og,, formulas) (see Pin [52]). From these strict inclusions
concerning classes of languages follow the corresponding strict inclusions for partial orders
(FOgye C FO< C MSsyc).

Proof : We let suc be a binary relation symbol. Since <p is the reflexive and transitive
closure of sucp, it follows that <p is defined in < D, sucp > by the MS formula p(y1,ys2) :

Y1 = y2 V polsuc(z1, x2)/R]

where g is from Lemma 1.7. Hence if a property is expressed by an MS or a FO formula
o with respect to < D, <p> it can be expressed by the MS formula ¢[u(y1,y2)/ <].

Now sucp is defined in < D, <p> by the FO formula : p'(y1,y2)
Y1 =y Ay Sy AV2[yr S2A 2 <ys =y =2V z =yl

Hence a property expressed in < D, sucp > by an MS or FO formula ¢’ can be expressed
by the formula ¢'[u’/suc] which is MS or FO respectively. O

2.2  Edge set quantifications

As already noted the representation of a graph by a relational structure that we have used
up to now is not convenient to express properties of graphs that depend on the multiplic-
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ity of edges. We shall define another representation, where the edges are elements of the
domain, which is more natural for expressing logically the properties of multigraphs and
which, furthermore, makes it possible to express more properties of simple graphs by MS
formulas.

We let R, = {inc} where inc is ternary (inc stands for “incidence”). For every graph
G, directed or not, simple or not, we denote by Vg its set of vertices and by Eg its set
of edges. The incidence relation between vertices and edges is represented by the ternary
relation incg such that : (z,y,2) € incg iff x is an edge and either this edge is directed and
it links y to z or it is undirected and it links y and z. If z is an undirected edge, we have :
(2,9, 2) € incg iff (z,2,y) € incg.

We let D¢ := Vg U Eg (we always assume that Vg N Eg = () and we let | G |2 be the
structure < Dg,incg > € STR(Ry,). If G has several edges linking y to z then, they are
represented by distinct elements of Dg.

In a structure S = < Dg, incs > representing a graph, the edges are the elements x
of Dg that satisfy the formula Jy, z[inc(z,y, z)]. The structures in STR(R,,) representing
directed graphs are exactly those which satisfy the following conditions :

(1) Va,y, z[inc(z, y, 2) = —Fu,v(inc(y, u, v) V inc(z,u,v))], and
(2) Vx,y,z,y', 2'[inc(z,y, z) Ninc(z,y',2") = y=9y' Az =2'].

In any such structure, if we let E = {z € Dg / S |= 3y, z.inc(z,y,2)} and V = Dg — E
then incg C E x V x V and there exists a unique directed graph G with Vg =V, Eqg = E
and | G |2 = S. Similarly, the structures in ST R(R,,) representing undirected graphs are
exactly those that satisfy (1) above together with :

(2) Va,y, 2,4, 2'linc(x,y, 2) Ninc(z,y',2') = (y=y' Az=2")V(y =2 Nz =y')]
(3") Va,y, z[inc(x, y, 2) = inc(x, z,y)].

Graph properties can be expressed logically, either via the representation of a graph G by
| G |2, or via the initially defined representation | G |1:= < Vg, edgg >. The representation
| G |1 only allows quantification on vertices, sets of vertices, relations on vertices (according
to the language we consider), whereas the representation | G |2 also allows quantifications on
edges, sets of edges and relations on edges. We shall distinguish the M .S;-definable classes
(which are nothing but the M S-definable ones we have considered up to now), from the
M Ss-definable ones, which use formulas in M S({inc}, ) and the representation of a graph
G by | G |2. Similarly, we have FO; -, FOs -, SO1— and SO»-definable classes of graphs.We
shall also speak of FO; - or M S; - or SO;-expressible graph properties, where i = 1 or 2.

Since a set of edges in a graph can be considered as a binary relation on its set of vertices

it is quite clear that every M Ss-expressible property is SO1-expressible (we shall prove that
later). However it is not always M S;-expressible.
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Proposition 2.2 The following properties of a directed graph G can be expressed by M Ss-
formulas.

(1) X is a set of edges (resp. of vertices) forming a path from = to y, where x # y.

(2) G is Hamiltonian.

Proof : (1) For every subset X of Eg we denote by G[[X]] the subgraph H of G such
that Vi is the set of vertices incident to some edge in X and Fy = X. The desired
condition is thus that G[[X]] is a path from z to y. This can be expressed by a formula
Py in MS(Rm,{x,y,X}) constructed with the help of Lemma 1.6 and the formula ¢g of
Lemma 1.8. The desired formula 1), is thus

-z =y AVz[z € X = Ju,v(inc(z,u,v))] A .

If we want to express that Y is the set of vertices of a path from z to y we take ¥o(z,y,Y)
defined as

AX[Y1(x,y, X) AVz[z € Y <= Fu,v(u € X A (inc(u, z,v) Vinc(u, v, 2)))]].

The quantification on sets of edges is thus crucial in 5 since we have proved that no formula
in MS(Rs,{z,y,Y}) equivalent to 1, does exist (see Proposition 1.9).
(2) follows from (1) : see the proof of Proposition 1.9, assertion (3).0

Proposition 2.3 Let C be a class of simple, directed or undirected graphs :
(1) C is FOq-definable iff C is FO1-definable
(2) C is SOy-definable iff C is SO1-definable
(8) C is M S>-definable if C is M S;-definable and the converse does not hold.

Proof: The relation edgq is definable from incg by the formula Ju.inc(u, z1, z2). It follows
that for each L € {FO, SO, MS}, C is Lo-definable if it is L;-definable.

That the converse does not hold for MS follows from Propositions 1.9 and 2.2 : the
class of simple Hamiltonian directed graphs (with at least 2 vertices) is M Ss-definable but
is not M S;-definable relatively to the class of simple graphs. It holds for FFO because a
quantification of the form “there exists an edge e...” can be replaced by a quantification of
the form “there exist vertices z and y that form an edge such that...”. The proof is similar
for SO : a quantification over n-ary edge relations is replaced by a quantification over 2n-ary
vertex relations. We omit details. O

The next theorem reviews some classes of graphs on which M S; and M S, are equally
expressive. (Tree-width will be defined in Section 5).

Theorem 2.4 Let C be the class of planar directed graphs, or of directed graphs of degree
at most k (for any fized k) or finite directed graphs of tree-width at most k (for any fized
k). A property of graphs in C is M Sy-expressible iff it is M Sy -expressible. The same holds
for the corresponding classes of undirected graphs.
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We do not reproduce the full proof of this theorem which is quite long (see Courcelle
[14]). We only give the basic lemma and some consequences.

Let G be a directed graph. A semistrong k — coloring of G is a mapping v : Vg —
{1,2,---,k} such that, for every two vertices v,v' # v :

1. if v,v" are adjacent, then y(v) # v(v'),

2. if there are edges linking v to w and v’ to w, where w is a third vertex, then v(v) #
Y(').

The following lemma will be proved in Section 4. Let Cy be the class of finite or infinite
simple directed loop-free graphs having a semistrong k-coloring.

Lemma 2.5 Let k € N. A property of graphs in Cy is MS|-expressible if it is MSs-
expressible.

The class Cy contains the directed trees. (Edges are directed in such a way that there is a
unique path from the root to each vertex). Hence the languages M S; and M S, are equally
powerful for expressing properties of directed trees. Let d € A" and k = d? + 1. Let us prove
that Cj, contains the simple directed loop-free graphs of degree at most d. Let G be such a
graph. Let G’ be the graph obtained by adding an edge between any two vertices at distance
2. This graph has degree at most d+d(d — 1) = d?. Hence G’ has a k-vertex coloring (in the
usual sense, where one requires that any two adjacent vertices have different colors). Such
a coloring is a semistrong k-coloring of G. Hence we have proved that Theorem 2.4 holds
for the classes of directed trees and of simple directed loop-free graphs of degree at most
any fixed d. The complete proof of Theorem 2.4 is based on Lemma 2.5 and constructions
of appropriate colorings.

2.3 Hypergraphs

We define directed, hyperedge labelled hypergraphs. We let A be a finite ranked set : each
symbol a € A has an associated rank, a nonnegative integer denoted by 7(a). A hypergraph
H has a set of vertices Vi and a set of hyperedges Ey ; each hyperedge e has a label labgy ()
in A and a sequence of vertices of length 7(labg(e)). The label of e may have rank 0 and in
this case, e has no vertex. We always assume that Vg N Eg = (). As for graphs we define
two representations of hypergraphs by relational structures.

We let Ro(A) := {edg,/a € A} and R, (A) := {inc,/a € A} where edg, is 7(a)-ary and
incg is (7(a) 4+ 1)-ary. With a hypergraph H we will associate the structures | H |; = <
Vi, (edgam)aca > € STR(Rs(A)) and | H |2 := < Vg U Eg, (incom)aca > € STR(Rinm(4))
where :

(1) incom(x,y1,---,yn) holds iff z € Eg,y1,---,yn € Vu,laby(x) = a,n = 7(a) and
(y1,- -+, yn) is the sequence of vertices of z, and

(2) edgar (Y1, ,yn) holds iff incopm(z,y1,- -, yn) holds for some = € Epy.
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The structure | H |; contains no information on the hyperedges of type 0, and no infor-
mation either on the number of hyperedges having the same label and the same sequence of
vertices. A hypergraph is simple if it has no hyperedge of type 0 and if no two hyperedges
have the same label and the same sequence of vertices. The structures | H | are appropriate
for representing all hypergraphs H whereas the structures | H |; are only appropriate for
representing simple hypergraphs or for expressing logically properties of hypergraphs that
are independent of the multiplicity of hyperedges and of the existence of hyperedges of type 0.

We shall refer by M .S; to MS logic relative to the representation of a hypergraph H by
the structure | H |; where ¢ = 1,2. The results of Proposition 2.3 hold for hypergraphs built
over a fixed finite set A as well as for graphs.

Proposition 2.6 Letk € N and A be a finite ranked alphabet. The same properties of finite
simple hypergraphs over A of tree-width at most k are expressible in M Sy and in M S,.

Proof : See Courcelle and Engelfriet [23]. O

In certain cases, hypergraphs are equipped with distinguished vertices called sources
or ports (see Section 5). These vertices will be represented in relational structures by
means of additional unary relations. For instance, if a hypergraph H is given with k sets
of distinguished vertices then the structure | H |; contains k unary relations P g, -+, Py
where Py, ---, P are additional unary symbols.

3 The expressive powers of monadic-second order languages

In the preceding section, we have seen that the choice of a representing structure for an object
like a partial order, a graph or a hypergraph may affect the first-order or the monadic second-
order expressibility of properties of these objects. Here, we shall consider the extension of
MS logic by cardinality predicates. In some cases this extension is just a syntactic shorthand,
and in others we shall obtain a real extension of expressive power.

3.1 Cardinality predicates

We first extend MS logic by constructing formulas with the help of the new atomic formu-
las of the form Fin(X) where X is a set variable. Such a formula is valid iff X denotes
a finite set. We shall denote by MS(R,)) the corresponding sets of formulas. We have
MS(R,Y)C MS!(R,)).

This extension is of interest only in the case where we consider possibly infinite struc-
tures. In finite structures, Fin(X) is always true, and every formula in MSf(R,)) can
be simplified into one in M S(R,)), that is equivalent in finite structures. Otherwise, we
obtain a real increase of expressive power because the finiteness of a set is not, in general,
MS-expressible. See Corollary 3.3 below. We wrote “in general” because in certain struc-
tures like binary directed trees, it is, as we shall see.
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We now introduce an extension of MS logic called counting monadic second-order logic
and denoted by CMS. For every integer p > 2, for every set variable X, we let Card,(X) be
a new atomic formula expressing that the set denoted by X is finite and that its cardinality
is a (possibly null) multiple of p. We denote by CMS(R,)) the extension of MS¥(R,))
with atomic formulas of the forms Card,(X) for p > 2, where X is a set variable. We
have thus a hierarchy of languages MS C M ST C CMS. We shall discuss cases where the
corresponding hierarchy of graph properties is also strict.

Lemma 3.1 For each k € N, there is a first-order formula in FO(D,{X?}) expressing that
the set denoted by X has cardinality k.

Proof : We only give the formula for £ = 3 :
El.’L'l,.’EQ,CL'g[CL'l EXNrxs € XANx3 € XNy =290 A1 =23 Ay =23 A
Vylye X = x1 =yVas=yVaz=y)]. O

It follows that one can express in CMS that a set X is finite and has a cardinality of
the form ¢ + Ap for some A € N where 1 < ¢ < p : it suffices to write that for some Y and
Z,X=YUZ,YNZ=0,Card(Y) = q and Card(Z) is a multiple of p. We now recall a
result from Courcelle [11].

Proposition 3.2 Every formula ¢ € MS(0,{X1,---,Xn}) is equivalent to a finite dis-
junction of conjunctions of conditions of the forms Card(Y1 NYoN---NY,) = m or
CardYyNYyN---NY,) > m where m € N and, for each i = 1,---,n,Y; is either X;
or D — X;, where D is the domain of the considered structure.

By Lemma 3.1 the conditions Card(Y; NY>N---NY,,) = m and Card (Y1NY2N---NY,) >m
can be expressed by formulas in FO(@, {Y1,---,Y,}). This result shows that MS logic is
equivalent to FO logic for “pure” finite or infinite sets.

Corollary 3.3 CMS is strictly more expressive than MS on finite sets. MST is strictly
more expressive than MS on infinite sets.

Proof : Let us assume that a formula ¢ € MS(,{X}) can express, in every finite set D
that a subset X of D has even cardinality. By Proposition 3.2, ¢ can be expressed as a
disjunction of conditions of the forms :

(1) Card(X) = m and Card(D — X) =m',
(2) Card(X) =m and Card(D — X) > m/,
(3) Card(X) > m and Card(D — X) =m/',
(4) Card(X) > m and Card(D — X) > m/.

We let M be the maximum integer m or m’ occurring in these conditions. No condition of
the form (3) or (4) can appear because it can be valid for sets X with large enough odd
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cardinality. The remaining conditions imply that Card(X) < M. But then ¢ is not valid
for certain sets X with even cardinality larger than M. Contradiction.

If we now assume that ¢ as above expresses that X is finite we also get a contradiction
by the same case analysis. O

This proves that for finite structures, we have the hierarchy (where C indicates a proper
increase of expressive power and = indicates an equivalent one)

MS=MSFccMs
whereas for general (possibly infinite) structures we have
MSc MST ccMs.

We shall now investigate classes for which these proper inclusions become equivalences.

3.2 Linearly ordered structures
We let £ be the class of finite linear orders ; we shall represent them by structures of the

form < D,<p> as explained in Subsection 2.1.

Lemma 3.4 For every p > 2 one can construct a formula v,(X) € MS({<},{X}) express-
ing in every D € L that X has a cardinality equal to 0 modulo p.

Proof : One can easily write a formula 7, expressing the following :
either X is empty or there exist sets Y7,---,Y), forming a partition of X and such that

1. the first element of X is in Y7,
2. the last element of X is in Y},

3. for every two elements z,y of X such that y is the successor of z for the restriction
to X of the order <p, then, y € Y;4; if x € Y}, for some ¢ = 1,---,p, and y € Y7 if
r€eY, O

This lemma extends to any class C of finite structures on which a linear order is definable
by MS-formulas. Let us define precisely this notion.

Let C C STR(R) for some finite set R of relation symbols. Let 8y € MS(R, {X1, -+, Xn})
and 61 € MS(R, {x1,22,X1, -+, X,}). We say that (6g,61) defines a linear order on the
structures of C if the following conditions hold, for every S € C :

1. SE3Xy, -, Xnbo
2.8 IZVXD"'?XH[HO :>V£L‘,y,2{01(£ﬂ,iﬂ) A (01($>y) /\01(]/,-’15) — T = y)
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/\(61 ('Tay) A gl(ya Z) - 01 (.’L’, Z)) A (01 (1’7y) \ 01 (yﬂ(}))}]

In words this means that for every choice of sets Dy, ---, D, satisfying 6y, the binary
relation defined by 6; where X1,---, X,, take respectively the values D1,---, D, is a linear
order on Dg, and that for every S € C, there is at least one such tuple from which a linear
order is definable by 6.

