
Math. Systems Theory 24, 117-146 (1991) Mathematical
Systems Theory
© 1991 Springer-Verlag New York Inc.

A Geometrical View of the Determinizat ion and
Minimizat ion of Finite-State Automata *

Bruno Courcelle, 1 Damian Niwinski, 2 and Andreas Podelski 3

1 Laboratoire d'Informatique, Universit6 Bordeaux-l,
351 cours de la Liberation, 33405 Talence cedex, France
E-mail: courcell@ geocub.greco-prog.fr

2 Institute of Mathematics, Warsaw University,
PKiN IX, 00-901 Warszawa, Poland

3 LITP, Universit6 Paris-7, 2 place Jussieu,
75251 Paris Cedex 05, France
E-mail: andreas@litp.ibp.fr

Abstract. With every finite-state word or tree automaton, we associate a
binary relation on words or trees. We then consider the "rectangular decom-
positions" of this relation, i.e., the various ways to express it as a finite union of
Cartesian products of sets of words or trees, respectively. We show that the
determinization and the minimization of these automata correspond to simple
geometrical reorganizations of the rectangular decompositions of the associ-
ated relations.

Introduction

Many results of Automata Theory can be conveniently formulated in the setting of
Universal Algebra, which facilitates an immediate extension from words to trees.
Regular languages and regular sets of finite trees can thus be considered as two
instances of the notion of a recognizable set, a notion which can be defined with
respect to arbitrary algebras as shown by Mezei and Wright [MW]. Courcelle
[C1] applies this formal framework to sets of finite trees of various kinds, ordered
or not, with bounded or unbounded degree. Appropriate notions of finite-state
automata follow. Recognizable sets of graphs are considered in [C2]. However, due

* This work was supported by the "Programme de Recherches Coordonn6es: Math6matiques et
Informatique." It was initiated during a stay in Bordeaux by D. Niwinski in 1988.

118 B. Coureelle, D. Niwinski, and A. Podelski

to the intrinsically unstructured nature of graphs, no natural notion of a graph
automaton arises.

In this setting, a deterministic finite-state automaton can be viewed as a finite
algebra over an appropriate signature. The minimizations of deterministic word
and tree automata can be thus formulated as constructions of quotient algebras.

Nondeterministic finite-state word and tree automata can also be defined.
Classical algorithms transform them into deterministic ones which define the same
sets of words or trees. The aforementioned algebraic approach to automata is not
convenient for expressing the corresponding determinization algorithms, because
we cannot represent the behaviors of nondeterministic automata by algebras with
single-valued functions. (Algebras with multivalued functions might help, but this
direction remains to be explored.)

In this paper we present in a unified way the determinization and the
minimization of finite-state word and tree automata. The idea is to associate with a
language L G X* the set of pairs of words (u, o) such that uo belongs to L. This set
is a binary relation SL on the set X*. A language L is regular iff the associated
relation can be expressed as a finite union of "rectangles," i.e., of relations of the
form A x B, where A and B are languages over the alphabet X. We call such an
expression a rectangular decomposition of SL. In particular, a rectangular decom-
position of sL is canonically associated with every automaton defining L. The
determinization and the minimization of finite-state automata can then be ex-
pressed as reorganizations of the rectangular decompositions associated with the
given automata (and visualized geometrically, see Figures 1-4). This method also
works for sets of trees: in this case, the appropriate relation is the set of pairs (t, c)
such that t is a tree, c is a context (i.e., a tree with a "hole"), and c[t], the tree
obtained by filling up the hole of c with t, belongs to the considered set of trees.

As an application, we get a transparent proof of the fact that the minimization
of a finite-state (word) automaton can be realized by a determinization of the
reversed automaton. (See I-B] and Proposition 3.8(2) below for a precise state-
ment.)

We also show that the study of recognizable sets in arbitrary algebras can be
done in the setting of rectangular decompositions of relations. Hence, our
approach subsumes the algebraic one.

Finally, we can treat the root-to-frontier tree automata introduced by Podelski
[P], that are in a certain sense deterministic, while being able to define all of the
recognizable sets of trees.

This paper is organized as follows. The geometry of rectangular decomposi-
tions of relations is introduced in Section 1. Recognizable sets in arbitrary algebras
are dealt with in Section 2. Applications to the recognizability of sets of finite and
infinite words are given in Section 3. Our major applications concern finite-state
tree automata. They are given in Section 4.

1. Rectangular Decompositions of Relations

By a relation we mean in this section a subset of A × B, where A and B are
nonempty sets.

Geometrical View of the Determinization and Minimization of Finite-State Automata 119

1 0

6

5

3

• • • • •

0

0 1 2 3 4 5 6 7 8 9 10

Fig. 1

Definition 1.1 (Rectangular Decompos i t ions of Relations). A rectangular decom-
position of a relat ion s is an indexed set of the form ~ = {(Ai, Bi)li ~ I}, such that
s = U{Ai x B~[~ I} and the sets A~, Bi are all nonempty . Each set of the form
A~ x B~ is called a rectangle of the decomposi t ion .

Figure 1 shows a decomposi t ion of a relat ion r _ A x B consisting of four
rectangles. T o be precise, A = [0, 10], B = [0, 10]; the rectangles are A~ x Bi, for
i = 1 4, where A 1 = [1, 8], B1 = [6, 7], A 2 = [4, 5], B 2 = [3, 8], A a = [9, 10],
Ba = [6, 71 A , = [4, 9], and B4 = [1, 2]. (We denote by I-n, m] the set o f integers
between n and m, inclusive of n and m.) An element (a, b) of r is represented as the
point of the plane with coordinates a and b. The A-axis is hor izontal and the B-axis
is vertical. O the r decomposi t ions of the relat ion r are shown in Figures 2-5.

In a decomposi t ion, two indices m a y refer to the same rectangle. T w o
decompos i t ions are equal if they consist of the same rectangles, irrespective of the
sets of indices. The cardinali ty of a decompos i t ion is the n u m b e r of disti_r'.ct

120 B. Courcelle, D. Niwinski, and A. Pod¢lski

rectangles forming it, and not the cardinality of the index set. A relation isfinitely
decomposable if it has a finite decomposition.

The diagonal relation {(a, a)la ~ A} on a set A has a unique decomposition.
The rectangles of this decomposition are singletons.

Canonical decompositions of arbitrary relations will be obtained from the
syntactical equivalences that we now define.

Definition 1.2 (Syntactical Equivalences). Letting s be a relation, s ~_ A x B, we
also denote by s the total mapping: A ~ ~(B) defined by s(a),= {b ~ Bl(a, b) ~ s}.
We define an equivalence relation on A as follows:

a ,,,~ a' iff s(a) = s(a').

We denote by s -1 the relation _ B × A equal to {(b, a)l(a, b) ~ s}. Finally, we
let g(A),= {s(a)la ~ A} and s'(B),= {s-l(b)lb ~ B}. These two sets should not be
confused with the sets s(A)= U{s(a) la~A} (called the codomain of s) and
s- I(B) = U {s- 1 (b) l b ¢ B} (called the domain of s).

Since we have

s(a) = {bla ~ s- l(b)}

we have a ~ , a' iffa and a' belong to exactly the same sets of the form s- l(b), where
b ranges over B. It follows that the equivalence class [a]~ of an element a of A with
respect to ,,-~ can be expressed as follows:

Fa]~ = (N{s-l(b)[b ~ s(a)}) - (U{s-l(b)]b ~ s(a)}). (1)

The index m of ~~ (i.e., the cardinality of its set of equivalence classes) is equal
to the cardinality of g(A); similarly, the index n of ~,-1 is equal to the eardinality of
the set s'(B), and we have, by (1), m < 2". By symmetry, we also have n _< 2". In
particular, m and n are both finite or both infinite.

Proposition 1.3. For every relation s ~_ A x B, the following conditions are equiva-
lent:

(i) s is fni te ly decomposable,
(ii) g(A) is finite,

(iii) s'(B) is finite,
(iv) the index of ~~ is finite,
(v) the index of ~~-1 is finite.

Proof. (i) =- (ii) If ~ is a decomposition of s as in Definition 1.1, then s(a) is a
union of sets Bi. Hence there are finitely many such sets s(a) if the decomposition
is finite.

The equivalence of (ii), (iii), (iv), and (v) follows from (1) and the related
observations.

The implication (iv)=, (i) follows from the definition of the decomposition
min(s) that we give in the next subsection. []

Geometrical View of the Determinization and Minimization of Finite-State Automata 121

Definition 1.4 (Reduced and Deterministic Decompositions). Let ~ be a decom-
position of a relation s, of the general form of Definition 1.1. We denote by ~ - 1 the
decomposition {(Bi, Ai)[i ~ I} of s- I .

We say that ~ is reduced if, for all indices i and j in I, Bi = B i implies As = Aj. It
is coreduced if the decomposition 9 - 1 is reduced.

