
Logical Methods in Computer Science
Vol. 13(?:?)2017, pp. 1–39
https://lmcs.episciences.org/

Submitted Oct. 03, 2016
Published ???. XX, 2017

ALGEBRAIC AND LOGICAL DESCRIPTIONS

OF GENERALIZED TREES

BRUNO COURCELLE

LaBRI, CNRS, 351 Cours de la Libération, 33405 Talence, France
e-mail address: courcell@labri.fr

Abstract. Quasi-trees generalize trees in that the unique ”path” between two nodes may
be infinite and have any countable order type. They are used to define the rank-width of a
countable graph in such a way that it is equal to the least upper-bound of the rank-widths
of its finite induced subgraphs. Join-trees are the corresponding directed trees. They are
useful to define the modular decomposition of a countable graph. We also consider ordered
join-trees, that generalize rooted trees equipped with a linear order on the set of sons of
each node. We define algebras with finitely many operations that generate (via infinite
terms) these generalized trees. We prove that the associated regular objects (those defined
by regular terms) are exactly the ones that are the unique models of monadic second-order
sentences. These results use and generalize a similar result by W. Thomas for countable
linear orders.

Introduction

We define and study countable generalized trees, called quasi-trees, such that the unique
”path” between two nodes may be infinite and have any order type, in particular that
of rational numbers. Our motivation comes from the notion of rank-width, a complexity
measure of finite graphs investigated first in [21] and [22]. Rank-width is based on graph
decompositions formalized with finite undirected trees of maximal degree at most 3. In
order to extend it to countable graphs in such a way that the compactness property holds,
i.e., that the rank-width of a countable graph is the least upper bound of those of its finite
induced subgraphs, we base decompositions onquasi-trees1 [11]. Quasi-trees arise as least
upper bounds of increasing sequences of finite trees, H1 ⊆ H2 ⊆ · · · ⊆ Hn ⊆ . . . , where Hi+1

is obtained from Hi by the addition of a new node, either linked to an existing one by a new

2012 ACM CCS: [Theory of computation]: Logic; Decision problems ; [Mathematics of computing]:
Trees; Model theory;
2010 Mathematics Subject Classification: 05C05, 68R10.
Key words and phrases: Rank-width, quasi-tree, join-tree, ordered tree, algebra, regular term, monadic
second-order logic.
This work has been supported by the French National Research Agency (ANR) within the IdEx Bordeaux
program ”Investments for the future”, CPU, ANR-10-IDEX-03-02.

1 Compactness does not hold if one uses trees. For a comparison, the natural extension of tree-width to
countable graphs has the compactness property [19] without needing quasi-trees.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-13(?:?)2017
c© B. Courcelle
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 B. COURCELLE

edge or inserted on an existing edge. If one inserts infinitely many nodes on an edge of some
Hi, then, the least upper bound is not a tree but a quasi-tree.

Join-trees can be seen as directed quasi-trees. A join-tree is a partial order (N,≤) such
that every two elements have a least upper bound (called their join) and each set {y | y ≥ x}
is linearly ordered. The modular decomposition of a countable graph is based on an ordered
join-tree [13].

Our objective is to obtain finitary descriptions (usable in algorithms) of generalized trees
that are of the following three types : join-trees, ordered join-trees and quasi-trees. For this
purpose, we will define, for each type of generalized tree, an algebra based on finitely many
operations such that the finite and infinite terms over these operations define all generalized
trees of this type. The regular generalized trees are those defined by regular terms, i.e.
that have finitely many different subterms, equivalently, that are the unique solutions of
certain finite equation systems. We will prove that a generalized tree is regular if and only
if it is monadic second-order definable, i.e., is the unique finite or countable model (up to
isomorphism) of a monadic second-order sentence.

As a special case, we have linear orders. A countable linear order whose elements are
labelled by letters from a finite alphabet is called an arrangement. The linear order of a
regular arrangement is the left-right order of the leaves of the tree representing a regular
term, equivalently, the lexicographic ordering of the words of a regular language. Regular
arrangements were first defined and studied in [8] and [18], and their monadic second-order
definability was proved in [23]. We will use the latter result for proving its extension to our
generalized trees.

The study of regular linear orders has been continued by Bloom and Ésik in [1, 2]. They
have also studied the algebraic linear orders, defined similarly from algebraic trees (infinite
terms that are solutions of certain first-order equation systems, cf. [9]) or equivalently, as
lexicographic orderings of the words of deterministic context-free languages [3, 4].