Proposition 3.5 Let C be a class of finite structures on which a linear order is MS-
definable. The CMS-expressible properties of the structures in C are MS-expressible.

Proof: We let R be such that C C STR(R). Let (8o(X1,---, Xy),01(x,y, X1,---, X)) be
a pair of formulas that defines a linear order on every structure of C. Let ¢ € CMS(R, ()
express some property of the structures of C. We can assume that the variables X;,---, X,
have no occurrence in . For each p, we let v, = y,[01/ <] € MS(R, {X1,---,X,}) where
vp is from Lemma 3.4. For every S € C, for every Dy,---,D,, C Dg satisfying 6, for every
D C Dg then

S E (D, D1, Dy)

iff Card(D) is a multiple of p.

We let ¢’ be obtained from ¢ by the replacement of every atomic formula Card,(Y") by
Yp[Y/X]. We let then ¢” be the formula of MS(R,{X}) :

3X17"'7Xn[60(X17“'7Xn) /\QOI(X7X17"'7XR)]‘

If S E ¢"(D) then S |= 09(Dy,---,D,) for some Dy,---,D, and S | ¢'(D,Dy,---,D,)
hence S |= ¢(D) by the construction of ¢. Conversely, if S = ¢(D) then there exists
(Dy, -+, Dy,) satisfying 6y hence S |= ¢'(D,Dy,---,D,) and S | ¢” (D). Hence ¢ is equiv-
alent to ¢” in every structure S in C. O

A directed tree is a directed graph, every vertex of which is reachable from some vertex
(called the root) by one and only one path. (In particular it is connected and has no circuit).

Proposition 3.6 Let d € N. One can define by means of MS formulas a linear order on
(possibly infinite) directed trees of degree at most d, and more generally on forests consisting
of at most d trees of degree at most d.

Proof: Let T be a directed tree given by the structure < Vz, sucr >. We denote by <7 the
reflexive and transitive closure of sucy. A partition (Vi, Vs, -+, Vy) of Vi is good if no two
successors of a vertex belong to a same set V;. If T has degree at most d (i.e., if each vertex
has at most d successors) then Vi has a good partition in d sets. From a good partition
(Vi,--+,Vg) of Vp, we can define the following linear order :
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x <y iff either z <7 y or there exist z, 2, y’ such that zsucrz' < xz,zsucry’ <ry,z' €
Vi,y' € Vyand i < j.

It is not hard to see that < is a linear order on V. An FO;-formula 6y(Xq,---,Xy)
can express that a given d-tuple (V1,Va,---,Vy) of subsets of Vp is good and an MS;-
formula 61 (x,y, X1,---,X4) can express that © < y holds where X; takes the value V; (for
i=1,---,d) and (V1,---,Vy) is the good partition from which < is defined. (One can write
61 with the help of the formula ¢; of Lemma 1.8.)

Hence (6y, 61) defines a linear order of Vi (and even a topological sorting) for every tree
T of degree at most d. The proof for forests is similar except that in the definition of a good
partition, we require that the roots of two trees of the forest do no belong to the same set
V;. O

We refer the reader to Courcelle [18] for extensions of this result to other types of graphs
than forests.

3.8 Finiteness

We know that the finiteness of a set is not MS-expressible in general. However it is in certain
structures. Let < D, <p> be a linear order isomorphic to N. A subset X of D is finite iff
it has a maximal element, which is FO-expressible. We shall use this observation in order
to define classes of graphs in which finiteness is MS-expressible. For these classes of graphs
the languages M S and M S7 are thus of equal expressive power.

Proposition 3.7 Let T be the class of directed trees, each vertex of which has finite degree.
The finiteness of a set of vertices of a tree in T is MS-expressible.

Proof : We represent a directed tree T' by the structure T = < Vp,sucyr >. We de-
note by rootr the root of T'. Every vertex is accessible from the root by a directed path.
The <p-maximal elements of V7 are the leaves and rootr is the unique <p-minimal element.

For each nonempty X C Vy we let I(X) := {y € Vpr /y <r z,z € X} be the ideal
generated by X. The graph T[I(X)] is a directed tree and its root is rooty.

Claim : X is infinite iff the tree T[I(X)] has an infinite branch.
Proof: Let (yo,y1,92," -, ¥:,--) be an infinite branch in T[I(X)]. We construct as follows
an infinite sequence in X, proving thus that X is infinite :

1. we let g € X be an element such that yo <7 xo;

2. having defined z;, we define x;4; as follows : we let ¢ be such that y; is at a larger
distance to the root than z;. We let then z;4; be any element of X such that y; <7

Tji1-
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The elements zg,x1,---,2;,--- of X are at strictly increasing distances to the root.
Hence they are pairwise distinct and X is infinite.

Conversely, if X is infinite then I(X) is infinite (since X C I(X)) hence the tree T[I(X)]
has an infinite branch by Koenig’s lemma. O

We now complete the proof of the proposition. One can construct an MS formula
0(X,Y) expressing that, in a directed tree T :

Y is linearly ordered by <p, and for every y € Y there is z € Y such that y <p z and
z <p x for some z € X.

It follows from the claim that a set X is finite iff §(X,Y") does not hold for any set Y.
O

Corollary 3.3 and Propositions 3.6 and 3.7 yield the following result (we omit details) :

Corollary 3.8 (1) Let d € N'. The languages MS, M S’ and CMS are equally powerful for
expressing properties of trees of degree at most d.

(2) The languages MS and MSY are equally powerful for expressing properties of trees
of finite degree, and the language CMS is strictly more powerful than them.

4 Monadic second-order definable transductions

In this section, we use MS formulas in order to define certain graph transformations, that
are as important in the theory of context-free graph grammars as are rational transductions
in language theory.

A binary relation R C A x B where A and B are sets, typically of words or of trees,
can be considered as a multivalued partial mapping associating with certain elements of A
one or more elements of B. It is called in this case a transduction : A — B. Transduc-
tions of words and trees, defined in terms of finite-state automata with output are essential
in Formal Language Theory, especially in constructions concerning context-free grammars.
(See Berstel [4]). Does there exist an analogous notion for graphs ? Since there is no conve-
nient notion of graph automaton, there is no “machine-based” notion of graph transduction.
However, by using a classical technique of logic called “interpretation”, by which a structure
is defined in another one, one can define transformations of structures, whence of graphs
and hypergraphs via their representations by structures. The formulas defining a structure
T inside another one S (or rather : inside the union of k disjoint copies of S) will be MS
formulas.
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4.1  Transductions of relational structures

We first define (monadic second-order) definable transductions of relational structures. Let
R and Q be two finite ranked sets of relation symbols. Let W be a finite set of set variables,
called here the set of parameters. (It is not a loss of generality to assume that all parameters
are set variables.) A (Q, R)-definition scheme is a tuple of formulas of the form :

A= ((107 ¢17 ) wlw (ew)wEQ*k)
where k > 0,0k := {(¢,]) | ¢ € Q,] € [k]" D}, o € MS(R,W),¢; € MS(R,W U {z1}) for
i=1,---,k 0, € MS(RWU {21, -, 2, }), for w = (q,f) € k.

These formulas are intended to define a structure T' in STR(Q) from a structure S in
STR(R) and will be used in the following way. The formula ¢ defines the domain of the
corresponding transduction ; namely, T is defined only if ¢ holds true in S for some assign-
ment of values to the parameters. Assuming this condition fulfilled, the formulas 11, - - - , ¥y,
define the domain of T as the disjoint union of the sets D1, --, Dy, where D; is the set of
elements in the domain of S that satisfy «; for the considered assignment. Finally, the
formulas 6, for w = (q,j)j € [k]*(9) define the relation 7. Here are the formal definitions.

Let S € STR(R), let v be a W-assignment in S. A Q-structure T with domain Dy C
Dg x [k] is defined in (S,v) by A if :
W) Sy Ee
(ii) Dr = {(d,4) | d € Ds,i € [k],(S,7,d) = i}
(iii) for each ¢ in Q :
qr = {((d1,41), -+, (dp,ir)) € D [ (S,7,dr, -+ di) 6, 7},
where j = (i1, - - -, i) and t = p(q).

By (S,v,dy,---,dr) E (¢.)» We mean (S,v) E 0,7 Where ~' is the assignment
extending 7, such that v/(x;) = d; for all 4 = 1,---,t ; a similar convention is used for

(5,7,d) = ¢i.)

Since T is associated in a unique way with S,y and A whenever it is defined, i.e., when-
ever (S,7) |E ¢, we can use the functional notation defa (S, ) for T

The transduction defined by A is the relation defa := {(S,T) | T = defa(S,~) for some
We-assignment v in S} C STR(R)xSTR(Q). A transduction f C STR(R)xSTR(Q) is
definable if it is equal to defa for some (Q, R)-definition scheme A. In the case where W =
(), we say that f is definable without parameters (note that it is functional). We shall refer
to the integer k by saying that defa is k-copying ; if £ = 1 we say that it is noncopying and
we can write more simply A as (¢, v, (64)4e0)- In this case :

Dy ={de Dgs|(S,7,d) = ¢} and for each ¢ in Q
gr = {(d1,---di) € Dy | (S,7,d1, - di) 8}, where t = p(q).
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Before applying these definitions to general hypergraphs, we give three examples. Our
first example is the transduction that associates with a graph the set of its connected com-
ponents. A graph G is represented by | G |2 (see Section 2).

The definition scheme A given below uses a parameter X. It is constructed in such a
way that defa(] G |2,{z}) is the structure | G' |» where G’ is the connected component of
G containing the vertex . We let (¢, 1, 0;,.) be the noncopying definition scheme where :

@ is a formula with free variable X expressing that X consists of a unique vertex,

1 is a formula with free variables X and x expressing that either z is a vertex linked by a
path (where edges can be traversed in either direction) to the vertex in X, or z is an
edge, one end of which is linked by such a path to the vertex in X,

Oinc is the formula inc(z, 22, x3).

It is straightforward to verify that A is as desired.

Our second example is the functional transduction that maps a word w in {a, b}" to the
word u3. (We denote by {a, b} the set of nonempty words written with a and b.) In order
to define it as a transduction of structures, we represent a word u in {a,b}* by the structure
|| w || defined in Subsection 1.1. We let A be the 3-copying definition scheme without

parameter (¢, ¥1,%2,%3, (O(suc,ij))i.j=1,23> (O1aba,i))i=1,2,3, (O(1aby,i))i=1,2,3) such that :
 expresses that the input structure indeed represents a word in {a,b}™,
¥1,12,13 are identical to the Boolean constant true,
O (suc,i,j) (x1,22) is suc(zy,x2) if i = j,

O (suc,i,j) (T1,T2) expresses that x; is the last position and that x is the first one if i = 1
and j =2, orifi=2and j =3,

O (suc,i,j) (T1,72) is the constant false if i # j and if (4,7) ¢ {(1,2),(2,3)},
O (1aba.i) (1) is laby(z1) for i = 1,2,3,
O (1aby,i) (71) is laby(x1) for i = 1,2, 3.

We claim that defa(S) = T if and only if S is a structure of the form || u || and T is the
corresponding structure || u? ||. To take a simple example, if S = < {1, 2, 3,4}, suc, lab,, lab, >
representing the word abba, then defa(S) is the structure

T =< {11, 21,341,414, 12, 22, 32,42, 13,23, 33,43}, S’U,CI, lab;, labf, >
where we write 4; instead of (¢, j), so that i; is the jth copy if ¢ for j = 1,2,3 and

suc'(i;, km) holds if and only if k,, is the successor of i; in the above enumeration of the
domain of T,
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labl, (i;) holds if ¢ € {1,4},5 € {1,2,3} and
laby(i;) holds otherwise.

This is an example of a definable transduction from words to words that is not a rational
one. (This transduction will also be used as a counterexample in Proposition 4.6 below).

Our last example is the product of a finite-state automaton A4 by a fized finite-state
automaton B. A finite-state automaton is defined as a 5-tuple A = < A,Q,M,I,F >
where A is the input alphabet, (there we take A = {a,b}),Q is the set of states, M is the
transition relation which is here a subset of @ x A x @} (because we consider nondeterministic
automata without e-transitions), I is the set of initial states and F' is that of final states.
The language recognized by A is denoted by L(A). The automaton A is represented by the
relational structure : | A] = < Q,trans,, transy, I, F' > where trans, and trans, are binary
relations and :

trans,(p, q) holds if and only if (p,a,q) € M,
transy(p, ¢) holds if and only if (p,b,q) € M.

Let B=< A,Q',M’',I' F' > be a similar automaton, and AxB = < A,QxQ", M", Ix
I' F x F' > be the product automaton intended to define the language L(A)NL(B). We
let Q" be {1,---,k} (let us recall that B is fixed). We shall define a definition scheme A
such that defa(] A|) = | AxB|; it will be k-copying since the set of states of AxB is
Q x{1,---,k}. Welet A = (o,¢1, Uk, (Ow)wer*k), where R = {trans,,transy,I, F}
and:

 is the constant true (because every structure in ST R(R) represents an automaton ; this
automaton may have inaccessible states and useless transitions),

Y1, -+, are the constant true,

O(transa,i,j) (T1,22) is the formula trans,(z1,x2) if (i,a, ) is a transition of B and is the
constant false otherwise,

O (transy,i,j) is defined similarly,
6(1,)(x1) is the formula I(x) if 7 is an initial state of B and is false otherwise,
0(F,i)(z1) is defined similarly.

Note that the language defined by an automaton A is nonempty if and only if there
is a path in A from some initial state to some final state. This latter property is express-
ible in monadic second-order logic. Hence it follows from Proposition 4.3 below that, for
a fixed rational language K, the set of structures representing an automaton A such that
L(A)NK is nonempty is definable. This construction is used systematically in Courcelle [17].

The definitions concerning definable transductions of structures apply to hypergraphs
via their representation by relational structures as explained above. However, since we
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have two representations of hypergraphs by logical structures, we must be more precise.
We say that a hypergraph transduction ¢, i.e., a binary relation f on hypergraphs is (3,j)-
definable, where i and j belong to {1,2} if and only if the transduction of structures
{(| G li,] G' 1) / (G,G") € f} is definable. We shall also use transductions from trees
to hypergraphs. Since a tree ¢ is a graph, it can be represented either by | ¢ | or by | ¢ |».
However, both structures are equally powerful for expressing monadic second-order proper-
ties of trees and definable transductions from trees to trees and from trees to graphs. (This
follows from the proof of Theorem 2.4). When we specify a transduction involving trees (or
words which are special trees) as input or output we shall use the symbol * instead of the
integers 1 and 2, in order to recall that the choice of representation is not important in these
cases. We shall use definable for (*,* )-definable.

Here are a few facts concerning definable transductions of structures.

4.1.1. Fact : If f is a definable transduction, there exists an integer k such that Card(Dr) <
kCard(Dg) whenever T belongs to f(S).

4.1.2. Fact : The domain of a definable transduction is MS-definable.

Proof : Let A be a definition scheme as in the general definition with W = {X;,---, X,,}.
Then Dom(defa) ={S / S E3IX1, -, Xnp}. O

The next two propositions list examples of transductions of words, trees and graphs that
are definable.

Proposition 4.1 The following mappings are definable transductions : (1) word homomor-
phisms, (2) inverse nonerasing word homomorphisms, (3) gsm mappings, (4) the mirror-
image mapping on words, (5) the mapping Au.[u™] where u is a word and n a fized integer,
(6) the mapping that maps a derivation tree relative to a fized context-free grammar to the
generated word, (7) linear root-to-frontier or frontier-to-root tree transductions.