We let red(9) be the decomposition {(A'i, Bi)li ~ I} of s, such that

A', = U { . 4 j l j Bj = B, } .

This decomposition is reduced, and is equal to ~ if ~ already reduced. Hence, we
say that it is obtained from ~ by reduction. We obtain dually a coreduced
decomposition eored(~), by exchanging the roles of A and B, or, formally,

eored(~) = (red(~- 1))- 1.

We say that a decomposition ~ is deterministic (resp. codeterministic) if
Ai c~ Aj = ~ (resp. B i n Bj = ~) whenever the rectangles Ai x Bi and Aj x B i are
distinct. Hence, ~ is codeterministic iff 9 - ~ is deterministic.

If ~ is deterministic, and if a belongs to Ai, then Bi = s(a). It follows that the
second component of any pair (Ai, B~) in a deterministic decomposition is uniquely
determined by the first one. If, in addition, ~ is reduced, then each first component
of such a pair is uniquely determined by the second as follows: A i is the set of
elements a of A such that B~ = s(a). Hence, any two reduced deterministic
decompositions of a relation are equal.

If ~ is a deterministic decomposition, then red(~) is deterministic.
That every relation has a reduced deterministic decomposition is easy to see

from the above remarks. Hence, every relation has one and only one such
decomposition. It is canonical in the sense that it depends only on the relation, and
is called its minimal decomposition. Dually, every relation has a unique coreduced
codeterministic decomposition, that is also canonical, and is called its cominimal
decomposition. These two canonical decompositions are investigated in detail
below. We first look at some examples.

Figures 2 and 3 show respectively a deterministic and a reduced deterministic
decomposition of the relation r of Figure 1. The decomposition of Figure 2 is not
reduced because we have B 7 = B s and B 5 = B 9 , while rectangles 7 and 8, on one
hand, and rectangles 5 and 9, on the other, are distinct. The reduced decomposition
of Figure 3 is obtained from that of Figure 2 by reduction, that is, by merging
rectangles 7 and 8 into a single one, numbered 11. Rectangles 5 and 9 are also
merged into a single one, numbered 10. In Figure 3, rectangle 10 is split into two
parts, by the necessity of the graphic representation. Figure 4 shows the unique
coreduced codeterministic decomposition of r.

The two aforementioned canonical decompositions of a relation s can be
obtained from the equivalence relations defined in Definition 1.2. We have

s = U { r a] , x s(a)la A}
= U { s - ' (b) × [b],-, Ib B}.

122 B. Courcelle, D. Niwinski, and A. Podelski

Fig. 2

10

I
• • •]

?

11

• •

8 9

10

e

Fig. ;3

Geometrical View of the Determinization and Minimization of Finite-State Automata 123

L"' J

Fig. 4

and

Hence, the decompositions of s,

rain(s) ,= {([a]~, s(a))la ~ A, s(a) is not empty}

eomin(s) ..= {(s-l(b), [b]s-,)tb ~ B, s-1(b) is not empty},

are respectively reduced deterministic and coreduced codeterministic. Hence, they
are the unique such decompositions. As mentioned above, we call them respectively
the minimal and the cominimal decomposition of s.

These decompositions are minimal with respect to the following partial order.
If ~ and ~ ' are two decompositions of s, we write 9 ' ,~ ~ if every rectangle of ~ is
contained in some rectangle of ~ ' . Let g be any deterministic decomposition of s.
Let E x F be a rectangle of 8 and let a E E. It follows from the determinism of ~f
that F = s(a) and that E ~ [a]s. Hence, every rectangle of g is contained in some
rectangle of rain(s), and rain(s) ,~ 8. We also have Card(rain(s)) < Card(8). These
remarks establish the following minimality properties of rain(s):

Proposition 1.5.

(1) The decomposition min(s) is the unique reduced deterministic decomposition
of s. I t is finite iff s is finitely decomposable.

(2) It is the least deterministic decomposition of s with respect to the partial
order ~ .

124 B. Courcelle, D. Niwinski, and A. Podelski

(3) I f we assume in addition that s is finitely decomposable, then, for every
deterministic decomposition ~ of s, we have

Card(rain(s)) < Card(~),

unless 8 = rain(s). Hence, rain(s) is the unique deterministic decomposition of
s o f minimal cardinality.

A similar characterization of comin(s) holds with respect to the same partial
order on decompositions.

We now wish to show that the decompositions min(s) and comin(s) can be
constructed in a uniform way from any decomposition of s. A special case of this
construction is that of the minimal deterministic automaton of a regular language,
taking a nondeterministic automaton as input. See Section 3.

Definition 1.6 (The Determinization of a Decomposition). Let

= {(Ai, B~)li e I}

be a decomposition of s c A × B. For a e A, we let

~(a).'= ~{Ai[i e I, a e A,} - U{Ail i e I, a q~ A,}.

(This set is the equivalence class of a relative to the equivalence relation - on A ,
such that x ---- x' iff, for all i in I, x' e A~ iff x e A~. It is nonempty.)

Since ~ is a decomposition of s, we have

s(a) = U{B,[i e I, a e A,} (2)

and this set is also nonempty whenever a belongs to s - t(B), because in such a case,
s(a) is a nonempty union of nonempty sets. We have

s = U{~(a) x s(a)[a e s-l(B)}.

Hence, the indexed set

det(.~)-'= {(~(a), s(a))la e s-X(B)}

is a decomposition of s. We now establish that this decomposition is deterministic.
Any two sets of the form ~(a) are equal or disjoint since they are equivalence classes
of = . I fa = a', i.e., if~(a) and ~(a') are not disjoint, then s(a) = s(a') by equality (2)
and the definition of = . This proves that det(~) is deterministic. We call it the
determinization of ~ . It is worth noting that the equivalence = is finer than ~~,
hence that det(~) >> min(s).

The codeterminization of ~ , denoted by eodet(~), is defined symmetrically, by
exchanging the roles of A and B, i.e., by letting:

eodet(~) := (de t (~- 1))- 1.

Note that det(~) is finite if ~ is finite, and, more precisely, that card(det(~)) <
2" if m = card(~).

Figure 2 shows det(~) where ~ is the decomposition of the relation r shown in

Geometrical View of the Determinization and Minimization of Finite-State Automata 125

Figure 1. Figure 3 shows red(det(~)), that is, by Proposition 1.5(1), the canonical
decomposition rain(r). Figure 4 shows the codeterminization of the decomposition
det(~), shown in Figure 2.

Proposition 1.7.

(1) Let ~ be a decomposition of a relation s. We have

min(s) = red(det(~)).

(2) If, furthermore, ~ is codeterministic, then det(~) is reduced and det(~) =
rain(s).

Proof. (1) follows from the first part of Proposition 1.5.
(2) Let a, a' be such that s(a) = s(a'), which means

U(B,[a ~ A i, i t I} = U{B, Ia' ~ Ai, i ~ I}. (3)

Since ~ is codeterministic, if B i n Bj is not empty, then Bi = B i, and Ai = Aj. It
follows from (3) that a e A~ iff a' ~ A i, for every i in I, Hence, ~(a) = ~(a'). This
proves that det(~) is reduced. []

The following corollary is immediate:

Corollary 1.8. For every decomposition ~ of a relation s, we have

min(s) = det(codet(~)).

The following fact is an easy consequence of the definitions. We state it for
further reference.

Fact 1.9.

(1) Let ~ be a decomposition of a relation s that is both deterministic and
codeterministic. I t is reduced, coreduced, minimal, and cominimal. I t is unique
with these properties.

(2) The relation s has such a decomposition iff whenever three pairs (a, b), (a, b'),
and (a', b) belong to s, then (a', b') also belongs to s.

Proof. (1) is clear from the definitions and the previous remarks.
(2) Let s have a decomposition ~ that is both deterministic and codeterminis-

tic. Let (a, b), (a, b'), and (a', b) belong to s. There is a unique rectangle C x D of
such that a belongs to C and b belongs to D. We also have a' in C and b' in D.
Hence, (a', b) belongs to C × D, hence to s.

Conversely, let s satisfy the closure condition of Fact 1.9(2). For every (a, b) in
s, let s(a, b) = {(a', b')l(a', b) and (a, b') belong to s}. This set is a rectangle included
in s, and the set of all such rectangles forms a deterministic and codeterministic
decomposition of s. []

126 B. Courcelle, D. Niwinski, and A. Podelski

[" "J
I

• • •

I

J

Fig. 5

We finally mention a third type of canonical decomposition that works for
arbitrary relations. Any relation s can be written as follows:

s = U{la]s x [b]s-,l(a, b)~s}.

The corresponding decomposition is larger with respect to ~ than both min(s)
and comin(s). It is in general neither deterministic nor codeterministic. It is finite iff
s is finitely decomposable.

Figure 5 shows it in the case of the relation r of Figure 1. Its rectangles are the
nonempty intersections of the rectangles of Figures 3 and 4.

The reader wishing to see some applications immediately can look at Section 3,
where the determinization and the minimization of finite-state automata are
considered in this framework. In the next section we apply these definitions and
results to recognizable sets in arbitrary algebraic structures.

2. Recognizability in Algebraic Structures

We apply the results of the preceding section and obtain a new characterization of
recognizability in arbitrary algebraic structures.

Geometrical View of the Determinization and Minimization of Finite-State Automata 127

Notation 2.1. Let A be a set and let B be a set of mappings from A into itself. With
every subset L of A we associate a relation st. -~ A × B defined by

(a, b) ~ st. iff b(a) e L.

We apply the constructions of the preceding section to the relation SL. We use
the following notations:

-~ ~,. is denoted by ,~ L,
" s ~ ' is denoted by ~L,

SO that

a ,-. L a' iff, Vb ~ B, b(a) ~ L ~ b(a') ~ L,

b ~ L b' iff, 'Ca ~ A, b(a) ~ L.¢~ b' (a) ~ L.

Definition 2.2 (Many-Sorted Algebras). Let S be a finite set called the set of sorts.

An S-signature is a finite set F of function symbols, such that each symbol is given
with a profile. The profile of a symbol f in F is a sequence of the form
s~ x . . . x s k , s, where s 1 Sk, and s belong to S. (The sequence sl sk is
called the arity of f , and s is called its sort.)

We use terms written with symbols from F and variables. Each variable will
have a fixed sort in S. Clearly, terms will have to be well-formed with respect to
sorts in a classical way.

An F-algebra is an object A = ((As)s~ s, (f a) s~> . Each A s is the domain of sort
s of A, and each fA is a mapping: As, x -.. x Ask ~ As where s 1 x ... x
s k , s is the profile of f .

For sake of convenience, we assume that the domains of an algebra are
pairwise disjoint. The union of the domains of A is denoted by A.

A congruence on A as above in an equivalence relation ~ on A such that any
two equivalent objects are of the same sort (i.e., belong to the same domain As), and
that is stable under the operations of A in a well-known way. We denote by ~ s the
restriction of the relation ~ to the domain A s. We say that ~ is f i n i t e if it has
finitely many classes. It saturates a subset L of A s if this set is a union of equivalence
classes.

Let t be a finite term, constructed with the symbols of F, with finitely many
elements of the domains of A, and one variable x, of sort s, having a unique
occurrence in t. Let r be the sort of t, i.e., by definition, the sort of its first (topmost)
symbol. Then t defines in a classical way a mapping A s , A,. Such a mapping
is called a linear unary derived operat ion of A, or more simply a linear operation. We
denote by Lin(A) the set of linear operations of A. The identity mapping on each
domain A s is in Lin(A) (it is defined by the term reduced to the variable x of sort s).
Sort compatible compositions of mappings in Lin(A) are also in Lin(A).

Let us recall from [MW-J, and from [C I ! for the many-sorted case, that a set
L ~_ A s is said to be A-recognizable if there exist a finite F-algebra B, a homo-
morphism h: A ~ B, and a subset C of B~, such that L - h- l (C) , or equivalently
that L is a union of classes of a finite congruence.

128 B. Courcelle, D. Niwinski, and A. Podelski

Our aim is to characterize recognizability in terms of finite decomposabi-
lity. We do that for one-sorted algebras. We have introduced many-sorted algebras
because we embed one-sorted algebras into two-sorted ones. Our construction
actually extends in a straightforward manner to many-sorted algebras.

We let A be an F-algebra, where F is a signature with a single sort. Its domain
is denoted by A. For every subset L of A, we let SL be the relation ___ A x Lin(A)
associated with L by Notation 2.1, namely,

(a, b) ~ s L iff b(a) ~ L.

The following lemma is well known in the case where A is a free monoid [E].
Its proof in the general case is essentially the same (see FC2] or Theorem 7.1, p. 94,
of rGS'I) and is anyway easy to establish.

Lemma 2.3. Let L c_ A. Then " L is a congruence relation on A that saturates L.
This congruence is finite iff L is A-recognizable.

Definition 2.4. We extend A into an algebra LIN(A) with two sorts, the sort ob of
objects, that is nothing but the unique sort of A, and the sort In of linear operations.

The signature LIN(F) of LIN(A) consists of F augmented with the symbols o,
app, id, and F.f, i] for all f in F and i in I~ such that 1 <_ i <_ p (f) . (We denote by
p (f) the number of arguments of f ; all of them are of sort ob.) We now define the
profiles of these symbols, and the operations they denote in LIN(A). We let

LIN(A) ,= (A, Lin(A), (f A) f e F , app, o, id, (l 'f , i] L I N (A)) f e F , l<i<p(f)>' where

A is the domain of sort ob,
Lin(A) is the domain of sort ln,
app denotes the application of an argument to a linear operation; its profile is

In x ob , ob, and it is defined by app(b, a) = b(a),
o denotes the composition of linear operations, its profile is In x In , In,
id is a constant of type In, denoting the identity operation,
[f , I]LIN(A) is defined for f ~ F, 1 < i < p (f) , its profile is ob p(f) - t ~ In,

and
[f , i]uma~(al, a2 apty~-l) is the linear operation 2 x . f a (a t x

aptly_ 1), with one occurrence of x at the ith position.

Proposit ion 2,5. A subset L o f A is A-recognizable iff it is LIN(A)-recognizable.

Proof. The "if" direction is obvious because A is a "par t" of LIN(A).
"Only if." Let L be A-recognizable. Let ~L be the equivalence relation on

Lin(A) defined as follows:

b ~--L b' iff, for all c in Lin(A),
for all a in A,
c(b(a)) ~ L iff c(b'(a)) ~ L.

It is easy to verify that the pair (~ L , " L) forms a congruence on LIN(A).
Note that --L c ~ L. (This inclusion is strict in general.)

Geometrical View of the Determinization and Minimization of Finite-State Automata 129

We know that " L has finitely many classes (because L is A-recognizable and
by Lemma 2.3). It follows from Proposition 1.3 that ~r. has finitely many classes.
We need only prove that the same holds for - i , . Let us consider b in Lin(A) and
a, a' in A, such that a ~~. a'. Then b(a) ,~ Lb(a'). Hence b defines a unique mapping
/~ of A~ ,~ t, into itself. It is easy to see that b ~- Lb' iff b = b'. Hence - z is of finite
index since A~ ~ z is a finite set.

It follows that L is LIN(A)-recognizable. []

Theorem 2.6.
are equivalent:

6)
(ii)

(iii)
(iv)
(v)

(vi)

Let A be a one-sort algebra and let L ~_ A. The following conditions

L is A-recognizable,
L is LIN(A)-recognizable,
the equivalence ~ L is finite,
the equivalence ~- r. is finite,
the equivalence "~ L is finite,
the relation SL ~-- A × Lin(A) is f ini tely decomposable.

Proof (i) ,~ (ii) is Proposition 2.5.
(i)~(i i i) is Lemma 2.3.
(iii) ,~ (v) ~- (vi) is Proposition 1.3.
(i) =- (iv) by the proof of Proposition 2.5.
(iv) =- (v) because ~- L =- ~ L (whence the index of ~ ~, is at most that of = z)-

[]

The equivalence of (i) and (iv) is proved in [NP] and that of (i) and (v) is
proved in [P] in the case where A is an initial algebra, namely, the algebra of finite
binary trees.

3. Applications to Automata on Finite and Infinite Words

We now apply the definitions and results of the previous sections to finite-state
automata on finite words, and to finite-state languages of infinite words.

Definition 3.1. Let X be a finite alphabet. For every language L ___ X*, we let
s L.'= {(u, v)lu, v ~ X*, uv ~ L} ~_ X * x X*.

An automaton is a 5-tuple d = (X , Q, 6, QI, Qv) consisting of an input
alphabet X, a possibly infinite set of states Q, a transition relation 6, a set of initial
states QI, and a set of final states QF- The transition relation is any subset of
Q x x x Q. Such an automaton may be nondeterministic, but has no 8-transition.

For every state q in Q, we let L(~¢, - , q) be the set of words u in X* for which
there is a computation from an initial state to q, and we let L (d , q ~) be the set of
words for which there is a computation from q to a final state. All automata are
assumed to be trim, i.e., to be such that the languages L(~¢, ~ q) and L(~¢, q --*)
are all nonempty. The language L(~¢) defined by ~¢ is U{L(a¢, ~ q)[q ~ Qr} and is
also equal to U { L (d , q ~)lq ~ QI}-

130 B. Coureelle, D. Niwinski, and A. Podelski

The indexed set D(Of):= {(L(Of, ~ q), L(Of, q ~))[q e Q} is thus a decompo-
sition of the relation s, .

Not every decomposition of the relation st. is of the form D(Of) for some
automaton of defining L, even if it is finite. We can state the following characteriza-
tion.