The proofs are easy to do. Let us recall that a gsm mapping is a transduction from
words to words defined by a generalized sequential machine, i.e., a (possibly nondetermin-
istic) transducer that reads at least one input symbol and outputs and a (possibly empty)
word on each move. A special case of (5) has been constructed in detail in our second
example before Fact 4.1.1. See Gecseg and Steinby [42] or the survey by Raoult [54] for tree
transductions. O

Fact 4.1.1 which limits the sizes of the output structures, shows that certain trans-
ductions are not definable. This is the case of inverse erasing word homomorphisms and
of ground tree transducers except in degenerated cases (see Dauchet et al. [28] or [54] on
ground tree transducers).

¢Graphs are special hypergraphs. We shall speak of graph transduction if appropriate.
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Proposition 4.2 The transductions that associate with a graph G : (1) its spanning forests,
(2) its connected components, (3) its subgraphs satisfying some fixed 2-definable property, (4)
its mazimal subgraphs satisfying some fixed M Sy-definable property (mazimal for subgraph
inclusion), (5) the graph consisting of the union of two disjoint copies of G, (6) its minors,
are all (2,2)-definable. The mapping associating with a graph its line graph is (2,1)-definable
but not (2,2)-definable.

We recall that the line graph of a graph G has Eq as set of vertices and has undirected edges
between any two vertices representing edges sharing a vertex (in G).

Proof : Assertions (1)-(6) are easy consequences of the existence of an MS formula express-
ing that two given vertices are linked by some path. See Section 1. Assertion (6) is proved
in Courcelle [12]. In the last assertion, the (2,1)-definability is an easy consequence of the
definition of a line graph. See [23] for the negative part of this assertion. O

4.2 The fundamental property of definable transductions

The following proposition is the basic fact behind the notion of semantic interpretation
([53]). It says that if T' = defa (S, u) i.e., if T is defined in (S, x) by A, then the monadic
second-order properties of T' can be expressed as monadic second-order properties of (S, u).
The usefulness of definable transductions is based on this proposition.

Let A = (0,91, ¥k, (Ow)weg+r) be a (Q,R)-definition scheme, written with a set
of parameters WW. Let V be a set of set variables disjoint from W. For every variable
X in V, for every i = 1,---,k, we let X; be a new variable. We let V' := {X;/X € V,
i=1,---,k}. For every mapping n: V' — P(D), we let n* : V — P(D x [k]) be defined by
n*(X) =n(X;) x {1} U---Un(Xy) x {k}. With these notations we can state :

Proposition 4.3 For every formula B in MS(Q,V) one can construct a formula §' in
MS(R,V'UW) such that, for every S in STR(R), for every assignment p: W— S for every
assignment 1 :V — S, we have :

defa(S,p) is defined (if it is, we denote it by T), n* is a V-assignment in T, and
(T,n") E 8
if and only if (S,mUp) E B

Note that, even if T is well-defined, the mapping n* is not necessarily a V-assignment in
T, because n*(X) is not necessarily a subset of the domain of T which is a possibly proper
subset of Dg x [k].

Proof sketch : Let us first consider the case where defa is noncopying. In order to trans-
form J into §', one replaces every atomic formula q(u1, - - -, uy,) by the formula 6, (u1, - -, up)
which defines it in terms of the relations of S (See Lemma 1.5). One also restricts quan-
tifications to the domain of T', that is, one replaces Jx[u] by Jz[y)(z) A p] and IX[u] by
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AX[Vz{zr € X = ¢(2)} A p]. (See Lemma 1.6). In the case where & > 1, one replaces
3X[u] by a formula of the form 3Xy,3X,, -+, 3X[u'] where p' is an appropriate transfor-
mation of p based on the fact that X = X; x {1} U---U X} x {k}. The reader will find a
complete construction in [13], Proposition 2.5, p. 166. O

From this proposition, we get easily :

Proposition 4.4 (1) The inverse image of an MS-definable class of structures under a
definable transduction is MS-definable.
(2) The composition of two definable transductions is definable.

Proof: (1) Let L C STR(Q) be defined by a closed formula § and defa be a transduction
as in Proposition 4.3. Then def ' (L) C STR(R) is defined by the formula 37, ---,V,[3']
where Y7, ---,Y,, are the parameters and 3’ is constructed from S as in Proposition 4.3.

(2) Let A = (o, 1, Yk, (Ow)weo,,) be a k-copying definition scheme and A’ =
(@01, g, (01))wep«k) be a k’-copying such that defa is a transduction from STR(R)
to STR(Q) and defa is a transduction from ST R(Q) to STR(P). Let f be the transduc-
tion defarodefa from STR(R) to STR(P) : we shall construct a definition scheme A” for
it. Just to simplify the notation we shall assume that the parameters of A are Y and Y’ and
that those of A’ are Z and Z’'. We shall also assume that the relations of P are all binary.
The general case will be an obvious extension.

In order to describe A” we shall denote by S an R-structure, we shall denote by T
the Q-structure defa(S,Y,Y’) where Y and Y’ are subsets of Dg and we denote by U the
P-structure defa:(T,Z,Z') where Z and Z' are subsets of Dy. Hence Dr is a subset of
Dg x [k], and Dy is a subset of Dg x [k] x [k'] which is canonically isomorphic to a subset
of Dg x [kk']. Hence A” will be kk'-copying. The parameters Z and Z' represent sets of the
respective forms Z = Zy x {1} U---UZy x{k} and Z' = Z] x {1}U---UZ} x {k}. Hence the
definition scheme A” will be written in terms of parameters Y, Y', Z1,---,Zy, Z1,- -+, Z;,. It
will be of the form :

(@7, (W70 5)iemiem 07 ,60), .5 JoeP ivic ek )
so that the domain of Dy will be handled as a subset of Dg x [k] x [k'] and not of Dg x [kk'].
The formulas forming A” will be obtained from those forming A’ by the transformation of
Proposition 4.3. We first consider ¢” which should express that de fa (S,Y,Y”) is defined, i.e.,
that (S,Y,Y") E ¢, and that if Z = Z; x {1}U---UZp x{k}and Z' = Z] x{1}U---UZ} x{k},
then defa(T, Z,Z') is defined, i.e., that (T, Z, Z") = ¢ which is equivalent to :

(Svyvyl)Zlv'">Zk7Ziv"'7ZI/c) |:T

where 7 is obtained from ¢’ by the transformation of Proposition 4.3. Hence ¢ is the
conjunction of ¢ and 7. We omit the constructions of the other formulas because they are
quite similar. O
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We could define more powerful transductions by which a structure 7' would be con-
structed “inside” S x S instead of “inside” a structure formed of a fixed number of disjoint
copies of S (like in [40]. However, with this variant, one could construct a second-order for-
mula 8’ as in Proposition 4.3 (with quantifications on binary relations), but not a monadic
second-order one (at least in general). We wish to avoid non monadic second-order logic
because most constructions and decidability results (like those of [11], [12]) break down. In
the third example given before Fact 4.1.1, we have shown that the transduction associating
the automaton A4 x B with an automaton A is definable (via the chosen representation of
finite-state automata by relational structures) for fized B.

Here are some other closure properties of the class of definable transductions.

Proposition 4.5 The intersection of a definable transduction with a transduction of the
form Ax B where A and B are MS-definable classes of structures, is a definable transduction.

Proof : Straightforward. See [13] O

Proposition 4.6 (1) The image of an MS-definable class of structures under a definable
transduction is not MS-definable in general.

(2) The inverse of a definable transduction is a transduction that is not definable in general.

(8) The intersection of two definable transductions is a transduction that is not definable in
general.

Proof : (1) The transduction of words that maps a™b to a™ba™ba™b for n > 0 is definable
(this follows from Proposition 4.5 and the second example given before Fact 4.1.1). The
image of the definable language a*b is a language that is not regular (and even not context-
free), hence not definable by the result of Biichi and Elgot ([62], Thm 3.2) saying that a set
of words is MS-definable iff it is regular.

(2) The inverse of this transduction is not definable since, if it were, its domain is would be
definable (by Fact 4.1.2), hence regular, which is not the case.

(3) The intersection of the definable transductions of words that map a™b™ to ¢”, and a"b™
to ¢™ is the one that maps a™b"™ to ¢". It is not definable because its domain is not a an
MS-definable (regular) language. O

4.3 Comparisons of representations of partial orders, graphs and hypergraphs by relational
structures

We shall formulate in terms of definable transductions some transformations between several
relational structures representing the same object .

4.3.1 Fact : The transduction of < D, <p> into < D, sucp > where < D;<p> is a partial
order is definable, and so is its inverse. The transduction of | G |2 into | G |1 where G is a
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graph or a hypergraph is definable.

It follows in particular from Proposition 4.4 that a class of finite partial orders is MS-
definable w.r.t. one of the representations < D, <p> or < D,sucp > iff it is w.r.t. the
other (this has been already proved in Proposition 2.1). It follows also that a class of graphs
or hypergraphs is M So-definable if it is M S;-definable. We shall prove the converse for any
subclass of Cy, the class of simple directed graphs having a semi-strong k-coloring, where k
is any (fixed) integer (see Subsection 2.2).

Lemma 4.7 Let k € N. One can construct a definable transduction & that associates with
| G |1 a structure T isomorphic to | G |2, for every graph G in Cy,.

Proof : Let G be a simple directed graph with a semi-strong coloring v : Vg — {1,---,k}.
A mapping v : Vg — {1,---,k} can be specified by the k-tuple (V1,---, Vi) of subsets of Vg
such that V; = v~ 1(i) for every i = 1,---,k. Thus a formula 7 € MS(Rs,{X1, -, Xk})
can express that a given tuple (V7,---,V}) represents a semi-strong k-coloring. It follows
that the class C, is MS-definable (the corresponding formula is 7’ defined as 3X, ..., Xg.7).

Let G € Cy, and (V- -, V) represent a semi-strong k-coloring. We let rep : Eq¢ — E C
Ve x {1,---,k} be the bijection such that : rep(e) = (v,i) iff e links w to v where w is a
vertex in V;. It is one-to-one since (Vi, - - -, V) represents a semi-strong coloring (the origins
of two edges with same target have different colors). We shall thus construct T isomorphic
to | G |2 with domain Vg x {0} UE C Vi x {0,1,---,k} as image of | G |; by a definable
transduction. We let A be the following deﬁnltlon scheme with parameters Xy,---, X}, :

A= (7T/a¢0,¢1,"'7¢k7( (inc,j) )JE[O,k‘P)v
where 7’ has already been defined, and :
o is : true
i is : Jwlw € X; ANedg(w,xq)], fori=1,---k
O(inc,i,0,0) 18 : 1 = 3 A edg(xa,73) Aoy € X; fori=1,--- k and

O (inc,n,m,p) 18 : falseif n =0 or m # 0 or p # 0.

Claim : For every graph G in Cy, for every k-tuple Vi,---,V}, representing a semi-strong
k-coloring of G, the structure defa(| G |1, V1, -+, Vi) is isomorphic to | G |».

Proof of Claim : Let T = defa(] G |1,V4,---,Vi). Then Dy = Vg x {0} U E from the
definitions. From the definition of the formulas 6;,. ;) we have :

((z1,n), (x2,m), (x3,p)) € incy iff

n # 0 and m = p =0 and edg(z2,z3) and 22 € X,, and z1 = x5 iff

n # 0 and m = p =0 and rep(e) = (x1,n) where e is the edge of G that links x5 to x3.
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It follows that | G |2 is isomorphic to T by the isomorphism mapping v € Vg onto (v, 0)
and e € Eg onto rep(e). O

The lemma follows immediately. O

From Lemma 4.7, one obtains immediately Lemma 2.5 because any two isomorphic
structures satisfy the same formulas.

5 Equational sets of graphs and hypergraphs

The easiest way to define context-free sets of graphs is by systems of recursive equations.
These equations are written with set union and the set extensions of operations on graphs
that generalize the concatenation of words. By these operations one can generate all finite
graphs from elementary graphs more or less as one can generate finite nonempty words from
the letters, by means of concatenation. This idea also applies to hypergraphs. In this sec-
tion, we first present systems of equations in a general algebraic setting. Then we review the
operations on graphs and hypergraphs that yield algebraic presentations of the VR sets of
graphs and of the HR sets of hypergraphs in terms of systems of recursive set equations. The
grammatical definitions of these sets, by context-free graph grammars of various types are
investigated in detail in other chapters of this book. The relevant operations are presented
in a uniform way in terms of operations on structures. This will be helpful for obtaining
theorems relating MS logic and context-free graph grammars.

We first review equational sets in a general algebraic setting ; then we define operations
on graphs yielding VR sets of graphs ; then we define operations on hypergraphs yielding
the HR sets of hypergraphs. We also state logical characterizations of the VR sets of graphs
and of the HR sets of hypergraphs from which follow closure properties under definable
transductions.

5.1 Equational sets

As in many other works, we shall use the term magma borrowed from Bourbaki [7] for what
is usually called an abstract algebra or an algebra. The words “algebra” and “algebraic”
are used in many different contexts with different meanings. We prefer to avoid them com-
pletely and use fresh words. Many-sorted notions are studied in detail by Ehrig and Mahr
[32], Wirsing [66] and Wechler [65]. We mainly review the notation. We shall use infinite
sets of sorts and infinite signatures, which is not usual.

F-magmas

Let S be a set called the set of sorts. An S-signature is a set F' given with two mappings
a: F — seq(S) (the set of finite sequences of elements of S), called the arity mapping,
and o : F — S, called the sort mapping. The length of a(f) is called the rank of f, and
is denoted by p(f). The type of f in F is the pair (a(f),o(f)) that we shall rather write
§1 X 82 X -+ X 8, — s where a(f) = (s1,---,s,) and o(f) = s. (We may have n =0 ; in
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this case f is a constant). If S has only one sort, we say that F' is a ranked alphabet, and
the arity of a symbol is completely defined by its rank.

An F-magma, i.e. an F-algebra ([32], [66], [65]), is an object M = < (Mj)ses, (fm)frer >,
where for each s in S, M, is a nonempty set, called the domain of sort s of M, and for
each f € F, the object fy is a total mapping : M,y — Mgy(y). These mappings are
called the operations of M. (For a nonempty sequence of sorts p = (s1,---,8,), we let
M, = Mg, X Mg, x ---x M, ). We assume that M; N My =0 for s # s'. We let M also
denote U{M;/s € S}, and for d € M, we let o(d) denote the unique s such that d € Mj.

If M and M’ are two F-magmas, a homomorphism h : M — M’ is a mapping h that
maps M, into M! for each sort s, and commutes with the operations of F. We shall call
it an F-homomorphism if it is useful to specify the signature F. We denote by T'(F') the
initial F-magma, and by T(F), its domain of sort s. This set can be identified with the set
of well-formed ground terms over F' of sorts s. If M is an F-magma, we denote by hys the
unique homomorphism : T(F) — M. If t € T(F)s, then the image of ¢ under hjys is an
element of My, also denoted by t5;. One can consider ¢ as a term denoting tyr, and tps as
the value of t in M. We say that F' generates a subset M’ of M if M’ is the set of values of
the terms in T'(F'). We say that M’ is finitely generated if it is the set of values of terms in
T(F') where F' is a finite subset of F'.

An S-sorted set of variables is a pair (X, o) consisting of a set X, and a sort mapping
o : X — S. It will be more simply denoted by X, unless the sort mapping must be specified.
We shall denote by T'(F, X) the set of well-formed terms written with FUX and by T(F, X);
the subset of those of sort s. Hence, T(F,X) =T (FUX) and T(F, X); = T(FUX),. How-
ever, the notations T'(F, X)) and T(F, X ), are more precise because they specify the variables
among the nullary symbols of FUX. Let X be a finite sequence of pairwise distinct variables
from X. We shall denote by T'(F, X)s, the set of terms of T'(F, X ), having all their variables
in the list X'. If t € T(F,X),, we denote by ¢y x the mapping : Myx) — M, associated
with ¢ in the obvious way, by letting a symbol f from F' denote fjs, (where o(X) denotes the
sequence of sorts of the elements of the sequence X'). We call tys x a derived operation of M.
If X is known from the context, we write ¢y instead of ¢ps x. This is the case in particular
if ¢ is defined as a member of T'(F, {z1,---,2k})s : the sequence X is implicitely (z1,- -, z).