Proposition 3.2. Let L c_X* and ~ be a decomposition {(Ai, B~) l ieJ } of the
relation s~.

(1) There exists an automaton off such that D(Of)= ~ /ff the following
conditions hold for all u e X*, x e X, and i e J:

(i) I f ux e A s, then there exists j e J such that u e A j, Aix ~_ Ai, and
xB~ c_ Bj.

(ii) I f xu e Bz, then there exists j e J such that u e B j, xBj c_ Bi, and
A~x c_ Aj.

(2) I f ~ is deterministic, then conditions (i) and (ii) can be replaced by:
(iii) l f ux e Ai, then u e Aj and Ajx c_ Aifor some j e J.

(3) The minimal decomposition min(sr) satisfies these conditions.

Proof. We only indicate the main steps.
(1) The decomposition associated with an automaton satisfies conditions (i)

and (ii). Let us conversely consider ~ satisfying them. We define of =
(X, Q, ~, Q~, QF) by letting Q ,= J, QI "= {i1~ e A,}, Q~ := {i[~ e Bi}, and ~ be the set
of triples (i, x , j) such that A~x ~_ Ai and xB i c_ By We then prove by induction on
the length of a word w that

weA~ iff w~L(of , ~ i)
and

w E B i iff w e L(Of, i--*).

(2) If a decompostion is deterministic and fulfills (iii), then it also fulfills (i) and
(ii).

(3) Easy to verify. []

If two automata are isomorphic, then their associated decompositions are equal,
but the converse is not true. Let of be the automaton of Figure 6. Let of ' be the one
obtained from of by the deletion of one transition labeled by b. Its states are the
same as those of d . For every state q, we have

L(Of, ~ q) = L(Of', --~ q) and L(Of, q --,) = L(Of', q ~). (4)

It follows that the decompositions associated with of and of ' are the same
although these automata are not isomorphic. Note that these decompositions are
the same in a stronger sense than that of Definition 1.1: by (4), not only are the
rectangles the same, but their indices also are. Hence, choosing the "strong
equality" of decompositions (where two decompositions are equal iffthey are equal
as multisets of rectangles) would not yield a one-to-one mapping from automata to
decompositions.

Geometrical View of the Determinization and Minimization of Finite-State Automata 131

bl lb
Fig. 6

An automaton d as in Definition 3.1 is deterministic if it has only one initial
state, and if, for every q ~ Q and a ~ X, there is at most one transition (q, a, q') in 6.
It is reduced if, for every q, q' in Q, L (d , q ~) # L (d , q ' ~) if q ~ q'. An
automaton is minimal if it is both deterministic and reduced. (This terminology is
borrowed from [E].)

Fact 3.3. An automaton d is deterministic iff L (d , --, q) t~ L(~/, --, q') is empty
whenever q ~ q'. In this case, the decomposition D (~) is deterministic, and it is
reduced iff ~/ is minimal.

The proof of this fact is a straightforward verification. The converse of the
second implication does not hold. If d is a deterministic automaton, and
consists of two disjoint copies of d , then D(~) = D (d) , hence is a deterministic
decomposition, although ,~ is not deterministic (it has two initial states). However,
we have:

Fact 3.4.

(1) Two deterministic automata ~ and d ' are isomorphic/ f fD(d) = D(~ ') .
(2) Any two minimal automata defining the same language are isomorphic.

Proof (1) Let Q and Q' be the sets of states of the two automata. If the associated
decompositions are the same, the relation L (d , ~ q) = L (d ' , -~ q') defines a
bijection of Q onto Q' and, moreover, an isomorphism of the automata. (Easy to
verify.)

(2) If two minimal automata define the same language L, the associated
decompositions are two minimal decompositions of the relation s,. Hence, they are
equal. Since the automata are deterministic, they are isomorphic by (I). []

132 B. Courcelle, D. Niwinski, and A. Podelski

For every automaton ~' , we denote by rev(d) the automaton obtained by
reversing the arrows (in the oriented graph representing ~¢) and exchanging the
sets Ql and QF. It is clear that L(rev(~/)) = rev(L(M)) where rev(u) denotes the
mirror image of a word u, and roy(L) denotes the set of mirror images of the words
of a language L. It is clear that

D(rev(~¢)) = {(rev(B), rev(A))t(A, B) e D(~¢)}.

This immediately yields the following fact:

Fact 3.5. For every automaton d , the decomposition D (d) is codeterministic if
rev(d) is deterministic.

We now reformulate in the present framework some classical transformations
of automata. Given an automaton d = (X, Q, t~, Q~, QF), the associated determin-
istic (trim) automaton det(M) is constructed as follows:

de t (d) := (X, Q', 6', {Q,}, Q~),

where

Q':= {A(u)lu ~ X*, A(u) ~ ~},

where, for every word u,

A(u)..= {qlu e L(~/, ~ q)}.

(Since ~ is trim, A(u) is not empty iff u is a prefix of some word in L(~/).)

Q~ := {p e Q'Ip~QF # ~ } ,
(p,x ,p ')~6' iff p ,p ' sQ ' and p '={q ' sQ l (q , x , q ') e6 , qsp} .

Fact 3.6. For every automaton d ,

D(det(~¢)) = det(D(~¢)).

Proof. Let z¢ and de t (d) be as above. Since de t (d) is deterministic and, by Fact
3.3, we have, for every p ~ Q',

L(det(~¢), -~ p) = {u ~ X*lp = A(u)}. (5)

Let p be given as A(w) for some w. We easily verify that the right-hand side of
equality (5) can be written as follows:

(N{L(~ 1, ~ q)lq ~ p}) - (U (L (d , ~ q)lq q~ P}),

hence, is equal to c~(w), where ~ is defined as in Definition 1.6 relatively to the
decomposition D(M).

We also obtain, if p = A(w),

L(aet(~¢), p --,) = U { L (d , q - ,)lq ~ P}

= sLc~o(w) (6)

Geometrical View of the Determinization and Minimization of Finite-State Automata 133

(see Definition 1.6). It follows from (5), (6), and Definition 1.6 that D(de t (d)) =
det(D(d)) , since D(~¢) is defined as the following decomposition of sL~):

D (d) = {(L(,.~¢, --+ q), L(z~/, q --+))[q ~ O}. []

Given a deterministic automaton d of the general form of Definition 3.1, the
associated reduced automaton, also called its minimal automaton, is

min(~¢) .'= (X , Q", ~5", {ql}, OF"),

where

Q" "= {qlq e Q},

and, for every q in Q,

4 ..= {q'~ 0 1 L (d , q' --,) = L (d , q ~)}.

The initial state o f m i n (d) is ql where q~ is the (unique) initial state o f d . Its set
of final states is

Q~" '= {qlq e QF}

and

6" ,= {(4, x, q')l(q, x, q') e 6}.

It is clear that, for every p ~ Q", L(min(d) , p --*) = L(~¢, q ---,) for all q E p, and
that L(min(d) , ~ p) = U { L (d , ~ q)[q ~ p}. From this observation, and Defini-
tion 1.4, we immediately have the following fact:

Fact 3.7. For every deterministic automaton ~¢, we have

D(min(d)) = red(D(~¢)).

Proposition 3.8. Let L be the language defined by an automaton d .

(I) The automaton min(det(d)) is the unique deterministic automaton ~ such
that D(~) = min(sL).

(2) We have min(det(d)) = det(rev(det(rev(d)))).

Proof (1) That D(min(det(d))) = min(sz) follows from Facts 3.6 and 3.7. The
unicity follows from Fact 3.4.

(2) The automaton rev(z¢) defines rev(L). So does the deterministic
automaton det(rev(d)). Hence, rev(det(rev(d))) defines L, and its associated
decomposition is codeterministic by Fact 3.5. It follows from Proposition 1.7(2)
that det(D(rev(det(rev(~¢))))) is reduced. This decomposition of s L is equal to
D(det(rev(det(rcv(~¢))))) by Fact 3.6. Since it is reduced, the deterministic automa-
ton det(rev(det(rev(d))) is reduced, by Fact 3.3. This automaton defines L, it is
deterministic and reduced, hence it is equal to min(det(~¢)), by the first part. []

134 B. Courcelle, D. Niwinski, and A. Podelski

The second assertion of this proposition is known from l-B]. We think that its
best explanation is the "geometrical fact" stated as Corollary 1.8.

A few words now on regular languages, defined by automata with finitely
many states.

Proposition 3.9. A language L ~_ X* is regular iff the relation s L is f initely
decomposable.