Power-set magmas and polynomial systems
Let F' be an S-signature. We enlarge it into F. by adding, for every sort s in S, a new

symbol +; of type : s x s = s, and a new constant s of sort s. With an F-magma M we
associate its power-set magma :

P(M) :=< (P(Ms))ses, (fr(m))rery >
where

Qs’P(M) =0
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A1 +s73(M) A2 = Al UA2 (fOI‘ Al,AQ g Ms),
frony(Ax, - Ag) =" far(Ar, -+ Ap), e i= {far(ar, -+ ap)/ay € Ay, -+ ar € Ag}

for Ay C My, ,--+, Ay C My, wherea(f) = (s1,---,sx). (We denote by 7 g the set extension
of a mapping g.)

Hence P(M) is an Fy-magma. A polynomial system over F' is a sequence of equations
S = < up =p1,e, Uy = pyp >, where U = {uyg,---,u,} is an S-sorted set of variables
called the set of unknowns of S. Each term p; is a polynomial, i.e., a term of the form Qg
or t; +4ty +5 -+ - +5 tm, where the terms ¢; are monomials of sort s = o(u;). A monomial
is a term in T(F U U). The subscript s is usually omitted in +4 and in Q. A mapping
Spary of P(My(yy)) X =+ X P(Mg(y,)) into itself is associated with S and M as follows :
for A C Mo(ul), - Ap C Mo(un), we let

SP(M)(A17”'7AH) = (plP(M)(Alv'"7An)7'"7pn73(M)(A17"'7ATL))'
A solution of S in P(M) is an n-tuple (Ay,---,A,) such that A; C M,(,,) for each
i=1---,n and (Aly"'7An) = S'P(M)(Ala'”:An): ie.,

Ai:piP(M)(Ala'”vAn)vfor everyi:17”'7n' (2)

A solution of S is also called a fixed-point of Sp(ys). Every such system S has a least
solution in P(M) denoted by (L((S,M),u1), -+, L((S,M),uy)). (“Least” is understood
with respect to set inclusion). This n-tuple can be concretely described as follows :

where A9 =@ for all i =1,---,n and (A7, AJ+1) = Sp(M)(A{,---,A{l)

The components of the least solutions in P(M) of polynomial systems are the M-equational
sets. We denote by Equat(M) the family of M-equational sets and by Equat(M ), the sub-
family of those included in M.

We review the classical example of context-free grammars. Let A be a finite alphabet,
say A ={a1,---,an}. Let Fu = AU{., e} be the ranked alphabet where p(a;) = 0 for all
i,p(e) = 0,p(.) = 2. We denote by W4 the Fy-magma < A* . e a1, --,a, > where A*
is the set of words over A, . is the concatenation, ¢ is the empty word, aq,---,a, denote
themselves as words. It is a monoid (with a binary associative operation having a unit)
augmented with constants. The set Equat(Wa4) is the set of context-free languages over A.
This follows from the theorem of Ginsburg and Rice [43] that characterizes these languages
as the components of the least solutions of systems of recursive equations written with the
nullary symbols €,ay, - - -, a,, the concatenation and, of course, set union (denoted here by
+). Take for example, the context-free grammar G = {u — auuv,u — avb,v — avb,v — ab}
with nonterminal symbols v and v and terminal symbols a and b. The corresponding system
of equations is :

S = <u=a.(u(uv)) +a.(vb),v=a.(vb)+ab>.
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We now give an example concerning trees. By a tree T we mean a finite connected
undirected graph without multiple edges and cycles. The set of trees is denoted by 7. A
rooted tree is a pair R = (T,r) consisting of a tree T' and a distinguished node r called the
root. The set of rooted trees is denoted by R. The set of nodes of a rooted or unrooted tree
T is denoted by Np. Any two isomorphic trees are considered as equal. (The set of trees is
actually a quotient set w.r.t. isomorphism but we shall not detail this technical point).

We now define a few operations on trees and rooted trees. The types of these operations
will be given in terms of two sorts, ¢ and r, namely, the sort ¢ of trees and the sort r of
rooted trees. The first operation is the root gluing // : r x r — r. For S and T in R,
we let S/ /T be the rooted tree obtained by fusing the roots of S and T' (or rather, of two
disjoint isomorphic copies of S and T'). The second operation is the extension denoted by
ext :r — r. For T in R, we let ext(T) be the rooted tree obtained from T by the addition
of a new node that becomes the root of ext(T), linked by a new edge to the root of T. We
denote by 1 the rooted tree consisting of a single node (the root). Finally, we let fg:r — ¢
be the mapping that “forgets” the root of a rooted tree R. Formally, fg(R) = T where
R=(T,r)eR.

Hence, we have an {r,t}-sorted signature F' := {//,ext,1, fg} and a many-sorted F-
magma, TREE having R as domain of sort r,7 as a domain of sort ¢, and the operations
defined above. Hence, TREE = <R, T, //,ext, 1, fg>.

The set of trees of odd degree, i.e., such that the degree of every node is odd, is equal
to L((S,TREE), u) where S is the system

u=fglext(v))
S=< v= w//w+v//w/|w
w=ext(v)+ext(l)

The sorts of u,v and w are ¢,r and r. It is not hard to see that L((S, TREE), u) is the set of
(finite) trees of odd dregree. As a hint observe that L((S, TREE), v) is the set of rooted trees
different from 1, all nodes of which except the root have odd degree, and that L((S, TREE),
w) is the set of rooted trees such that all nodes have odd degree and the root has degree one.

The following result is due to Mezei and Wright [50].

Proposition 5.1 Let M and M’ be F-magmas. If h : M — M’ is an F-homomorphism, if
S is a polynomial system over F', then L((S,M'),u) = h(L((S, M), u)) for every unknown
u.

Proof: The homomorphism A : M — M’ extends into an F-homomorphism P4 : P(M) —

P(M') defined by Ph(A) = {h(a)/a € A} for A C M, s € S. It is easy to verify that for

every j € N :
5%(1\4/)(@’""@) =P h(s%(M)(@v“"@))
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where of course Ph(A1,---,A,) = (Ph(A1),---,7 h(Ay)) for every Ay,---, A, C M.
(The proof is by induction on j, using the fact that Ph is an F,-homomorphism). The
result follows immediately. O

Here is a consequence of Proposition 5.1. (We recall that hys denotes the unique homo-
morphism T'(F) — M).

Corollary 5.2 For every polynomial system S and for every unknown u of S we have
L((S,M),u) = hp(L((S,T(F)),u)). The emptiness of L((S, M), u) depends only on S and
u and is decidable.

This means that an equational set, defined as a component of the least solution of a poly-
nomial system S, is the image of the corresponding component of the least solution of S in
the F-magma of terms T'(F), under the canonical homomorphism. Hence the study of the
equational subsets of M can, in a sense, be reduced to the study of the equational sets of
terms and the homomorphism hjs. In particular, the emptiness of L((S,T(F)),u) can be
decided by tree automata techniques (see below) ; by the first assertion this set is nonempty
iff L((S, M), u) is nonempty, where M is any F-magma.

Sets of terms can be defined in several ways, by grammars of various types, by automata
(usually called ”tree automata”), or in terms of congruences on the magmas of terms T'(F).
Of special importance is the class of recognizable subsets of T'(F') characterized in terms of
finite-state tree automata, of regular tree-grammars, of congruences having finitely many
classes and also of monadic-second order formula. (See Courcelle [22]). We do not recall
these characterizations here ; we only refer the reader to the book [42] for automata, gram-
mars and congruences and to [62], Thm 3.2 for the characterization in terms of MS formulas.

In this section, we shall use the following result by Mezei and Wright [50], [42].

Proposition 5.3 : Let F' be a finite signature. A subset of T(F) is equational iff it is
recognizable.

The main part of its proof is the determinization of finite-state frontier-to-root tree-automata.

Corollary 5.4 : Let M be an F-magma (where F' may be infinite). A set L is M-equational
iff L = hp(K) for a recognizable subset of T(F') where F' is a finite subsignature of F.

If t € K and m = hj(t) then ¢ is a syntactic description of m, m is the value of ¢ in M.
If m € L is given, the parsing problem relative to the system of equations (equivalently the
grammar) from which K comes, consists in finding ¢ in K such that m = hp(t). If such ¢
does not exist, then m ¢ L. Otherwise the found ¢ is the desired syntactic analysis of m.
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5.2 Graphs with ports and VR sets of graphs

Graphs will be simple and directed, as in Section 1. They will have distinguished vertices
called ports and designated by special labels. We let C be a countable set called the set of
port labels. A graph with portsis a pair G = < H,P > where H is a graphand P C Vg xC
for some finite subset C' of C. We denote P by portg, Vg by Vg, Eg by Eqg,incg by incg
and edgy by edgs. We let also G° denote H. A vertex v is a p-port if (v,p) € portg. We
consider p as a label attached to v and marking it as a p-port. A vertex may have several
port labels. We let 7(G) be the set of labels of ports of G and we call this set the type of G.

We denote by GP(C) the class of graphs with ports G such that 7(G) C C where C is
a subset of C. We let GP denote the class of all graphs with ports. We now define some
operations on GP. If G,G' € GP and G,G" are disjoint (i.e., Vo NV} = 0) then G & G’ is
the disjoint union of G and G', and is defined as < G° U G'?, portg U portg: >. Clearly
T(GeG) =1(G)Ur(G).

The next operation adds edges to a given graph with ports. If p,q € C and G € GP, we
let add, ,(G) =< H,portg > where H is G° augmented with the edges (z,y) such that :

x is a p-port, y is a g-port,  # y, (z,y) is not already an edge of G°.

Hence H is simple and the operation add, , does not add loops to G. The type of
addp 4(G) is equal to that of G and addp 4(G) = G if G has no p-port or no g-port. Let
us note finally that the number of edges added to G by add,, , depends on the numbers of
p-ports and of g-ports and is not uniformly bounded.

A third operation will be useful, in order to modify port labels. Let P be a finite
subset of C x C. For G € GP we let : mdfp(G) = < G°%portg.P >. A vertex
v is a g-port of mdfp(G) iff it is a p-port of G for some p such that (p,q) € P. We
have T7(mdfp(G)) = {q / (p,q) € P for some p € 7(G)}. Two special cases of this op-
eration will be useful and deserve special notation : if C is a finite subset of C, we let
for G € GP(D), fgc(G) = mdfp(G) where P = {(d,d) / d € D — C} : this operation
“forgets” the p-ports for p € C. It simply “removes” the label p on the p-ports for each
p € C ; hence 7(fgc(G)) = 7(G) — C. If p1,pe, -, Pk, q1, -+, qr are labels in C with
D1, -, P pairwise distinct, we let for G € GP(D), renp, —q1.ps—rga,pu—ax (G) = mdfp(G)
where P = {(d,d) / d € D —{p1,---,pr}} U{(p1,q1), -, Pk, qx)}- This operation “re-
names” the port labels p; into ¢;, for all ¢ = 1,---,k. Hence 7(reny, o, proae (G)) =
(r(G@) = {p1, oD U{a / pi € 7(G),1 <i <k}

Equational sets of graphs with ports

Having defined operations on GP we can now write systems of equations intended to
define equational subsets of GP. Here is an example. The equation

u=p+ren;padd, ;(u® q))
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where p denotes the graph with a single vertex that is a p-port, and similarly for g, is intended
to define (in the sense of Subsection 5.1) the set of finite tournaments without circuits, all
vertices of which are p-ports. However we are facing a difficulty : the operation @ is partial
because G @ G’ is defined if and only if G and G’ are disjoint. It follows for instance that
G & G is undefined. We can make & into a total operation by letting G’ be “replaced in
G @ G' by an isomorphic copy G disjoint with G”. But now comes another difficulty : we
may have G @ (G' ® G) not equal to (G & G') & G} (depending on how the isomorphic
copies of the second arguments of the operations @ are chosen) which is clearly unsatisfac-
tory. However they are isomorphic and, actually, we are interested in properties of graphs
that are invariant under isomorphism. Let us call concrete a graph in GP and abstract the
isomorphism class of such a graph. We shall denote by G P the class of abstract graphs with
ports. We have thus a magma structure on GP because isomorphism is a congruence for the
operations @, mdfp and add, ;. Graph grammars and systems of equations define subsets of
GP. Logical formulas do the same because any two isomorphic relational structures satisfy
the same formulas of any of the logical languages we have considered. However, in order to
simplify the presentation we shall omit the distinction between GP and GP, and we shall
do as if & was total on GP.

We let Fy R denote the set of all operations @, mdfp, fgc,Teny, gy, pr—qr > ddp ¢ to-
gether with the constants p and p’ for p € C. If K C C, we denote by Fy r(K) the subset of
Fy g consisting of the above operations such that P C K x K,C C K, p1,q1,*, Pk, Gk, P, q €
K. The constant p’ denotes a graph consisting of one loop, the unique vertex of which is
a p-source. A term in T'(Fyg) will be called a VR-(graph) expression. It denotes a graph
with ports (actually an element of GP to be precise). We shall denote this graph by val(¢)
for t € T(FVR).

Proposition 5.5 : Every finite graph with port G is the value of some VR-expression in
T(Fyr(K)) where Card(K) < Maz{Card(Vg),Card(t(G))}.

Proof sketch : For each vertex v of G one chooses a port label p(v) (a different one for
each vertex). One defines then G by :

G = mdfp(...addp(v)m(vr)(...(... ®pv) @...)))

where the sum ... ® p(v) @ ... extends to all v € Vg, the operations add,,),(,/) are inserted
for all edges from v to v’ and P is the set {(p(v),q)/(v,q) € portg}. One uses p(v)¢ instead
of p(v) if v has a loop. We omit further details. O

A complexity measure on graphs follows from this definition :
(@) = Min{Card(K)/G = val(t),t € T(Fyr(K))}

This complexity measure is investigated in Courcelle and Olariu [26]. In particular it is
compared with tree-width (defined below in Subsection 5.3)
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An equational subset of GP will be called a VR set of graphs. Here VR stands for
“Vertex-Replacement” and refers to the generation of the same sets by certain context-free
graph grammars. These grammars are considered in another chapter of this book ([38]).
(The equivalence between equational systems on GP and these grammars was first proved
in Courcelle et al. [24]).

A logical characterization of the VR sets of graphs
We obtain immediately from Corollary 5.4 that :

a set of graphs with ports L is VR iff it is the set of values of the VR-expressions of
a recognizable set K C T'(Fyg(C)) for some finite set C' C C.

We have already recalled the theorem of Doner, Thatcher and Wright stating that a
subset of T'(F') (where F is finite) is recognizable iff it is MS-definable (see Thomas [62],
thm 11.1). We shall now prove that the mapping val : T(Fyr(C)) — GP is a definable
transduction (see Section 4). More precisely :

Proposition 5.6 : Let C be a finite subset of C. The mapping val : T (Fyr(C)) = GP(C)
is (*, 1)-definable.

Proof: A term t € T'(Fyr(C)) is considered as a finite directed tree the nodes of which are
labelled in F' = Fy g(C) and represented by the structure | t | = < Ny, sucy, sucs, (labg) fer >
where

N, is the set of nodes,

suci(z,y) <= y is the first (leftmost) successor of z,
suca(x,y) <= y is the second successor of z,

labs(x) <= f is the label of x.

The nodes have at most two successors since the symbols in F' have arity at most 2
(@ has arity two and all others have arity 1 or 0). A graph G in GP(C) is represented
by the structure | G |1 = < Vg, edgq, (ptec)ecec > where Vi is the set of vertices,
edgeq is the set of edges (edge C Vi x Vig), pte is the set of c-ports for ¢ € C. We let
Rs(C) = {edg} U {pt./c € C}.

Let us now consider ¢ € T(Fyr(C)) and G = val(t) € GP(C). We shall define Vi as a
subset of Ny, edge as a binary relation on N; (such that edgg C Vi x Vi), the sets pt.q as
subsets of Vi; (hence of Ny), all this by MS-formulas. We take Vi equal to the set of leaves of ¢
(i.e., of nodes without successors). If ¢ has no symbol mdfp or ren,_,,... then we can define :

edga = {(z,y) € N¢/x,y are leaves, x has label p, y has label ¢, there is a node z in N;
labelled by add), 4, a path from z to & on which there is no symbol fgc with p € C' and a
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path from z to y on which there is no symbol fgo with ¢ € C.}

Let us take the following example :
t = addy,(add, 4[p ® q ® fggpy(addy,(p © q))] © add, 4[q & r]).

There are 6 leaves, x1, z2, - - -, £ corresponding respectively to the constants p, ¢, p,q,q,r
in ¢t. Because of the “add, ,” operation there is an edge from z; to 2 but there is no edge
from z3 to x2 because of the “fg;,,” operation which “kills” the label p of x3.

The general construction must handle the fact that the operations mdfp (and reny_,....)
can modify certain port labels. Hence if z is a leaf of ¢t with label p, if y is an ancestor of
x then x is a vertex of the graph val(t/y) (where we denote by t/y the subterm of ¢ corre-
sponding to the subtree issued from node y) but it may not be a p-port : it may be a g-port
with ¢ # p or be not a port. In the last example w is not a p-port of val(t). The construction
can be completed with the help of the following lemma. We shall omit all further details. O

Lemma 5.7 : We fix C as in Proposition 5.6. For each p € C,one can construct a formula
wp(z,y) such that, for every t € T(Fyr(C)) and z,y € Ny :

It F eplz,y)

iff © is a leaf, y is an ancestor of x in the tree t and x is a p-port of val(t/y).

Proof : Without loss of generality we let C = {1,---,n} and p = 1. Let us take t €
T(Fyr(C)) ; let = be a leaf of t and y an ancestor of x. There exists a unique n tuple of
sets X1, -+, X, satisfying the following conditions :

(1) Xy U---UX, is the set of nodes of ¢ of the path from y to z,
(2) for every i = 1,---,n : z € X; iff z has label 4 (in t),

(3) for every z with y <7 z <7 x (see Section 2 for notation) for every i = 1,- -, n, letting
z' be the successor of z such that 2z’ <p x we have : z € X; iff

(3.1) either z has label & or add; ;» for some j,j' and 2z’ € X;
(3.2) or z has label mdfp for some P C C x C and (j,i) € P for some j and 2’ € Xj.

(Since fgc and ren. . are special cases of mdfp this last case also applies to them). It
is clear that for every z with y <7 z <7 z,z is an i-port in val(t/z) iff z € X;.

Conditions (1) (2) (3) above can be expressed by an MS formula ¢(z,y, X1, -, Xp).
The desired formula is thus ¢, (z,y) defined as

0(1:)?/) AEIX]?'">Xn[1/}($)y7X1>"')Xn) /\y S Xp]

where 6(x,y) expresses that x is a leaf and y is an ancestor of z. O
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We denote by B the set of finite binary directed trees. Formally (and more precisely) B
= T({f,a}) where f is a binary function symbol and a is nullary.

Theorem 5.8 ([34], [15]) : Let C be a finite subset of C. A subset of GP(C) is VR iff it is
the image of B under a (x,1)-definable transduction.

Proof: “Only if”. From Corollary (5.4), one obtains that if L is a VR set then L = val(K)
where K is a recognizable subset of T(Fyr(C)). By Doner et al.’s theorem, K is MS-
definable and wval is (*,1)-definable. It follows that L is the image of T(Fyr(C)) by a
(%, 1)-definable transduction (namely the restriction of val to K, see Proposition 4.5). The
classical encoding of terms by binary trees can be adapted and yields a bijection k of K onto
a definable subset K' of B such that k and k! are both (x, *)-definable (See [23], Lemma
2.4 for details). It follows that L is the image of B under a (x,1)-definable transduction,
namely the restriction of val o k! to K.

“If”. The proof is quite complicated and we refer the reader to [34] or [15], Corollary
49. O

Corollary 5.9 : The family of VR sets of graphs is closed under (1,1)-definable transduc-
tions.

Proof : Immediate consequence of Theorem 5.8 and the fact that the composition of two
(1,1)-definable transduction is (1,1)-definable. O

It follows for instance that the set of connected components of the graphs of a VR set
is a VR set.

5.3 Hypergraphs with sources and HR sets of hypergraphs

This section is fully analogous to the preceding one. We present operations on hypergraphs
upon which the (context-free) HR (“Hyperedge Replacement”) hypergraph grammars can
be defined as systems of equations.

Hypergraphs have been defined in Section 2.3. We assume that the ranked set A of
hyperedge labels is fixed and we shall not specify it in notation. We shall use operations on
hypergraphs needing to distinguish certain vertices by means of labels. We let C be a fixed
countable set of source labels, not to be confused with the set of hyperedge labels A.

A hypergraph with sources is a pair H =< G, s > consisting of a hypergraph G and a
total mapping s : C — Vi called its source mapping, where C is a finite subset of C. We say
that s(C) C Vg is the set of sources of H and that s(c) is its c-source where ¢ € C. We shall
also say that the vertex s(c) has source label c¢. A vertex that is not a source is an internal
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vertex. The set C is called the type of H and is denoted by 7(H). The source mapping of
H is also denoted by srcy. This mapping is not necessarily injective.

We shall denote by HS(C') the class of all hypergraphs of type C and by HS4(C) the
subclass of those having distinct sources, i.e., that have an injective source mapping.

We shall use the set S of finite subsets of C as a set of sorts. We now define some
operations on hypergraphs with sources. These operations will form an S-signature. Note
that S is infinite. The definitions will be given here directly in terms of abstract hypergraphs
(i.e., of isomorphism classes of hypergraphs).

(1) Parallel composition

If G € HS and G' € HS(C') we let H = G//c,crG' be the hypergraph in HS(C U C")
obtained as follows : one first constructs a hypergraph H' by taking the union of two disjoint
hypergraphs K and K’ respectively isomorphic to G and G', and by fusing any two vertices
v and v’ that are respectively the c-source of K and the c-source of K’ for some ¢ € CNC';
the hypergraph H is defined as the isomorphism class of H'. Clearly, H does not depend
on the choices of K and K’'. We shall use the simplified (overloaded) notation G//G" when
C and C' are known from the context or are irrelevant. We say that G//G' is the parallel
composition of G and G'. In the case where G and G’ have distinct sources, we have the
following characterization :

a hypergraph H of type 7(G) U 7(G') is isomorphic to G//G’ if and only if H has
subhypergraphs K and K’ respectively isomorphic to G and G’ such that : Vx U Vg =
Vi, Ex UEg = Eg, Ex N Eg: = 0 and Vi N Vi is the set of sources of H that have label
¢ wherece CNC".

(2) Source renaming

For every mapping h : C — C', we let reny, : HS(C') - HS(C) be the mapping such
that ren, (< G,s >) =< G,s o h >. In other words, the c-source of ren;,(G) is defined as
the h(c)-source of G. If a vertex v of G is a e-source with ¢ € C' —h(C') and is not a ¢’-source
for any ¢’ in h(C), then it is an internal vertex in reny(G). We shall say that ren,(G) is
the source renaming of G defined by h. Note that when we write reny, we assume that h
is given together with the sets C and C', so that the type of ren, (namely C' — C) is de-
fined in a unique way. Nevertheless, we shall use the overloaded notation reng for ren;, when
h is the empty mapping : § — C and C need not be specified (or is known from the context).

(3) Source fusion

For every set B, we denote by Eq(B) the set of equivalence relations on B. Let C be a
subset of C. For every § € Eq(C) we let fuses be the mapping HS(C) — HS(C) such that:
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H = fuses(G) if and only if

Vu = Vi/ ~, where ~ is the equivalence relation on Vi generated by the set of pairs
{(srea (i), srea(d)) | (i,4) € 0},

Ey = EG'7
verty (e, i) = [vertg(e, )], where [v] denotes the equivalence class of v with respect to ~,
labH = labg,

[v] is a c-source of H whenever some v’ ~ v is a c-source of G.

Intuitively, H is obtained from G by fusing its ¢- and ¢'-sources for all ¢, ¢’ for which ¢’
is d-equivalent to c¢. We shall say that H is obtained from G by a source fusion.

For every p € C, we denote by p the graph with a single vertex which is the p-source.
Hence p € HS({p}). For every a € A, for every p1,---,p, € C where n = 7(a), we denote
by a(p1,- -, pn) the hypergraph consisting of a single hyperedge with label a and a sequence
of vertices (x1,---,x,) such that z; is the p;-source for every i = 1,---,n. Note that we
have z; = z; iff p; = p;. Clearly a(p1,---,pn) € HS{p1,- -, Pn})-

We let Fyg be the S-signature consisting of //c ¢, fuses, reny, p,a(p1,---,pyn) for all
relevant C,C", 8, h,p,a,p1,---,pn. For K C C, we denote by Fgr(K) the subsignature con-
sisting of the above symbols with C,C' C K,p,p1,--,pn € K etc... We obtain thus an
Fyp-magma HS.The terms in T (Fyg) are called the HR (hypergraph)-expressions. Each of
them, say t, denotes a hypergraph val(t) in HS called its value. (Hypergraph expressions
based on different operations were first introduced in [3]).

Proposition 5.10 : Every finite hypergraph in HS(C) is the value of some HR-expression
m T(FHR)C'

Proof : Quite similar to that of Proposition 5.4. One takes a source label p(v) for each
v € V. One defines G by an HR-expression of the form

renp (- //a(p1, - ,pn)/ /- [/p(01)]] - [ [p(vm))

where Vg = {v1,---, v} and the expression contains one factor a(pi,---,p,) for each hy-
peredge. We omit the details.O

The minimum cardinality of C C C such that G = wval(t) for some t € T(Fygr(C))
is connected with an important complexity measure on graphs and hypergraphs called
treewidth. We refer the reader to [55] and to [20], Theorem 1.1 for more details. We
only indicate that the minimum cardinality of C' such that G = wval(t),t € T(Fygr(C)) is
Maz{Card(r(Q)), twd(G) + 1} where twd(G) denotes the tree-width of G.
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A subset of HS(C) is called an HR set of hypergraphs iff it is HS-equational. The ter-
minology HR refers to an equivalent characterization in terms of “Hyperedge Replacement
grammars” studied in another chapter of this book ([29]).

We give here the example of series-parallel graphs. We shall use the source labels 1,
2, 3, and one edge label a of type 2. We define from the operations of Fyr({1,2,3}) the
following operations :

G/|G' =G//c,cG" where C = {1,2} and G,G" € HS(C)
G.G/ = T'enh(G//{l,Q}’{g,;g}renhr (G’))

where h: {1,2} - {1,3} maps 1 — 1 and 2 — 3, and A’ : {2,3} — {1,2} maps 3 — 2 and
2 — 1. The equation

u=u//u+uu +a(l,?2)

defines the class SP of series-parallel graphs. (These graphs are directed and all their edges
are labelled by a).

A hypergraph H € HS(C) will be represented by the relational structure | H |» =
< Vg UEgq, (incor)aca, (pScH)cec > where inc,g has been defined in Section 2.3 and :
pscr () is true iff & is the c-source. Hence | H |2 € STR(Rn(A,C)) where R, (4,C) =
Rm(A) U {ps./c € C} and each ps. is unary. Clearly H and H' are isomorphic iff | H |,
and | H' |5 are isomorphic.

Proposition 5.11 : Let K be a finite subset of C and C C K. The mapping val :
T(Fur(K))c — HS(C) is a (*,2)-definable transduction.

Proof : We refer the reader to Courcelle [13], Lemma 4.3, p. 177. O

Theorem 5.12 : Let C be a finite subset of C. A subset of HS(C') is HR iff it is the image
of the set of finite binary trees B under a (x,2)-definable transduction.

Proof: The “only if” direction follows from the preceding proposition like that of Theorem
5.8 from Proposition 5.6. The “if” direction is quite difficult to prove and we refer the reader
to Courcelle and Engelfriet [23]. O

Corollary 5.13 : The family of HR sets of hypergraphs with sources is closed under (2,2)-
definable transductions.

Proof : Similar to that of Corollary 5.9. O

Here are some examples of (2,2)-definable transductions that are meaningful in graph
theory : the transduction from a graph to its spanning trees, or of a hypergraph to its
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connected components, or of a graph to its maximal planar subgraphs. (See Proposition 4.2
for other examples).

Corollary 5.14 : The set of line graphs of the graphs of an HR set is a VR set of graphs.

Proof : Immediate consequence of Theorems 5.8 and 5.12 and the last assertion of Propo-
sition 4.2. O

We collect below some properties, the proofs of which are too long to be included in
this chapter. The reader will note that the statements do not concern logic but only graph
properties. However monadic second-order logic is an essential tool for the proofs. We de-
note by und(G) the undirected graph obtained from G by forgetting the orientations of edges.

Theorem 5.15 Every HR set of simple directed graphs is VR. Conversely, for a VR set L
of directed graphs, the following conditions are equivalent :

1. Lis HR
2. there exists an integer k such that Card(Eq) < k.Card(Vg) for every G € L,

3. there exists an integer n, such that the complete bipartite graph K, ,, is not a subgraph
of und(Q@) for any G € L.

Proof hints : The first assertion is an easy consequence of Theorems 5.8 and 5.12 because
the transduction {(| G |2,] G |1) / G is a graph} is definable (one can also say that the
identity on simple directed graphs is (2, 1)-definable ; see Fact 4.3.1).

Implications (1) = (2) and (1) = (3) follow easily from general properties of HR sets
of graphs (see chapter [29] in this book). The implications (2) = (1) and (3) = (1) are
difficult : see Courcelle [19]. O

One can extend Theorem 5.15 as follows. A set L C H(A) of simple hypergraphs (with-
out sources) is said to be VR iff it is the image of B under a (x, 1)-definable transduction.
Hence we use here the characterization of Theorem 5.8 of VR sets of graphs and we make
it into a definition of VR sets of hypergraphs. (Equivalent characterizations in terms of
systems of equations can be found in Courcelle [15], Thm 4.6 but no equivalent context-free
grammar, based on appropriate rewriting rules has yet be defined.)

For every hypergraph H we denote by K (H) the undirected graph obtained by substi-
tuting a complete undirected graph K, for every hyperedge of type m.

Theorem 5.16 [19] : Every HR set of simple hypergraphs is VR. Conversely, for every VR
set L of directed graphs, the following conditions are equivalent :

1. L is HR,
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2. there exists an integer k such that Card(Eg) < k.Card(Vy) for every H € L,

3. there exists an integer n such that K, , is not a subgraph of K(H) for any H € L.

Again, the only difficult implications are (2) = (1) and (3) = (1).

6 Inductive computations and recognizability

The notion of a recognizable set is due to Mezei and Wright [50] ; it extends the notion of a
regular language like the notion of an equational set extends that of a context-free one. It
was originally defined for one-sort structures, and we adapt it to many-sorted ones, possibly
with infinitely many sorts. We begin with a study of recognizability in a general algebraic
framework. Then we state the basic result that MS-definable sets of graphs are recognizable.
Finally we state a generalized version of Parikh’s theorem based on inductive computations,
(the fundamental notion behind recognizability) and give some applications to VR and HR
grammars.

6.1 Inductive sets of predicates and recognizable sets

Let F' be an S-signature. An F-magma A is locally finite if each domain Ay is finite. Let
M be an F-magma and s € S. A subset B of My is M-recognizable if there exists a locally
finite F-magma A, a homomorphism h : M — A, and a (finite) subset C' of A, such that
B = h71(C). We denote by Rec(M), the family of M-recognizable subsets of M.

If F is a finite signature, the recognizable subsets of terms over F, i.e., the T(F)-
recognizable sets can be characterized by finite-state tree-automata (see Gecseg and Steinby
[42]). The classical identification of terms with finite ordered ranked trees explains the qual-
ification of “tree”-automaton.