Proof. If L is regular, then the decomposition associated with a finite automaton
defining it is finite. Conversely, if SL is finitely decomposable, then a finite
automaton defining L can be constructed from the finite decomposition min(sL) by
Proposition 3.2. []

We now consider what can be obtained from the algebraic framework of
Section 2. We let A be the algebra (X*, (~)x~x, ~) where e is a constant denoting
the empty word, and ~ is the mapping u ~-, ux (for u a X*, x ~ X). From Theorem
2.6 we get that L _ X* is A-recognizable (i.e., regular) iff any of the three
equivalence relations ,-, L, ~ L, and ~--L has a finite index. These equivalences are
the following classical ones:

U"LU' "=" V w ~ X * ' [u w ~ L ~ u ' w ~ L] ,

U,~,LU' ~ V v ~ X * . [v u ~ L ~ v u ' e L] ,

U " L U ' ¢~ Vv, w ~ X * . [v u w ~ L c ~ v u ' w ~ L] .

The first one is the canonical right-invariant equivalence (its finiteness
characterizes regularity by Nerode's well-known result IN]), the second one is the
"dual" of the first (with respect to rev as a duality mapping), and the last one is the
syntactic congruence of L. We refer the reader to [El or to [RS] for more details.

We conclude this section by giving some applications to og-languages.

Definition 3.10. For every set of to-words L _ X ~', we let

SL.'= {(U, v)Iu ~ X*, v ~ X °', uv ~ L}.

An to-language (i.e., a set of co-words) L isfinite-state, as defined by Trakhten-
brot IT], if the set {SL(U)IU ~ X*} is finite. The reoular to-languages, defined by
finite-state automata in the sense of McNaughton, Biichi, and Muller, are finite-
state. There are uncountably many finite-state in-languages, hence, some of them
are not regular. (See IS] for the proofs of these facts.)

Let B be the algebra (X ~', (~)x~x), where ~ is the mapping ofX ~' into itself such
that ~(u) = xu for every ~o-word u. (This algebra is not finitely generated i fX has at
least two symbols). We say that an to-language is recoonizable iff it is recognizable
with respect to B.

Proposition 3.11. For every og-lanouage L ~_ X °', the followin 9 conditions are
equivalent:

(i) L is finite-state,
(ii) L is recoonizable,

Geometrical View of the Determinization and Minimization of Finite-State Automata 135

(iii) the equivalence relation ,~ on X * such that

u ~ u' i f f uw E L ~ u'w ~ L f o r every to-word w.
has a f ini te index,

(iv) the congruence ..~ on B such that

w ... w' i f f uw ~ L ¢~ uw' ~ L fo r every word u,
has a f ini te index,

(v) the congruence " on X * such that

v ~-- v' i f f uvw ~ L ~ uv'w ~ L for every word u and
every to-word w, has a f ini te index.

Proo f (i) ¢~- (iii) ¢~ (iv) by Proposition 1.3.
(ii)¢~(iv) by Lemma 2.3.
(iv) ¢~ (v) by (iv) ~ (v) of Theorem 2.6. []

Note that - is a congruence on words that extends, in a natural way, the
syntactical congruence classically associated with a language. See [A] for a
refinement of "-, the finiteness of which characterizes the regularity of an
to-language.

Note also that, in a pair (u, v) as in Definition 3.10, the component v is an
element of the domain of the relevant algebra, namely B, while u corresponds to an
element of Lin(B).

4. Applications to Tree Automata

We first review the determinization and the minimization of finite-state frontier-to-
root (bot tom-up) tree automata. These constructions are well known (see [GS])
and are actually very close to those of Section 3. We then consider certain root-to-
frontier tree automata and we reformulate several determinization and minimiza-
tion results originally presented in [P].

Definition 4.1. We let F be a finite one-sorted signature consisting of a set F 2 of
binary symbols and a set F o of nullary symbols. We denote by M(F) the initial
F-algebra. A tree is an element of the domain of M(F), that we also denote by
M(F). A fores t (or a tree language) is a set of trees. It follows from this definition
that a tree is either a symbol of Fo or an expression of the form f (t l , t 2) , where f is
a symbol in F 2 and t 1 and t2 are trees.

Trees can also be represented by labeled directed graphs in a well-known way.
We thus refer to the set of nodes N(t) of a tree t. One of the nodes of a tree is its root.
The nodes labeled by symbols from F 0 are the leaves. Any other node has a label
belonging to F 2 and an ordered pair of successors belonging to N(t) x N(t). The
set of leaves of a tree is called its frontier.

A tree automaton is a tuple ~¢ = (F , Q, 6, Q~) consisting of a finite signature F
as above, a set of states Q, a set of root states QR ~- Q, and a transition relation

-(Fo x Q) u(Q x Q x F~ x Q).

136 B. Courcelle, D. Niwinski, and A. Podelski

If t is a tree in M(F), a run of d on t is a mapping r: N(t) --* Q satisfying the
following conditions, for every node v of t:

(i) ifv is labeled by some symbol a from Fo, then (a, r(v)) ~ 6 (in this case v is a
leaf of t);

(ii) if v is labeled by some symbol f from F 2, then it has a pair of successors
(v I, v2) and we require that the 4-tuple (r(vl), r(v2), f , r(v)) belongs to 6.

We denote by T(~¢, q) (or by T(q) if the context makes d clear) the set of trees
t on which d has a run r such that r(root(t)) = q. We denote by T(~¢) the forest
recognized by ,~¢, and defined as U {T(q) lq e QR}.

It is well known that a forest T is M(F)°recognizable (in the sense of Section 2)
iff it is recognized by afinite tree automaton, i.e., by a tree automaton with finitely
many states. (See I'GS], [C1], [NP] , and [P].)

The set Lin(M(F)) is in one-to-one correspondence with the set of trees in
M(F u {x}) having one and only one occurrence of the variable x. These special
trees are called contexts. (They are called pointed trees in [NP].) Theorem 2.6 yields
a characterization of recognizable sets of trees, some parts of which can be found in
[NP] and in [P].

The set of contexts relative to F is denoted by Ctxt(F). We denote by c[t] the
tree obtained by substituting the tree t for the variable x in the context c. Note that
x is a context, called the identity context (since x[t] = t). Since contexts are trees
over a larger set of symbols, we can refer to them with the terminology that we
already use for trees.

By a q-run r of ~¢ on a context c, we mean a mapping r: N(c) ~ Q satisfying
conditions (i) and (ii) above, together with the following two conditions for every v
in N(c):

(iii) if v is labeled by x, then r(v) = q,
(iv) r(root(c)) e Q~.

Note that d has a q-run on the context x iff q ~ Q~.

We let C (d , q) denote the set of contexts on which d has a q-run. (This set is
denoted by C(q) if ~¢ is clear from the context.) Let us observe that

C(q) ~ {c ~ Ctxt(F) lc[t] ~ T(d)} , (7)

for every tree t in T(q), and that if (p, p', f , q) ~ 6, c ~ C(q), then

T(p') G {t e M(F) lc[f(x, t)] e C(p)}. (8)

All tree automata are assumed to be trim, i.e., to be such that the sets T(q) and
C(q) are nonempty for all states q.

With every forest T c M(F), we associate a relation s r .-= {(t, c)~ M(F) x
Ctxt(F)lc[t] ~ T}. With every automaton ~¢, we associate the indexed set of pairs
of sets:

D(z~¢) .-= {(T(q), C(q))lq e Q}.

Geometrical View of the Determinization and Minimization of Finite-State Automata 137

Fact 4.2. D (d) is a decomposition of the relation sr¢~.

A characterization of the decompositions of a relation of the form s r that
correspond to tree automata, fully analogous to the one of Proposition 3.2, could
be given. It is quite complicated to write, and we omit it.

An automaton ~¢ as above is frontier-to-root deterministic (fr-deterministic) if
there are no two tuples in 6 of the form (a, q) and (a, q'), or of the form (ql, q2, f , q)
and (ql, q2, f , q') for any a in F o, f in F2, and ql, q2 in Q, with q ~ q'. If ~1 is
if-deterministic, then it has at most one run on every tree t in M(F), and on every
context c in Ctxt(F), it has at most one q-run for each state q. If, furthermore, z~¢ is
finite (and given), then its run on t or its q-run on c can be computed deterministi-
cally from the leaves to the root. (This justifies the terminology.)

A tree automaton isfr-reduced, if, for every two distinct states q and q', the sets
C(q) and C(q') are not equal. It isfr-minimal if it is fr-deterministic and fr-reduced.

Fact 4.3. A tree automaton d is fr-deterministic iff, for any two distinct states q and
q', the sets T(q) and T(q') are disjoint. I f this is the case, then the decomposition D (d)
is deterministic and, furthermore, d is fr-minimal iff D(zz¢) is reduced.

Fact 4.4. Two fr-deterministic tree automata sac and ~ ' are isomorphic/ffD(M) =
D(M'). For every forest T, there exists a unique fr-minimal tree automaton ~ , such
that D (~) = min(sT).

Note the similarity with the case of languages in Facts 3.3 and 3.4: here, the
sets of trees T(q) play the role of the languages L(~ q), while the sets of contexts
C(q) play that of the languages L(q ~).