By a predicate on a set E, we mean a unary relation, i.e., a mapping E — {true, false}.
If M is a many-sorted F-magma with set of sorts S, a family of predicates on M is an
indexed set {p/p € P}, given with a mapping o : P — S such that each p is a predicate
on Myy. We call o(p) the sort of p. Such a family will also be denoted by P. For
p € P, welet L, = {d € My /[ p(d) = true}. The family P is locally finite if, for each
s € Stheset {p € P / o(p) = s} is finite. We say that P is f-inductive where f is an
operation in F, if for every p € P of sort s = o(f) there exist mq,---,m, in N, (where
n is the rank of f), an (m; + --- 4+ my,)-place Boolean expression B, and a sequence of
(ml +--+ mn) elements of P) (pl,b oy P1ims P21y P2mey 7pn,mn)) such that> if the
type of fis s X s9 X --+ X s, = s we have :

1. o(pij)=siforallj=1,---,m;andi=1,---,n,

2. for all dy € My,,---,d, € M,

ﬁ(fM(dl’ o 7dn)) = B[ﬁl,l (dl)v e 7161,7711 (dl))ﬁQ,mz (d2)) T >ﬁn,mn (dn)]
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The sequence (B, p1,1,--,D2,1," s Pn,m, ) 18 called a decomposition of p relative to f. In
words, the existence of such a decomposition means that the validity of p for any object of
the form fas(di,---,dy) can be computed from the truth values of finitely many predicates
of P for the objects dy,---,d,. This computation can be done by a Boolean expression that
depends only on p and f. We say that P is F-inductive if it is f-inductive for every f in F.

Proposition 6.1 : Let M be an F-magma. For every s € S a subset L of M is recognizable
if and only if L = L,, for some predicate py belonging to a locally finite F-inductive family
of predicates on M.

Proof : “Only if”. Let L = h=*(C) C M, for some homomorphism h : M — A where A is
locally finite and C C A;. We let P = U{A;/t € S} U {po}. Each element a of A; is of sort
t (considered as a member of P). The domains of A are pairwise disjoint and pg is of sort
s. For d € My, and a € A, we let :
a(d) =true if h(d) =a,
= false  otherwise,

For d € My, we let
po(d) =true if h(d) € C,
= false otherwise.

It is clear that P is locally finite. It is F-inductive, and, clearly, L = L, .

“If”. Let P be a locally finite F-inductive family of predicates. Let L = L, for some
po € P. For every t € S we let P, be the set of predicates in P of sort t. We let A;
be the set of mappings : P, — {true, false}. We let h be the mapping : U{M; / t €
S} — U{A, / t € S} such that, for every t € S and m € M, h(m) is the mapping :
P, — {true, false} such that h(m)(p) = p(m). We want to find operations on the sets A,

such that A = < (A¢)es, (fa)rer > is an F-magma and h : M — A defined above is a
homomorphism. We need to define f4 where f is of type s; X --- X s, — t in such a way
that for all (mq,---,my,) € My, X --- x My, we have :

h(far(ma, - mp)) = fa(h(ma), - -, h(my)).

But it is possible to find such f4 by using the decompositions of the predicates in P;
relative to f. Hence, L = L,, = h™*(C) where C = {6 € A; / 0(po) = true}. It follows
that L is M-recognizable since, by construction, A is locally finite.O

Example : Let L be the set of rooted trees with a number of nodes that is not a multiple
of 3. Let p be the corresponding predicate on R. (We use the notation and definitions
of Subsection 5.1.) Let us consider the following predicates : for i = 0,1,2 we let ¢;(¥)
hold iff the number of nodes of ¢ is of the form 3k + i for some k. It is easy to check that
P = {p,qo,q1,q2} is inductive with respect to the operations ext and // on rooted trees ;
this check uses in particular the following facts which hold for all rooted trees ¢ and ¢ :
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Since p is equivalent to ¢; V g2, we have :

plext(t)) = qo(t) V qu(t)

and one can easily write a similar definition of p(t//t'). Hence L = L, is recognizable. Note
that {go,q1} is inductive because ¢ is definable as =gy A =¢;. O

Proposition 6.2 : Let M be generated by F and t be a sort. A subset L of M; is M-
recognizable iff hy} (L) is T(F)-recognizable.

Proof : We prove the “only if” direction. If L = h~(C) for some homomorphism
h: M — A, where A is locally finite, then hy} (L) = (hoha)~'(C), and, since hohy is
a homomorphism : T(F) — A, the set hy; (L) is T(F)-recognizable. For the “if” direction,
see Courcelle [22], Proposition 4.4. O

This proposition means that, in order to decide whether an element m of M belongs to
L, it suffices to take any term ¢ in T'(F') denoting m and to decide whether it belongs to the
recognizable set hy; (L) (for instance by running an automaton on this term). The key point
is that the answer is the same for any term ¢ denoting m. This should be contrasted with
the characterization of equational sets of Corollary 5.4, which says that, if L is equational,
then it is of the form hs(K) for some recognizable set of terms K : in this case, in order to
establish that m belongs to L, one must find a specific term ¢ denoting m, and the decision
cannot be made from an arbitrary term in hy; (m).

Relationships between equational sets and recognizable sets.

We recall that we denote by Equat(M)s the family of M-equational subsets of M.
Theorem 6.3 : If K € Rec(M), and L € Equat(M), then LN K € Equat(M)s.

Proof : We can assume that L = L((S, M), uq) for some uy € U where S is a uniform
polynomial system over F' with set of unknowns U. A polynomial system is uniform if its
equations are of the form u = ¢; +t5 + - - - +¢,,, where each ¢; is of the form f(u1,usa, -, ug)
for some f € F, some unknowns uq,---,ug € U ; the transformation of an arbitrary system
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into an equivalent one which is uniform is the essence of the transformation of an arbitrary
context-free grammar into one in Chomsky normal form. An example will illustrate this
step later. See Courcelle [22], Proposition 5.19 for the proof.

Let F' C F be the finite set of symbols occurring in S, and let &’ C S be the finite
set of sorts of these symbols together with those of the unknowns of S. Hence F’ is an
S'-signature. Let h : M — A be an F’'-homomorphism (with A locally finite), such that
K = h=1(C) for some C' C As.

For every u € U, we let L, := L((S,M),u). Let W be the new set of unknowns
{[u,a]/u € U,a € Ay} Tt is finite. We shall define a system S’, with set of unknowns W,
such that :

L((8", M), [u, a]) = Ly, N h™"(a)

for every [u,a] € W. Let u € U and a € A,(,). Let us assume that the defining equation
of uw in S is of the form u = ¢; + --- + t. Consider one of the monomials, say ;. Let
us assume that it is of the form f(uq,---,u,) for some unknowns wuy,---,u,. For every
a € Agw), a1 € Ag(uy), 5 an € Ag(y,) such that fa(as,---,a,) = a, we form the monomial
f([u1,a1], -+, [tn, a,]), and we let ¢; denote the sum of these monomials. If no such n-tuple
(ay,---,ay) exists, then #; is defined as Q. The defining equation of [u,a] in S is taken as :

[U,,a]=7?1 —l—fg-l—"'-l—fk.

It is clear from this construction that the W-indexed family of sets (L, Nh™"(a))[u,a)ew
is a solution of S" in P(M). Hence L, Nh™"(a) DO Ly, where (Lyq)ju,aew denotes the
least solution of S in P(M).

In order to establish the opposite inclusion, we define from L,, 4 the sets L, = U{L, ,/a €
Agu)} for u € U. Clearly (L;,)ucv is a solution of S in P(M). Hence L, C L;, for all u.
For all a € A, (), we have :

L,Nnh™a) CL,Nnh " a) = (U{Lys/b€ A}) Nh " (a).
The latter set is equal to Ly, ,Nh~!(a) since Ly, C L,Nh~!(a) and, L1 ()N~ (V') =0

for all b,b’ with b # b'. Hence L, Nh~'(a) C Ly 4. By the first part of the proof, we have
an equality, and (L, N h~*(a))[y,aew is the least solution of S’ in P(M). We have :

LNK =Ly, Nh}C)
= U{L((S', M), [ug,a])/a € C}.

Finally, we get
LNK=L(S",M),w)

where S" is S' augmented with the equation

w = [ug, a1] + [ug,as] + - -+ + [ug, ar],
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w is a new unknown and C = {ay,as, - -,a,}. Hence L N K is M-equational.O

This theorem extends the classical result saying that the intersection of a context-free
language and a regular one is context-free. The construction is effective if K is effectively
given (i.e., if h is computable, if the finite sets A, are computable, etc...) and L is defined
by a given system. Hence, since the emptiness of an equational set (defined by a system of
equations) is decidable, we have the following corollary.

Corollary 6.4 : If K is an effectively given M-recognizable set, and if L is an M-equational
set defined by a given system, one can test whether LN K = ().

Example : We consider the set R of rooted trees with the operations //, ext and 1 defined
in Subsection 5.1. We consider the following two predicates on R :

p(t) :<=> all branches of ¢ are of even length,

q(t) :<=> all branches of ¢ are of odd length.

The following clauses give a precise definition of p and ¢ and show that {p, ¢} is {//, ext}-
inductive. For all ¢,# € R we have :

p(t//t') = p(t) Ap(t'),
t//t") = q(t) Aq(t'),
ext(t)) = q

(
q(
(
q(ext(t)) =
(
(

(),
p(t),
p(1) = false,

q(1) = true.

Let us perform on this example the construction of the proof of the “if” part of Proposi-
tion 6.1. We take A = {true, false}? where in (z,y) € A the component z is the truth value
of p and y is that of ¢q. Actually, since p and ¢ cannot be both true, we can restrict ourselves
to A={(t, f),(f,t),(f, f)} where t stands for true and f for false. We let 14 = (f,t). The
mappings // 4 and ext, are defined by the following tables :

[la | &) | (f;t) | (f.f)
& f) | &) [ (S, )| f)
(L) AL (A L S)
LOH VDTN L)
ext A
t.f) | (f;t)
(f,t) | @ f)
(S, ) 1 ()
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Take for example the following system S which is not uniform :

{ u= 1+ ext(ext(v))
v=wu+ext(v)//ext(v).

We transform it into the following uniform system S’ :

u= 1+ ext(w)

v=1+ezt(w)+w//w

w= ext(v)
and clearly L((S',R),u) = L((S,R),u). In order to construct L' = L((S',R),u) N L, we
introduce the unknowns [z,y, z] with « € {u,v,w},y,z € {t, f},y and z not both true. We
obtain the following equations forming a new system S” :

g

-

=
Il

ext([v,t, f])
w, f, fl = ext([w, f, f])

We are interested in L' = L((S”,R), [u,t, f]) and it is not hard to see that the unknowns
of the form [z, f, f], * = u,v,w are useless for the generation of the elements of L'. So is
[u, f,t]. We can thus delete the corresponding equations. Letting x; replace [z,t, f] and zo
replace [z, f,t] for € {u,v,w} we obtain the more readable system T :

[u,t, fl = ext([w, f,1])

[uva t] = 1 +emt([w,t, f])

[u, f, [T = ext(w, [, f])

[v.t,f] = ext([w, f,1]) + [w,t, ]/ /[w,t, f]

. f.t] = 1+est(w,t,f])+[w, f,8]//[w, f1]
[v,f, f] = ..

Fv,tvf] = ext([v, f,1])

[

u = ext(ws)

vy = ext(ws) +wi//w

ve = 14 ext(w)+wa//ws
w; = ext(ve)

wy = ext(vy)

and L' = L((T, R), u1). This system can be reduced into the following one, call it 7".

up = ext(ext(vy))
vy = ext(ext(vy)) + ext(va)//ext(va)
vy = 14 ext(ext(ve)) + ext(vy)//ext(v1)

Finally, we have L((T",R), u1) = L((S,R),u) N L,. O

6.2 Inductivity of monadic second-order predicates

In this section, we present the fundamental result saying that, roughly speaking, every
monadic second-order definable set of graphs or hypergraphs is recognizable. However, in
order to get a sensible statement, we must specify two things :
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1. the representation of graphs and hypergraphs we are using (because we have defined
two of them, yielding two different notions of monadic second-order definability),

2. the relevant operations on graphs and hypergraphs (we have defined two signatures of
operations denoted by Fyr and Fgg, defining respectively the magma GP of simple
graphs with ports and the magma HS of hypergraphs with sources ; see Subsections
5.2 and 5.3.

We recall that if C' is a set of port labels, we denote by Fy g(C) the subsignature of Fy g
consisting of the operations involving only port labels from C. We denote by GP(C) the
Fy r(C)-magma with domain GP(C') and operations of Fyg(C). Hypergraphs will be over
a fixed finite ranked set A of hyperedge labels that we will not specify in notation. We recall
that CMS; refers to counting monadic second-order logic where a graph or a hypergraph G
is represented by the structure | G |;. (See Sections 2 and 3). We only consider finite graphs
and hypergraphs, but we keep the notations GP(C) and HS(C).

Theorem 6.5 : (1) Let C be a finite set of port labels. Every CMS;-definable subset of
GP(C) is GP(C)-recognizable.

(2) Let C be a finite set of source labels. Every CM Ss-definable subset of HS(C) is HS-
recognizable.

We shall sketch the proof of the first assertion. For the second assertion, we shall refer the
reader to the proofs given in [11] and [15].

We need some notation. For every n € N, ¢ € N-{0,1}, for every finite subset C of C,
for every finite set W of set variables, L(n, ¢, C, W) denotes the subset of CM S(Rs(C), W)
consisting of formulas of quantification depth at most n, possibly written with the atomic
formulas Card,(X) for 2 < p < ¢ (see Subsection 3.1).

We shall say that two formulas are tautologically equivalent if they can be transformed
into each other by renamings of bound variables and uses of the laws of Boolean calculus.
(For instance ¢ is tautologically equivalent to ¢ A ¢). Every two tautologically equiva-
lent formulas are equivalent and we shall assume that every formula is transformed into a
tautologically equivalent formula of some standard form. With this convention, each set
L(n,q,C,W) is finite. Each formula ¢ € L(n,q,C,}) defines a predicate ¢ on GP(C) such
that for every G € GP(C) :

&(G) is true iff |G |1 .
We let C be fixed and we denote by L(n, q) the corresponding family of predicates. It is finite.

Lemma 6.6 For every n,q € N with ¢ > 2, the family of predicates fj(n,q) is Fyr(C)-
inductive.

Proof sketch : We first consider the inductivity condition for the operation add. 4 where
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¢,d € C. Let us recall that G' = add. q(G) iff G' is obtained from G by the addition of
an edge from z to y where z is any c-port and y is any d-port such that (z,y) ¢ edgs and
x # y. For every formula ¢ in CMS(Rs(C), D) one can construct a formula ¢ in the same
set and of no larger quantification depth such that, for every G € GP(C)

$ladd. q(G)) = (G) (3)

ie.,

|add.qo(G) 1 Ey iff |Gh Fv (4)

In other words the family of predicates on GP(C) associated with the formulas in
L(n,q,C,0) is {add. 4}-inductive. The decomposition of ¢ relative to add, 4 is simply (B, 1))
(where B is the trivial Boolean combination such that B[] is ).

The proof of (4) is actually an immediate consequence of Lemma 1.5 because if G' =
add.,q(G) we have the following definition of edgq :

edga (z,y) <= edga(z,y) V (pteg () Aptag (y) A~z =y).

Hence, one can take 9 equal to [f(x1,x2)/edg] where 8 is the quantifier-free formula :

edg(xz1,x2) V (pte(z1) A pta(ze) A -2 = T2).

It is important to note that this transformation does not increase the quantification
depth because the formula substituted for edg has no quantifier. The same holds (with
similar argument) for the operations mdfp. The inductivity of L(n,q) with respect to the
operations mdfp can be proved similarly.