It is well known that fr-deterministic tree automata can be determinized and
minimized (see [GS]). The formal constructions are so similar to the ones for
(word) au tomata recalled in Section 3, that we do not give them. In particular, the
subset construction can be performed on tree automata and makes it possible to
transform a tree automaton d into an equivalent fr-deterministic one, denoted by
fr-det(d) . Similarly, an fr-deterministic au tomaton ~¢ can be transformed into an
fr-minimal one, denoted by fr-min(~¢). As in the case of words, we have:

Fact 4.5. For every tree automaton ~ :

D(fr-det(~¢)) = det(D(d)) .

I f ~ is fr-deterministic, then

D(fr-min(M)) = red(D(d)) .

Note that, for every tree automaton M, the decomposition codet(D(~¢)) exists.
It does not correspond to any tree automaton in general. Since we do not have on
trees any operation analogous to the mirror image on words (denoted by rev), the
results of Section 3 involving rev have no counterpart concerning forests and tree
automata.

138 B. Coureelle, D. Niwinski, and A. Podelski

Definition 4.6 (Root-to-Frontier Determinism). An automaton ~ as in Defini-
tion 4.1 is root-to-frontier deterministic (rf-deterministic) if it has one and only one
root state and if there are no two distinct tuples of the forms

(qt, q2, f , q) and (q~, q~, f , q)

in its transition relation 6.

It is clear that if ~¢ is if-deterministic, then C(~/, q)r~ C(~¢, q') is empty
whenever q # q', hence that D (~) is codeterministic. It is well known that some
sets of trees, like the finite one {f(a, a), f (b , b)}, cannot be recognized by any rf-
deterministic automaton.

We consider alternative less restrictive determinism conditions, ensuring in
particular, for every automaton, the existence and unicity (up to isomorphism) of
the minimal automaton recognizing the same forest.

We say that an automaton d as above is l-deterministic if it has a unique root
state, and if, for any two distinct tuples (ql, q2, f , q) and (q'~, q~, f , q) in 6, we have

~ T (d , qt) ~ T (d , q'l),
(L) IT(M ' qz) c~ T(M, q2) = ~ .

By exchanging the roles of(q1, q'1) and (q2, q'2), we get the analogous notion of
r-determinism. Finally, an automaton is lr-deterministic if it is both l- and r-
deterministic, that is if it has a unique root state, and if it satisfies the following
condition, for every two distinct tuples as above:

~T(,~', qt) c~ T(~¢, q'~) = O,
(LR) (T(~¢, q2) n T (d , q~) ~ .

(This condition implies that the decompositions

{(T(M, p), T(e~¢, p'))[(p, p', f , q) ~ 6}

are deterministic and codeterministic for all f in F2 and q in Q. See the proof of
Proposition 4.9 below.)

Lemma 4.7.

(1) An automaton d is lr-deterministic iff, for every two distinct states q and q',
the sets C(q) and C(q') are disjoint. I f this is the case, then the associated
decomposition D (d) is codeterministic.

(2) Two lr-deterministic tree automata are isomorphic iff the associated decom-
positions are equal.

Proof. (1) Let ~ / b e such that C(q) c~ C(q') = ~ for every two distinct states q and
q'. Let us consider two distinct tuples (ql, qz, f , q) and (q't,q'2, f , q) in the
transition relation 6 of~¢. We provethat T(qt) c~ T(q't) = ~ and T(q2) n T(q[) = ~ .

Let us assume without loss of generality that qt # q[. Let also c be some
context in C(q). Then, by formula (8) of Definition 4.1,

T(q2) c { t ic[f (x, t)] ~ C(ql)},

Geometrical View of the Determinization and Minimization of Finite-State Automata 139

and similarily with q~ and q'~. Since C(q~)c~ C(q'~) is empty, we get that
T(q2) n T(q~) is also empty. We obtain in particular that q2 # q~, hence, by a
symmetric argument, we obtain that T(q0 and T(q'l) have an empty intersection.
Hence, we have established conditions (LR).

If d had two distinct root states q and q', then we would have x ~ C(q) c~ C(q'),
contradicting the initial assumption on ~¢. Hence, d is lr-deterministic.

Let us now assume that Jzf is lr-deterministic. We prove that for every context c
there is at most one q such that c ~ C(q).

If c = x, then c e C(q) iff q ~ Q~, and we know that QR is singleton. Otherwise,
c = c ' [f (x , t)] or, symmetrically, c = c '[f (t , x)]. Let us assume the first. By
induction, there is at most one state q' such that c' E C(q'). Ifc ~ C(q~) n C(q'~), then
this means that there are two tuples (q~, q2, f , q') and (q'~, q'2, f q') in 5 such that
t e T(q2) c~ T(q~). By the definition of lr-determinism, we get q~ = q'l. The proof is
similar in the symmetric case.

(2) Let ~¢ and ~¢' be two lr-deterministic automata with respective sets of
states Q and Q' and equal decompositions. The relation C(~¢, q) = C(~¢', q')
(or equivalently C (d , q) n C (~ ¢', q') v~ ~) defines an isomorphism of the two
automata. We omit the details. []

Definition 4.8 (Minimal lr-Deterministic Automata). We say that an lr-determin-
istic automaton ~¢ is minimal iff, for every two distinct states q and q', we have
T(q) ~ T(q'). By Lemma 4.7, this is equivalent to requiring that the decomposition
D(~¢) is codeterministic and coreduced, hence, equivalently, that it is the (unique)
cominimal decomposition of sTt~). This shows, by the second part of Lemma 4.7,
that there exists at most one minimal lr-deterministic automaton recognizing a
forest. (The unicity should be understood up to isomorphism.)

Proposition 4.9. I f ~r4 is an Ir-deterministic automaton, then there exists a minimal
lr-deterministic automaton ~ recognizing T(d) . I t is unique with these properties,
and D(~) = eored(D(~¢)).

Proof Let ~¢ = (F, Q, 6, {qR}) be lr-deterministic. Let ~ be the equivalence
relation on Q such that q ,-, q' iff T(q) = T(q'). We let ~ = (F, Q~ ~ , r l, {[qR]})
where Q~ ~ is the quotient set of Q by ~ , where [qR] is the equivalence class of qa,
and where t/is defined as the set of tuples of the form ([ql], [q2], f , [q]) or (a, [q])
where (ql, q2, f , q) or, respectively (a, q), belongs to 5.

For every q ~ Q and f ~ F 2, vce let

6 -1(f , q) = {(ql, q2)l(ql, q2, f q)6 5}.

For every subset T of M(F), we let

f - X (T) = {(tl, t2) l f (tx , t2)e Z}.

We denote by A-~(f , q) the decomposition

A-~(f , q) = {(T(qt), T(q2))i(q~, q2)~ 6 - l (f , q)}

of the relation f - l(T(q)).

140 B. CourceUe, D. Niwinski, and A. Podelski

Claim 1. l f q ~ q', if(r, s, f , q) belongs to 6, then there is some (r', s', f , q') in 6 such
that r ... r' and s ~ s'.

Proof Since q ~ q', we have f - t (T (q)) = f - t (T(q ')) . The decompositions
A- l (f , q) and A- ~(f, q') are both deterministic and codeterministic by condition
(LR). Hence they are equal. (See Fact 1.9.) The rectangle T(r) x T(s) of the former
is equal to some rectangle T(r') x T(s') of the latter, and (r', s', f , q) is the desired
tuple. []

Claim 2. T(~ , [q]) = T(~¢, q) for every q ~ Q.

Proof Let q~: Q ~ Q~ ~ be the canonical surjection that maps any q to its
equivalence class [q]. Let t ~ T (d , q) and let r: N(t) ~ Q be a run of ~¢ on t. Then
q~ o r is a run of ~ on t, and we have t e T(:~, ~0(q)) (= T(~ , [q])). This proves the
inclusion 2 .

For the other, consider t in T(~ , [q]) and a run r o f& on t. By a repeated use of
Claim 1 and by traversing t from the root to the leaves, we can construct from r a
run of d on t with root state q. This proves that t ~ T(~¢, q). []

It follows in particular that T(&) = T(~¢), that & is lr-deterministic, and, in
addition, that & is minimal lr-deterministic.

Claim 3. C(&, Iq]) = U { C (~ , q')lq' "" q} for every q ~ Q.

Proof If q ,-, q', we obtain C (d , q) _q C(&, Iq]) as in the first part of the proof of
Claim 2.

For proving the other inclusion, namely _q, let us consider c in C(:~, [q]). By
the construction of the second part of the proof of Claim 2, we can find a run of d
on c. Hence, c E C (d , q') for some q'. Hence, by the first part, c is in C(:~, [q']).
Since ~ is lr-deterministic, we have [q'] = [q] by Lemma 4.7, hence, q' ~ q, as was
to be proved. []

It follows then from Claims 2 and 3 that D(&) = eored(D[~¢]). []

Next we characterize the forests defined by lr-deterministic automata.