Next we consider the case of @, the disjoint union operation. The statement analogous
to (3) is the following one : for every formula ¢ in L(n,q,C,0) one can find m € A and
construct formulas 11, Y7, - - -, ¥m, YL, in L(n, g, C, ) such that, for every G and G' € GP(C):

GG = \/ 0i(G) AP (G). (5)

(The validity of (5) is actually known from Shelah [59], Section 2, given without proof
as a easy modification of a previous result by Fefermann and Vaught [40] for first-order
formulas). In this case the decomposition of ¢ with respect to @ is :

((.’L’1 A mQ) \ ($3 /\£L'4) VeV (:I’.Qm*l A m2m)’1/;1’1/31171/}271/;/27 e 71[}77171/;/771)'

The proof is more complicated than for (3) ; it can be done by induction on the structure
of ¢ and the cases where ¢ = 1 A 2,0 = 1 V Y2, = —; are rather straightforward.
However, in order to handle inductively the cases where ¢ = 3 X ¢1, one needs a formulation
of (5) where ¢ has free variables. Let W= {X;,---,X,}. Let ¢ € L(n,q,C,V). Let
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G € GP(C) and Vi,---,V, be sets of vertices of G (i.e., subsets of the domain of the
structure | G |1). We let (G, V1,---,V,) = true if

(l G |17V1>"'>‘/7‘) |: SO(XI)"')XT)

and (G, Vi, -+, V) = false otherwise. The generalized version of (5) is now : for ev-
ery formula ¢ € L(n,q,C,W), one can find m € N and construct 91,9}, --,¢m, ¥}, €
L(n,q,C,W) such that, for every G,G' € GP(C) such that Vg NV, = 0, for every
Vi, -+, V., C Vg, for every V/,--- V! C V4

PG ViUV, V,uV) = \[ (@ Vi, Vi) NGV V) (6)

1<i<m

This can now be proved by induction on the structure of .

Proof of Theorem 6.5 (1) Let C be finite, let L C GP(C) be defined by a formula ¢ of
CMS relatively to the representation of the graphs G in GP(C) by structures of the form
| G |1. For some large enough n and g the formula ¢ belongs to L(n, g, C,0). The predicate
@ belongs to the finite family L(n, ) of predicates which is Fy z(C)-inductive (Lemma 6.6).
Hence L is GP(C')-recognizable.

(2) The proof is similar. We indicate the main ideas. The finite set A is fixed. The
Fyr-magma of hypergraphs HS is many-sorted and its set of sorts is the set S of finite
sets of source labels. For every n,q,C, W as above, we denote by L'(n,q,C, W) the set of
formulas in CMS(R.,(A,C), W) of quantification depth at most n and using the special
atomic formulas Card,(X) for p < ¢. This set is finite. For each C, we consider the finite
family of predicates {¢ / ¢ € L'(n,q,C,0)} where for H € HS(C) :

G(H)istrueiff | H |2 E o

We denote it by L' (n,q,C). Hence we obtain a locally finite family of predicates on
HS where ¢ € L'(n,q,C) is of sort C. For every n,q € N with ¢ > 2, the family
U{L'(n,q,C) | C € S} is Fyg-inductive. It follows as above (see [11] or [15] for de-
tails) that every C'M Ss-definable subset of HS(C) is HS-recognizable. O

Corollary 6.7 : (1) The intersection of a VR set of graphs and a CM S;-definable subset
of GP(C) (where C is finite) is a VR set. The C'M S;-satisfiability problem for a VR set is
decidable.

(2) The intersection of an HR subset of HS(C) (where C is finite) and a C M Sa-definable
one is HR. The CM Ss-satisfiability problem for an HR set is decidable.

Proof : (1) Let L be a VR set of graphs. Let D be the finite set consisting of all port
labels occuring in the operation of some system of equations defining L. Then, L is GP(D)-
equational and L C GP(D). Let K be a CM S;-definable subset of GP(C) for some finite
C CC. Then L is GP(C U D)-equational and K is a C'M S;-definable subset of GP(C U D).
Hence LN K is GP(C U D)-equational by Theorem 6.3 hence VR since K is GP(C U D)-
recognizable. (Theorem 6.5).
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(2) Let L be an HR-subset of HS(C) and K be a CM Sy-definable one. Then K is HS-
recognizable by Theorem 6.5 and L N K is HS-equational (Theorem 6.3) hence HR. O

Corollary 6.8 : Let C be a finite set of port or source labels. Let A be a finite ranked
alphabet. (1) For every formula ¢ € CMS(Rs(C),0) the property | G |1 = ¢ can be
decided in time O(size(t)) where G = val(t) and t € T(Fyr(C)).

(2) For every formula ¢ € CMS(Ry,(A,C),0) the property | H | = ¢ can be decided in
time O(size(t)) where H = val(t) and t € T(Fur(A))c-

In these two assertions, the input is a term t denoting G or H. Since not all finite graphs
(hypergraphs) are the values of terms in T'(Fy r(C))(T(Furr(A))c), this corollary gives effi-
cient algorithms only for CMS properties on (finite) graphs (hypergraphs) in special classes.
Furthermore, the graphs or hypergraphs must be ”"parsed”, i.e., given by terms.

Proof : Let F be a finite signature. The membership of a term ¢ in a recognizable subset
of T(F) is decidable in time O(size(t)) because recognizable sets of terms are defined by
finite-state deterministic frontier-to-root automata. The two assertions follow then from
Proposition 6.2 and Theorem 6.5. O

6.3 Inductively computable functions and a generalization of Parikh’s theorem

Let F be an S-signature and M be an F-magma. Let N be a set and let £ be a family
of mappings called evaluations where each e € £ maps My — N for some s € S. We call
the sort s the type of e. We say that & is F-inductive if for every e € £ and f € F there
exists a partial function ge,y : N™ — N and k sequences (e}, -, el ), -, e(f---, ek ) where

k = p(f) such that m = ny + -+ + ng, each function eg has type a(f); and we have, for
every dy,---,dy € M with o(d;) = o(f)s, foralli =1,--- k :

e(faur(di, -+ di)) = gesel(dr), - ep, (di), el (da), -+, €l (de), e, (di)).  (T)

This means that the value of e at fy/(di,---,d;) can be computed, by means of some
fixed functions g. s, from the values at dy, - --,dj; of m mappings of £ (the mappings e] are
not necessarily pairwise distinct and some of them may be equal to e). We shall call the
tuple

(ge,fa(6%7"'76111)7(6%7”')7"'7(617"‘7671,9)) (8)

the decomposition of e relative to fpr. In Subsection 6.1, we have introduced inductive
families of predicates : they are just the special case of inductive families of evaluations
where N consists of the truth values true and false. If £ is F-inductive, if d € M is given
as tps for some ¢t € T(F) (i.e., this means that d has been “parsed” in terms of the operations
of M), then one can evaluate e(d) by the following algorithm using two traversals of t.
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Algorithm :

Input : a term ¢ given as a tree, an evaluation eg in € :

Output : the value eg(tar).

Method :

First traversal (top-down) : One associates with every node u of the tree t a set of
evaluations &(u), that will have to be computed at wu, i.e., for the argument defined by the
subtree of t issued of u. For the root r, we let £(r) := {ep}. For every node u such that
E(u) is already known and that has successors ug,---,ug, for every e in £(u), if f is the
operation labelling u, and

(g> (ei,---,e}“),(e%,---),---,(e’f,---,eflk)) (9)

is the decomposition of e relative to fys, we add to each set E(u,),i = 1,---, k, the evalua-
tions ef,---, ey .

Second traversal (bottom-up) : Starting from the leaves, one computes at each node u
the values of each function e € £(u) by using the decomposition of e relative to fas (see
(5)). One obtains at the root the desired value of ey. Denoting by e(u) such a value (i.e.,
we denote by e(u) the value of e for (¢/u)p, we use the formula :

e(u’) = g(e%(ul)v Ty e}zl (U’l)v 6%(’11,2), e ve’f(uk)v Tty efzk (U'k))'
based of the decomposition of e relative to fis of the form (9). One obtains at the root the
desired value of eq.

This technique is useful for certain graph algorithms, taking as input graphs or hyper-
graphs expressed as values of VR or HR expressions. We refer the reader to [11], [12], [2],
[25] for the construction of efficient graph algorithms based on this algorithm.

We shall now be interested in understanding the structure of sets of the form e(L) :=
{e(d) / d € L} C N where e is a mapping belonging to an F-inductive family £ and L is
M-equational. We shall need the following assumptions :

(H1) € has finitely many mappings of each type s € S,

!

(H2) N is an H-magma for some signature H with set of sorts S’ (S
equal to S),

is not necessarily

(H3) the functions g, s are derived operations of N ; each of them is defined by a term ¢, ¢.

A term is linear if no variable has more than one occurrence.

Proposition 6.9 If conditions (H1) - (H3) hold, if in Equalities (7) we haveny < 1,--- ng <
1 and if the terms t. s are linear, then e(L) € Equat(N) for every L € Equat(M).
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Proof : Let L = L((S,M),u;) where S is a uniform polynomial system with unknowns
Uy, -, U,. We shall assume that M and N have only one sort : this simplifies the notation
and is not a loss of generality. For every e € £ and i € [1,n], we let [e,u;] be a new
unknown. We shall build a polynomial system S’ such that the component of its least
solution corresponding to [e, u;] is the set e(L((S, M), u;)) for each e € £ and ¢ € [1,n]. For
every equation

ui:...+f(ui17...7uik)+...

of S, every e € £ we create the equation

[e,u;] =+ te,f([el,uil], e [ek,uik]) 4o

where (g, (e!),--, (e*)) is the decomposition of e relative to fis and t.  is a linear term
defining in N the function g. We let (A{, ---, Al) be the j-th iterate (where j > 0) approx-
imating the least solution of S in P(M) (see Subsection 5.1). Similarly, we denote by Aﬁl
for e € £ and i € [1,n] the component corresponding to [e, u;] of the j-th iterate of Sp ().

Claim : For every j € N, every i € [1,n], every e € &, we have e(Ag) = Ail
Proof : By induction on j. See Courcelle [22], Theorem 6.2 for details. O

As an application, we obtain a form of Parikh’s theorem. We let ¢ € N ; welet N be the
commutative monoid < N'¢,0,®,14,---,1, > where 0 = (0,---,0),1;, = (0,0,---,1,---,0)
(and 1 is at position i), and @ is the vector addition : (a1,a2,---,a4) & (b1,--+,by) =
(a1 ® by, --,aq D by). We assume that for every s € S there is in £ a unique evaluation
mapping es : My — N, and that the functions g. ¢ of the decompositions are of the form :

Ge.f(@1,- - ap) =21 D Dy Db

where b € V9. Since b can be written as a finite sum of constants 0,1y, - - -, 1, the operation
ge,s is defined by a linear term in T({&,0,14,---,1,}). It follows that Equalities (7) have
the form :

6(fM(d1,'--,dk)) :61(d1)@"‘@6k(dk)@b (10)

where ¢; is the evaluation in & of type o(d;). We shall say that £ is a Parikh family of
evaluations on M.

We recall a few definitions. A set A C N is linear if it is of the form A = {\ja; ®
@ Ay Db ) Ay, Ay € N} for some ap, -+, a,,0 € N and where, for A € N,
a € Nida=0if Ax=0and \a =a®a®d- - a with X times a if A > 1. A subset
of N is semi-linear if it is a finite union of linear sets. Since a linear set as above can
be written A = ajal---a}b it follows that every linear set, hence, every semi-linear set is
rational. Conversely, by using the laws : (4 + B)* = A*B* and (A*B)* = ¢ + A*B*B
which hold for arbitrary subsets A and B of a commutative monoid, one can transform a
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rational expression defining A € Rat(N?) into a sum of terms of the form aja}---akb for
ay, - ,an,b € N4 Hence, every rational subset of A'? is semi-linear.

Corollary 6.10 : If L € Equat(M) and e belongs to a Parikh family of evaluations then
e(L) € Equat(N?) and is semi-linear.

Proof : That e(L) € Equat(N?) follows from Proposition 6.9. Pilling has proved in [51]
that every equational set of a commutative monoid is rational, hence, we get that e(L) is
semi-linear. O

Example 1 : We consider the magma of series-parallel graphs < SP, ., //,e > of Subsection
5.1. We consider the evaluation # : SP— N2 such that :

#(G) = (number of edges of G, number of internal vertices of G).

Since #(G//G") = #(G) & #(G'), #(G.G') = #(G) © #(G") @ 15, and #(e) = 14,
from the equation v = u//u + u.u.u + e which defines a proper subset L of SP, we get the
following equation that defines #(L) C N2:

u=u@ut+udududls®ly+1;.

We now define a more powerful extension of Parikh’s theorem which has also applications
in graph grammars. We let M be an F-magma, we let N be a G-magma, we let £ be a
finite family of mappings : P(M) — P(N) satistying the following conditions, for all sets
Ay,--- A;, -+ C M of appropriate sorts, and for all f € F':

1. e(A1 U Ay U---) = e(Ay) Ue(As) U---
2. e(frm(Ar, -5 Ak)) = Ui<icm tip (€31 (A1), €3,2(A2), - -+, €31 (Ak))

where tq,---,t,, are linear terms in T(G,{z1, -, 2x}) and €;;,1 < i <m,1 < j < k are
elements of £ .

Proposition 6.11 : With these conditions, for every L € Equat(M), we have e(L) €
Equat(N).

Proof : Essentially the same as the proof of Proposition 6.9. O

Example 2 : As in Example 1, we use series-parallel graphs, but directed ones : this means
that the basic graph e is a single edge directed from the first source to the second one.
Series-parallel graphs have no circuit. We denote their set by SP’. For every graph G in
SP', we let 7(G) be the set of lengths of directed paths in G that link the first source to the
second one. Hence m maps SP’ into P(N). For L C SP' we let II(L) = J{=(G) /| G € L}.
This mapping satisfies the conditions of Proposition 6.11 because it a homomorphism for
union and :
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m(G//G")
7(G.G")

T(G)UT(G') = ti,, (T(G)) Utz ., (1(G'))
7(G) ® 7(G")
{n®dn'/nen(G),n €n(G)}
= t379(j\/) (W(G)a W(G/))
where t; = z1,t2 = x5 and t3 = x; ® z5. Hence, for every {//,.}-equational set of series-

parallel graphs L, the set TI(L) is a semi-linear subset of . For the equation of Example 2
we obtain :

u=ududu+1;

Its least solution is the set of odd numbers {1, 3, 5, 7...}. O

This example is actually a special case of a general result of [19] that we recall and that
we shall derive from Proposition 6.11 and some results of [25].

If G is a hypergraph represented by the structure | G |2, if ¢ is an MSy-formula with
free set variables X1, -+, Xy, we let

sat(G,go) = {(D17"'7Dk) / D; C VGUEG?(lG |27D17"'7Dk) |= (10}

#sat(G,p) = {(Card(D,),---,Card(Dy)) |/ (Di,---,Dy) € sat(G,¢)} C N*.

If L is a set of hypergraphs, we let
#sat(L,p) = U{sat(G,¢) /| G €L}

Proposition 6.12 If L is a HR set of hypergraphs and o is an MSs-formula with free
variables X1, -+, X}, then the subset #sat(L, ) C N* is semi-linear. A similar statement
holds for VR sets of graphs and MS;-formulas.

This result is proved in [19] as Corollary 3.3. It yields immediately the result of Example
2 if one takes the formula ¢(X7) saying that “X; is the set of edges of a path from the
first source to the second one”. We now derive the first assertion of Proposition 6.12 from
Proposition 6.11 and some results of [25].

Proof of the first assertion of 6.12 : Let C,C’ be finite sets of source labels ; let ¢
be an MSs-formula of quantification depth at most h and free variables X, -+, X;. One
can find MS,-formulas ¢, - - -, ¥, 97, - - -, 9, of quantification depth at most h and vectors
ni,---,nm € N* such that, for all hypergraphs G' and G’ of respective types C' and C' we
have :

#sat(G/ /oo G o) = | #sat(G,1)) © #sat(G',4)) @ n;.
1<i<m

Similarly, for every finite set C' of source labels, for each unary operation f in Fgg, one
can find M S, formulas 1, - - -, ¥, of quantification depth at most h, and vectors ny,---, Ny,
in A'* such that, for every hypergraph G of type C :
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sat(f(G),p) = U #sat(G, ;) ©nj.