Definition 4.10 (Homogeneous forests). For every T ~ M(F) and every c in
Ctxt(F), we let

c - I(T)--= {tic[t] ~ T}.

Let us recall that, for f ~ F2, we let f - I(T) denote

{(tl, ta) ~ M(F) x M (F) t f (q , t2) ~ T}.

We say that T is homogeneous if, for every c in Ctxt(F) and every f in F2, the
relation f - 1(c- I(T)) on M(F) has a (possibly infinite) decomposition that is both
deterministic and codeterministic. As noticed in Fact 1.9, this is equivalent to

Geometrical View of the Determinization and Minimization of Finite-State Automata 141

requiring that, for every tt, tz, t'~, (2 in M(F), if (tt, t2) , (t l , t~), and (t], t2) belong to
f - t (c - t (T)) , then (t't, t~) also belongs to f-X(e-X(T)). In this way we obtain the
original definition of [P].

Proposition 4.11. A forest is homogeneous if it is defined by an Ir-deterministic
automaton.

Proof Let L = T(~¢) for some lr-deterministic automaton ~1. Let w =
f - 1(c- t(L)) for some context c and some f ~ F 2, with w # ~ . By Lemma 4.7,
there is a unique state q of ~1 such that c ~ C(~1, q). Hence T(~¢, q) = c- t(L), and

w = U{T(~ t, ql) X T(M, q2)[(qt, q2)~ 6-~(f , q)}.

Since M is k-deterministic T (~ , qi)~ T (~ , q'i)= ~ , for i = 1, 2, where
(ql, q2) and (q],q~) are distinct pairs in 6-1(f , q). It follows that
{(T(M, ql), T(z~', q2))](qx, q2) ~ 6 -x(f , q)} is a deterministic and codeterministic
decomposition of w. Hence L is homogeneous. []

Our next proposition yields the converse of the previous one.

Proposition 4.12. Let ~ be an automaton defining a homogeneous forest L. There
exists a minimal lr-deterministic automaton ~ that defines L and is such that
D(~) = codet(det(D(d))).

Proof Let a,¢ = (F, Q, 6, Qa) be an automaton defining a homogeneous forest L.
For every context c in Ctxt(F), the forest c - t (L) is homogeneous. We let

Q(c) := {q ~ QIT(M, q) c c-t(L)}.

It is not hard to verify that c- l (L) = T (d , Q(c)), where, for every a _q Q, we let
T(~t, ~) denote U{T(d , q)[q ~ ~}.

We now let ~ = (F,Q',6' , {Q(x)}) where Q'= {Q(c)]c-l(L) # ~} . The
unique root state of ~ is Q(x), associated with the identity context x. We have
QR ~-- Q(x) but the inclusion may be strict.

We define c$' as the set of tuples of the following two possible forms:

(i) (a, ?) where a ~ T (d , ?), 7 ~ Q'-
(ii) (a, t , f , ?) where we have

--- {q ~ Q l f (T (d , q), s2) - T(M, y)},
fl = {q E Qtf(s t , T (d , q)) _~ T (d , y)},
st, s2 ~ M(F), f (s l , s2) ~ T (d , ?), and 7 ~ Q'-

(We say that this 4-tuple is associated with the pair (st, s2).)
In case (ii) we must prove that a and fl belong to Q'. It is actually easy to verify

that a = Q(c'), where c' is the context c[f (x , s,)]. Since f (s l , s2) ~ T(M, 7), ct # ~ ,
hence a ~ Q'. Similarly, fl ~ Q'. It follows that sl ~ T(~¢, ct) and that s2 e T(M, fl).

Claim. For every a ~ Q', we have T(~, a) = T (d , a).

142 B. Coureelle, D. Niwinski, and A. Podelski

Proof. We prove by induction on the structure of t that, for every t in M(F),

t ~ T (~ , ~) ~ . tET(~ ' ,~) .

The ease where t = a ~ Fo follows immediately from the definition of 6'. Otherwise,
let t = f (t 1, t2).

Let us assume that t ~ T(~¢, ~). A tuple in 6' of the form (/~, ~, f , ~) with
t~ ~ T(~¢,/~), t~ ~ T(~¢, ~), can be associated with (t:, t2) by case (ii) of the defini-
tion of 6'. By induction we have t~ ~T(~, /~) and t2~T(~ ,y) , hence, t =
f(t~, tz) ~ T(~, ~).

Conversely, let us assume that t - - f (t ~ , t z) ~ T (~ , ~). We have a tuple
(fl, ~, f , ~) such that t~ ~ T(~, ~), t2 ~ T(~, ~,), associated by (ii) with a pair (sl, sz).
Hence, we have t~ e T(~¢,/~) and t~ e T(~¢, y) by the induction hypothesis. We also
have

f(s~, s~) ~ T(~¢, ~),
f(T(~¢,/~), sz) ~- T(~¢, ~), whence f (tx , s~) ~ T(~', ~),
f(s~, T(z¢, ~)) __q T(~¢, ~), whence f(s~, t~) ~ T(z¢, ~).

Since T(~¢, 00 is homogeneous, we have f(t~, tz) ~ T(~¢, ~) as was to be proved.
[]

It follows from the claim that T(&) = T(~¢, Q(x)) = L. We now prove that
is k-deterministic. Note first that & has a single root state. Let (p, ~,, f , ~) and
(fl', y', f , ~) be two tuples in 6' associated with pairs (st, s2) and (s~, s~). Let t belong
to T(&, fl) n T(:~, p'), assumed to be nonempty.

We have

= {q ~ Q l f (s 1, T (d , q)) __ T(z¢, ~t)}.

Since f (s l , s~) and f (t , s2) belong to T (~ , ~), we also have, since T (d , ~t) is
homogeneous,

f (s l , T(z¢, q)) G T(z¢, ct) iff f (t , T(~¢, q)) G T(M, ~t),

hence,

y = {q E Q l f (t , T(~¢, q)) _~ T (d , ~t)}.

The same argument applies to ~', hence, ~' = y.
By using some t' in T(~, ~,), which is equal to T(~, 7'), we get by a similar

argument that/~ = ft. Hence, ~1 is lr-deterministic.
Finally, we show that & is minimal. Let us consider T(~, ~) with ~t = Q(c) for

some c. Every state q, such that T(M, q) _= T(~, ~), belongs to ~ (because, then, c[t]
belongs to L for every t in T(~¢, q), whence q e Q (c) = ~t). Hence, if T(:~, ct)=
T(&, ~) we obtain by the claim and this remark that ct = Q(c) = ~t'.

It follows that D(~) is the unique cominimal decomposition of st. Hence, it
must be equal to codet(flet(D(z¢))) by Corollary 1.8. []

Proposition 4.12 is also a consequence of Proposition 4.15 given below,
because it can be proved that if an 1-deterministic automaton recognizes a

Geometrical View of the Determinization and Minimization of Finite-State Automata 143

homogeneous forest, then this automaton is lr-deterministic. See IP] for more
details.

Corollary 4.13. A forest is homo#eneous iff it is recognized by an Ir-deterministic
automaton. It is homogeneous and recognizable iff it is recognized by a finite Ir-
deterministic automaton. I f a forest is given by a finite automaton, then we can decide
whether it is homogeneous. I f it is, we can construct its finite minimal lr-deterministic
automaton.

Proof. If in Proposition 4.12 the automaton a¢ is finite, then the automaton & is
finite and can be effectively constructed. If it is lr-deterministic, which can be tested,
then we can test whether T (~) = T(~). If the equality does not hold or if ~ is not
lr-deterministic, then the given forest is not homogeneous. Otherwise it is, and ~ is
the desired automaton. []

Remark 4.14. Let a¢ and ~ be as in Proposition 4.12. By this proposition and
Proposition 1.7(1), we have

D(~) --- cored(eodet(D(d))) (9)

= eodet(det(D(d))). (10)

If z¢ is fr-deterministic, then D (d) is deterministic and equality (10) reduces to

D (~) = eodet(D(~)) .

We ask the following question: does there exist a general construction by
which we can obtain from d an automaton ~ such that D(~) = eodet(D(a¢)),
where a¢ is not necessarily fr-deterministic? This would give, by (9),

D(~) = eored(D(~)),

and a two-step construction of the minimal Ir-deterministic automaton recognizing
the forest T(~¢), similar to the construction of the minimal automaton recognizing
a language that consists of a determinization followed by a reduction.

Equation (10) actually corresponds to the construction of the minimal
automaton of a language consisting of two determinizations (see Proposition
3.8(2).)

Finally, the "one-step construction" that we give in Proposition 4.12 has the
following counterpart in the case of languages. Let d = (X, Q, 6, Qi, QF) be a
(nondeterministic) word automaton recognizing L __ X*. For every word u ~ X*,
we let Q(u).-= {q ~ QluL(d , q ---,) _ L}. We then let ~ = (X, Q', 6', {Q(e)}, Q'F)
where

Q' = {Q(u)lu ~ X*, Q(u) ~ ~} ,
Q~ = {Q(u)lu ~ x*, QF c~ Q(u) ~ O},
(ct, a,[3)~6' iff ~t, f l eQ' , a ~ X ,

and

[3 = {q ~ QlaL(~ , q --*) c U{L(a¢, q' ~)[q' ~ ~}}.

144 B. Coureelle, D. Niwinski, and A. Podelski

The verification that ~ is the minimal automaton defining L is nothing but an easy
adaptation of the proof of Proposition 4.12.

We now consider the recognition power and the minimization of 1-determinis-
tic automata.

Definition 4.6 can be reformulated as follows: an automaton d =
<F, Q, 6, QR> is 1-deterministic iff QR is a singleton and, for every q e Q and f e F 2,
the decomposition

A- t (d , f , q),= {(T(z~¢, qx), T(z~¢, q2))[(ql, q2) ~ 6 - t (f , q)}

of the relation f - I (T(~, q)) is its unique cominimal decomposition.
An l-deterministic automaton ~ is minimal iff T(~¢, q) # T(~¢, q') for any two

distinct states q and q'. This implies that D(z¢) is coreduced. The following
proposition is fully similar to Proposition 4.9.

Proposition 4.15. l f ~ is an l-deterministic automaton, then T (d) is reco#nized by a
unique minimal 1-deterministic automaton ~, and then D(~) = eored(D(~)).

Proof. We first establish that any two minimal 1-deterministic automata, m¢ and
~¢', defining the same forest L are isomorphic. We let m¢= <F, Q, 6, {qR}> and
,no' = <F, Q', 6', {q~}>. We let p be the relation ~_ Q x Q' such that (q, q') e p iff
T(z¢, q) = T(~¢', q'). This relation is a one-to-one partial function since the two
automata are minimal. We prove that it defines a bijection, Q ---, Q', and, moreover,
an isomorphism of the two automata.

We have (qR, q~) e p since T(~¢) = T(~¢'). Let q, q' be two states such that
q e Q, q' e Q', and (q, q') e p. We have

T(~¢, q) = T(m¢', q'),

hence, for every f ~ F2,

f - I (T(~¢ , q)) = f-1(T(~¢' , q'))

from which we get

A - l (d , f , q) = A-'(~1' , f , q'),

since, as noted above, they are two cominimal decompositions of a same relation.
It follows that, for each tuple (ql, q2, f , q) in 6, we have a unique tuple

(q~, q~, f , q') in 6' with (q~, q~) e p, (q2, q~) e p.
For every a in F o, we also have (a, q) e 6 iff (a, q') e 6', since we assume that q

and q' are related by p.
It follows that, for every q in Q, if there is a context c, such that c e C(~¢, q),

then there is a state q' in Q' such that (q, q') e p and c e C(~¢', q'). A similar property
holds by exchanging the roles of the two automata. Since they are trim, the relation
p is a bijection of Q onto Q'. We have seen above that it defines a bijection of 6 onto
6'.

Hence, there is at most one minimal 1-deterministic automaton recognizing a
given forest.

Geometrical View of the Determinization and Minimization of Finite-State Automata 145

Let us now assume that a forest L is T (d) for some 1-deterministic automaton
d . The quotient construction already used in the proof of Proposition 4.9 yields
the desired automaton &. The remainder of the proof is the same as that of
Proposition 4.9, and we omit it. []

Theorem 4.16. Every forest L is defined by some l-deterministic automaton z¢. I l L
is recognizable, then ~ ' can be constructed finite.

Proof. Let L _ M(F) be defined by a (possibly infinite) fr-deterministic (trim)
automaton ~ = (F, Q, 3, Q~). For f e F 2 and c~ ~ Q, we let

r (f , ~):= {(q~, q2)lf(T(~, q~), T(~, q2)) -- T(~, ~)},

where T(&, ~):= U{T(~, q)iq e ~}.
We now let d ' be the possibly not trim automaton (F, Q', 6', Q~) where

Q' ..= ~(Q),

Q~t := {QR},
3' .-= {(a, a))p • a, and (a, p) ~ 6}

u {(al, a2, f , a)[(~l, a2) is a pair belonging to comin(r(f, a))}.

Let us recall that comin(s) denotes the unique cominimal decomposition of a
relation s. (See Definition 1.4.)

Claim 1. T (d ' , ~) = T(~, ~)for all ~ • Q'.

From this claim it follows that T (d) = T (d ') = L where d is the trim
automaton obtained from d ' by deleting all states ~ such that T (d ' , ~) or C(d ' , ~)
is empty.

We prove later that d is 1-deterministic.

Proof of Claim 1. We prove that, for every t in M(F),

t • T (d ' , ~) ,=- t • T (~ , c 0

by using an induction on the structure of t.

Basis: t = a • F o. The equivalence follows immediately from the definition of ~¢'.

Inductive step: t = f (t l , t2). Let t • T (d ' , o O. Then we have tl • T (d ' , ~ l) ,
t 2 • T (d ' , ~2) for some (a t, ~2, f , ~) in 6'. By the induction hypothesis, we have
t ie T(~, qz), q~•~ , for i = 1, 2. Since f (T (~ , q~), T(~, q2)) - T(~, ~) by the
definitions o f r ' and of r(f , ~), we have t = f (t 1, t2) • T(~, ~), as was to be proved.
The proof is similar in the other direction. []

Claim 2. ~ is l-deterministic.

Proof. By construction, d has a unique root state. We now verify condition (L).
Let (~1, ~2, f , ~) and (~'~, ~ , f , ~) be distinct tuples in 6', and let us establish that

146 B. Courcelle, D. Niwinski, and A. Podelski

T(~¢, ~2) c~ T(~¢, ~[) ffi O. Let us assume by contradiction that t e T(~¢, ~2) c~
T(~¢, ~[). Since ~ is fr-deterministic, there is a unique q e Q such that t e T(~ , q)
and q • ~z by Claim 1. Similarly, q • ~[, but we get a contradiction since ~2 n ~[=

by the definition of 6'.
In order to complete the proof, we need only prove that T(~¢, ~t) # T(~¢, ~,~).

By the definition of 6', we have ~i # ~ . Let q distinguish these two sets, say q
belongs to ~t and not to ~'~. Let t belong to T(~ , q). Since ~ is fr-deterministic, and
by Claim 1, t cannot belong to T(~¢, ~) . This finishes the proof. []

This concludes the proof for the case where L is an arbitrary forest. If L is
recognizable and ~ is a given finite automaton, then the l-automaton ~d is finite
and can be effectively constructed. []

Acknowledgments

We thank G. S(~nizergues for helpful comments.

References

[E]
[GS]

[MW]

I'A] Arnold, A., A syntactic congruence for rational oJ-languages, Theoret. Comput. Sci., 39 (1985),
333-335.

I'B] Brzozowski, J., Canonical regular expressions and minimal state graphs for definite events, in
Mathematical Theory of Automata, Vol. 12, MRI Symposium Series, Polytechnic Press of the
Polytechnic Institute of Brooklyn, 1963, pp. 529-561.

I'C1] Courcelle, B., On recognizable sets and tree automata, in Resolution of Equations in Algebraic
Structures, Vol. 1 (H. Ait-Kaci and M. Nivat, eds.), Academic Press, New York, 1989,
pp. 93-126.

[C2] Courcelle, B., The monadic second-order logic of graphs, I: Recognizable sets of finite graphs,
Inform. and Comput., 85 (1990), 12-75.
Eilenberg, S., Automata, Languages, and Machines, Vol. A, Academic Press, New York, 1974.
Gecseg, F., and Steinby, M., Tree Automata, Akademiai Kiado, Budapest, 1984.
Mezei, J., and Wright, J., Algebraic automata and context-free sets, lnformat, and Control, 11
(1967), 3-29.

['N] Nerode, A., Linear automata transformations, Proc. Amer. Math. Soc., 9 (1958), 541-544.
['NP] Nivat, M., and Podelski, A., Tree monoids and recognizable sets of finite trees, in Resolution of

Equations in Algebraic Structures, VoL 1 (H. Ai't-Kaci and M. Nivat, eds.), Academic Press,
New York, 1989, pp. 351-367.

[P] Podelski, A., Mono'ides d'arbres et automates d'arbres, Th~se, Universit~ Paris-7, 1989.
[RS] Rabin, M., and Scott, D., Finite automata and their decision problems, IBM J. Res. Develop., 3

(1959), 114-125. Reprinted in Sequential Machines (E. Moore, ed.), Addison-Wesley, Reading,
MA, 1964.

[S] Staiger, L., Finite-state a)-languages, J. Comput. System Sci., 27 (1983), 434-448.
El'] TrakhtenbroL B., Finite automata and the logic of 1-place predicates, Siberian Math. J., 3

(1962), 103-131 (in Russian).

Received July 20, 1990, and in revised form December 18, 1990.