1<j<m

These facts follow from Lemmas 2.4, 2.5 and 2.6 of [25]. Letting £ be the family of eval-
uations e of the form e(G) = #sat(G, @) for G of type C where C' is a subset of a fixed finite
set of source labels, we obtain that &£ satisfies the conditions of Proposition 6.11. It follows
from this proposition that if L is an HR set of hypergraphs, and ¢ is an MS,-formula with
free variables X1, --, X} then #sat(L, ) is in Equat(N*) hence, by [51], is semi-linear. O

The proof of Proposition 6.12 is effective. This means that from ¢ and a system of
equations defining L one can construct an expression of #sat(L,y) as a finite union of
linear sets where the linear sets are given by coeflicients ay, - -+, G, b (see the definition). Tt
follows that a number of ”boundness” questions can be solved effectively. It can be decided
whether Sup{z; / (z1,---,z5) € sat(L,p)} is finite or not, and if it is, its value can be
computed. Much more generally, for every sequence integers ci,---,cg, one can decide
whether Sup{xici + -+ zrcr | (z1,---,2) € sat(L,p)} is finite or not, and if it is, its
value can be computed.

6.4 Logical characterizations of recognizability

Theorem 6.5 has established that every set of finite graphs or hypergraphs defined by a
formula of an appropriate monadic second-order language is recognizable with respect to
an appropriate set of operations. It is thus natural to ask for the converse, which holds in
several known cases summarized in the following theorem.

Theorem 6.13 : (1) Let A be a finite alphabet. A language L C A* is regular iff it is
M S -definable.

(2) Let F be a finite ranked alphabet. A set of terms L C T(F) is T(F)-recognizable iff it is
M S -definable.

(8) A set of finite trees is TREE-recognizable iff it is C M Sy -definable.

Proof : Assertion (1) has been proved by Biichi and Elgot ([8], [31]), assertion (2) by
Thatcher, Wright and Doner ([30], [61]) ; see [62], Thm 11.1), assertion (3) by Courcelle
([11]). O

However, no logical characterization of recognizability can exist by the following result.

Proposition 6.14 : Every set of finite square grids is HS-recognizable and GP(C)-recognizable
for every finite set of port labels C.

Square grids have been defined in Section 1.9. This result is proved in Courcelle [11] for
HS-recognizability. The proof is easily adapted to yield the case of GP(C)-recognizability.
It follows that the family of HS-recognizable (or of GP(C)-recognizable) sets of graphs is
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uncountable. Hence it cannot be characterized by the countably many formulas of any log-
ical language like those we have considered here (including second-order logic).

Courcelle conjectured in [13] that for every k, every recognizable set of graphs of tree-
width at most k is CM S, definable. This was proved in [13] for £ = 2 and by Kaller [47]
for k = 3.

7 Forbidden configurations

Many classes of graphs can be characterized in terms of forbidden configurations, i.e., of cer-
tain graphs that cannot appear as subgraphs. The basic example is that of planar graphs:
they can be characterized as the graphs that do not contain K5 or K33 as a minor. Such
characterizations yield logical descriptions that could not be obtained otherwise : for ex-
ample, the definition of the planarity of a graph G in terms of an embedding in the plane
cannot be expressed logically in a structure like | G |1 or | G |2 which describes the graph
G (its vertices and edges) but not the plane. One could also try to express the existence
of an embedding of G (assumed finite) in a large enough rectangular grid but this is not
possible (at least immediately) because this requires to express the existence of vertices and
edges forming a grid lying outside of G. The logical formalism allows to express properties of
a graph G in terms of its vertices and edges, not in terms of objects outside of | G |1 or | G |2.

All graphs in this section will be finite. Hence, “graph” will mean “finite graph”. We
shall review the links between finitary descriptions of sets of graphs in terms of grammars,
MS formulas and forbidden minors. We also show how the notion of a minor and the results
of Robertson and Seymour help in understanding the structure of the sets of graphs having
a decidable MS,-theory.

7.1 Minors

Let G and H be undirected graphs. We say that G is a minor of H and we write this G <H
iff there exist mappings f : Vo = P(Vy), f' : Vo = P(Eg) and g : Eq — Epg satisfying the
following conditions :

(1) for every = € Vg, (f(z), f'(x)) is a connected subgraph of H,

(2) for every z,z' € Vg with o # 2', we have f(z) N f(z') = 0,

(3) g is injective and g(e) does not belong to any set f'(z) for any = € Viz,e € Eg,
(4)

4) if e € E¢ links z and z’, then g(e) links a vertex of f(x) and a vertex of f(z').

It is clear that this definition depends only on the isomorphism classes of G and H.
Minor inclusion is transitive and reflexive. Because graphs are finite, if G < H < G then it
is not hard to see that G and H are isomorphic. Hence minor inclusion is a partial order on
graphs. (The corresponding strict order is denoted by <).
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7.1.1 Fact : G < H iff G is obtained from a subgraph H' of H by a sequence of edge
contractions.

Contracting an edge linking x and y results in the fusion of x and y and deletion of the
resulting loop. Edge contraction may create loops and multiple edges.

Proof : Consider G < H with functions f, f', g as in the definition. We let H' be the
subgraph of H such that

Vi =Jtf@) / v e Vel B =\ J{F' (@) | 2 €Va}U{gle) / € Eah.

Then one obtains G (up to isomorphism) by contracting (in any order) the edges in the
sets f'(z),x € V. The converse is proved similarly. O

Let M be a set of graphs. We define FORB(M) as the set of undirected graphs H
such that G < H for no G € M. For example the set of undirected planar graphs can be
characterized as the class FORB(K3 3, K5). This is a variant of Kuratowski’s theorem (see
Bollobas [5]). We recall that K, is the n-clique consisting of n vertices and an edge linking
any two distinct vertices, and that K, ., is the complete bipartite graph with n+m vertices.
(Formally its vertices are —n, —(n — 1),...,—1,1,2,--- m and there is an edge linking any
“negative” vertex and any “positive” one). It is clear that every class of graphs of the form
FORB(M) is minor-closed which means that every minor of every graph in the class is also
in the class. In order to get a converse we let, for every class C

OBST(C) ={G / G ¢ C, every graph H such that H <G belongs to C}.

OBST(C) is defined as a set of abstract graphs : its elements are by definition pairwise
nonisomorphic. This set is called the set of obstructions of C.

7.1.2 Fact : For every minor-closed class C of graphs : C = FORB(OBST(C)).

The major result in this field is the following result by Robertson and Seymour [56].

Theorem 7.1 : (Graph Minor Theorem) Every infinite set of undirected graphs contains
two graphs comparable by 1. Hence for every class C of graphs, the set OBST(C) is finite.

The obstructions of minor-closed classes are known in relatively few cases. We have already
mentioned planar graphs. The set of obstructions of forests is the singleton consisting of the
graph reduced to a loop. That of graphs of tree-width at most 2 is {K4}. That of graphs
of tree-width at most 3 consists of 4 graphs one of which is K5. The obstructions of the
classes of graphs of tree-width at most k are not known for k£ > 4. Intractable computation
methods are known to compute them ([49]). In the following case, one does not even know
such a method. Let C be the class of almost planar graphs, i.e. of graphs G such that
G[Va — {v}] is planar for some vertex v. (Every planar graph is almost planar and so are
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K5 and K33 3 ; K¢ is not almost planar because one must delete at least two vertices in order
to obtain from K4 a planar graph). R. Thomas knows already 60 graphs in OBST(C) one
of which is Kg, but does not know whether this list is complete.

We now discuss the logical aspects of minor inclusion.

Proposition 7.2 : Let H be a finite graph. The property that a graph G contains H as a
minor is M Sy-definable. If H is simple and loop-free, this property is M .S,-definable.

It follows in particular that planarity is M S;-definable.

Proof : Let H be given with vertices 1,2,---,k and edges ey, --,e,. Let G be an arbi-
trary graph. In order to verify that H < G, we have to find appropriate mappings f, f', g.
Hence we need only find k subsets of Vi namely f(1),---, f(k), k subsets of E¢ namely
1D, f'(k), m edges of G : namely g(ey),---,g(en) and to check the conditions of the
definition. This can be done easily by an M Ss formula.

Assuming H simple and loop-free we now check that one can avoid quantifications on
sets of edges. We claim that H < G iff there exist X1, -+, Xy C Vi satisfying the following
conditions :

(1’) the induced subgraph G[X;] of G with set of vertices X; is connected for each i =
1, k.

(2)) X;NX; = for i # j,

(3’) for every edge of H linking i and j there is an edge of G linking a vertex of X; and
one of Xj.

If H <G with corresponding mappings f, f', g then these conditions hold with X; = f(4).
Conversely, if X7, ---, X satisfy them, then we take :

f) = X,
f'(i) = Eg(x,), for every i =1,---k,
g(ej) to be an edge satisfying condition (3’).

These mappings satisfy the conditions of minor inclusion : (1) follows from (1°), (2) fol-
lows from (2’), (3) holds from (3’) and, because H is simple and loop-free, (4) follows from
(3’). The existence of Xy, - -, X}, satisfying (1’) - (3’) is easily expressed by an MS;-formula.
0O

We leave as an exercise the verification that the property of a graph G that it contains

a fixed graph H as a minor is MS; where H may have loops and multiple edges, and G is
assumed to be simple. With Theorem 7.1 we obtain :
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Corollary 7.3 : Every minor-closed class of graphs is M Ss-definable. Its subclass of
loopfree simple graphs is M S1-definable.

Proof : The first assertion is immediate from the Graph Minor Theorem and Proposition
7.2. For the second one, we let :

OBST'(C) := {G / G is simple and loop-free, G ¢ C, every simple loop-free graph H
with H < G belongs to C}.

If C is a minor-closed class of simple loop-free graphs, then ¢ = FORB'(OBST'(C))
where FORB'(M) is the class of simple loop-free graphs in FORB(M). The set OBST'(C)
is finite by the Graph Minor Theorem and the result follows by Proposition 7.2. O

We shall denote by Minor(G) the set of minors of a graph G. Thus Minor is a
transduction from graphs to graphs. We show it is (2,2)-definable. Let G be a graph.
Let X C Vg, let Y, Z C Eg. We say that (X,Y, Z) defines a minor of G if the following
conditions hold :

(o) if z,2' € X,z # &', then there is no Z-path in G linking them (a Z-path is a path all
edges of which are in Z) ;

(8) each end y of an edge in Y is linked to some vertex x of X by some Z-path ; (one may
have x = y);

(v YNnZ=40.

Notice that by condition (a), the vertex z in condition (f) is uniquely defined. We
shall denote it by §. The minor defined by the triple (X,Y, Z) is the graph H such that
Vu = X,Eg =Y and vertgy(e) = {y,y'} where y and y' are such that vertg(e) = {y,y'}.
We shall denote it by Minor(X,Y, Z). The corresponding mappings f, f', and g are as
follows : f(v) is the set of vertices of G linked to v by some Z-path (including v) ; f'(v) is
the set of edges of Z having their ends in f(v) ; and g is the identity : Vg — V. Hence,
Minor(X,Y, Z) is indeed a minor of G. It is not hard to see that every minor H of G is of
this form for appropriate sets X,Y, Z. Moreover, Minor(X,Y, Z) is a strict minor iff Z #
orY # Eg or X # V. We have thus proved the following

7.1.3 Fact : Minor is a (2,2)-definable transduction.

Proposition 7.4 For every M Ss-definable class M of graphs, each of the classes FORB(M)
and OBST (M) is M Sy-definable. M Sa-formulas defining them can be effectively constructed
from an M Ss-formula defining M.

Proof: Let ¢ be an M Sy-formula such that M = {G / | G |» = ¢}. Then H € FORB(M)
iff :
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| H |2 EVX,Y,Z[“X,Y, Z define a minor of H” —>
“Minor (X,Y, Z) does not satisfy ¢”].

From the proof of Fact 7.1.3 this condition can be expressed by an M Ss-formula. From
the definition of OBST we get that for every graph H, H € OBST (M) iff :

| H |2 E-oAVX,Y,Z[“X,Y, Z define a strict minor of H” —>
“Minor(X,Y, Z) satisfies "]

Again this latter condition is M Sy-expressible. O

One might hope to be able to construct the sets of obstructions of M Ss-definable classes
of graphs. Consider for instance the class of almost planar graphs. It is not hard to prove
that it is minor-closed, and to construct an M Ss-formula defining it. One obtains thus an
M Sy-formula characterizing its finite set of obstructions. However this is not enough to
make it possible to construct (even by an intractable algorithm) this set itself. (See the
remark following Proposition 1.2.). The best one can do presently is the following

Proposition 7.5 : Let M be an M S5-definable class of finite graphs. For every HR set of
graphs L one can compute the set LN OBST(M).

In particular, taking L to be the set of trees (or of graphs of tree-width at most k), one
can obtain effectively the obstructions of M that are trees or that have tree-width at most
k. If one knows some upper-bound on the tree-width of the graphs in OBST (M) one can
thus (at least in principle) compute OBST (M) explicitely.

Proof : This follows immediately from Propositon 7.4, Corollary 6.7 and the fact that if a
finite set of graphs is HR (given by a known grammar or system of equations), then this set
can be explicitely enumerated. (See Habel [45]). O

This result was proved first in a different way by Fellows and Langston [41].

Sets of finite graphs can be specified effectively in various ways : by grammars of sev-
eral types, by forbidden minors, by monadic second-order formulas. The following theorem
summarizes the situation.

Theorem 7.6 : Let L be a set of loop-free simple graphs containing the simple and loop-free
minors of its members. The following properties are equivalent :

(1) L is HR,

(2) L is VR,

(3) L has bounded tree-width,

(4) OBST(L) contains a planar graph.
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Assuming these conditions satisfied, from any of the following devices defining L one can
construct all others, namely :

(5) an HR grammar (or Fggr-system of equations),

(6) a VR grammar (or Fyg-system of equations),

(7) an M S;-formula,

(8) the set OBST(L).

Proof: The set L is M Si-definable by Corollary 7.3 (based on the Graph Minor Theorem).
We have the following implications :

(3) <= (4) by Robertson and Seymour [55]
(3) < (1) by Corollary 6.7 (2) since the set of graphs of tree-width at most k is HR (see

[20])
(1) = (2) by Theorem 5.15
(2) = (1) by a result of [23].

—

We now consider effective constructions of such devices.

(5) <= (6) because the proofs of Theorem 5.15 and [23] are effective.

(8) <= (7) by Proposition 7.2

(7) <= (5) because Corollary 6.7 is effective and one can find the smallest square grid not
in L ; from this grid, one gets an upper bound on the tree-width of L by [55].

(5) <= (8) by a result of Courcelle and Sénizergues [27]. O

7.2 The structure of sets of graphs having decidable monadic theories

By combining techniques from logic (definable graph transductions) and from graph theory
(minor inclusion), one obtains the following result of Seese [58].

Theorem 7.7 : If a set of graphs has a decidable M Ss-theory, then it is a subset of some
HR set of graphs.

Proof sketch : The mapping from a graph to the set of its minors is (2,2)-definable. Hence,
if a set L of graphs has a decidable M Ss-theory, then so has the set of its minors. But this
set cannot contain all square grids by Proposition 1.2. Hence L has bounded tree-width (by
[55]), hence L is a subset of the set of all graphs of tree-width at most &k for some k& which
is HR. O

This result is a kind of converse of the one (Corollary 6.7) saying that the M Ss-theory
of a HR set is decidable. We make the following conjecture.

Conjecture 7.8 : If a set of graphs has a decidable M Si-theory then it is a subset of some
V' R set of graphs.

70



Special cases of this conjecture are proved in Courcelle [16]. Seese [58] has made a
conjecture which is equivalent to Conjecture 7.8 by the result of [34] in the generalized form
given in [23].
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