In Sections 1 and 2, we review definitions and basic results. In Section 3, we first study
binary join-trees and then, we extend the definitions and results concerning them to all
join-trees. In Section 4, we study ordered join-trees, and, in Section 5, we study quasi-trees.
An introductory article on these results is [12].

1. Orders, trees and terms

All sets, trees and logical structures are finite or countably infinite. We denote by X] Y
the union of sets X and Y if they are disjoint. Isomorphism of ordered sets, trees and other
logical structures is denoted by '. The restriction of a relation R or a function f defined on
a set V to a subset W of V is denoted by R �W or f �W respectively.

For partial orders ≤,�,v, . . . we denote respectively by <,≺,@, . . . the corresponding
strict orders and X < Y means that x < y for every x ∈ X and y ∈ Y .

Let (V,≤) be a partial order. The least upper bound of x and y is denoted by x t y if
it exists and is called their join. The notation x⊥y means that x and y are incomparable.
A line2 is a subset Y of V that is linearly ordered and satisfies the following convexity
property : if x, z ∈ Y , y ∈ V and x ≤ y ≤ z, then y ∈ Y . Particular notations for convex
sets (not necessarly linearly ordered) are [x, y] denoting {z | x ≤ z ≤ y},]x, y] denoting

2 In [11] we call line a linearly ordered subset, without imposing the convexity property.

GENERALIZED TREES 3

{z | x < z ≤ y},]−∞, x] denoting {y | y ≤ x} (even if V is finite),]x,+∞[denoting
{y | x < y} etc. If X ⊆ V , then ↓(X) is the union of the sets]−∞, x] for x in X.

The first infinite ordinal and the linear order (N,≤) are denoted by ω.
Let A be a finite set that is linearly ordered by ≤, and A∗ be the set of finite words over

A; the empty word is ε. This set is linearly ordered by the lexicographic order ≤lex defined
by u ≤lex v if and only if v = uw or, u = wax and u = wby for some w, x, y in A∗ and a, b in
A such that a < b. Every finite or countable linear order is isomorphic to (L,≤lex) for some
set L ⊆ {0, 1}∗ that is prefix-free, which means that, if u, uv ∈ L where v ∈ {0, 1}∗, then
v = ε (Theorem 1.7 of [8]). The case where L is regular has been studied in [1, 2, 8, 18, 23].

1.1. Trees. A tree is a possibly empty, finite or countable, undirected graph that is connected
and has no cycles. Hence, it has neither loops nor parallel edges (it has no two edges with
same ends). The set of nodes of a tree T is NT .

A rooted tree is a nonempty tree equipped with a distinguished node called its root. The
level of a node x is the number of edges of the path between it and the root and Sons(x)
denotes the set of its sons. We define on NT the partial order ≤T such that x ≤T y if
and only if y is on the unique path between x and the root. The least upper bound of x
and y, denoted by x tT y, is their least common ancestor. We will specify a rooted tree T
by (NT ,≤T) and we will omit the index T when the considered tree is clear. For a node
x of T , the subtree issued from x, denoted by T/x, is defined as (NT/x,≤T � NT/x) where
NT/x :=]−∞, x].

A partial order (N,≤) is (NT ,≤T) for some rooted tree T if and only if it has a largest
element max and for each x ∈ N , the set [x,max] is finite and linearly ordered. These
conditions imply that any two nodes have a join.

An ordered tree is a rooted tree such that each set Sons(x) is linearly ordered by an
order vx.

1.2. Finite and infinite terms. Let F be a finite set of operations, each f in F being given
with an arity ρ(f). We call (F, ρ) a signature. The maximal arity of a symbol is denoted by
ρ(F). A term over F is finite or infinite. We denote by T∞(F) the set of all terms over F
and by T (F) the set of finite ones. A typical example of an infinite term, easily describable
linearly, is, with f binary and a and b nullary, the term t∞ := f(a, f(b, f(a, f(b, f(. . .))))))
that is the unique solution in T∞(F) of the equation t = f(a, f(b, t)).

Positions in terms are designated by Dewey words3 over {1, . . . , ρ(F)} considered as an
alphabet. The set Pos(t) of positions of a term t is ordered by ≤t, the reversal of the prefix
order on words. A term t can be seen as a labelled, ordered and rooted tree whose set of
nodes is Pos(t). We have Pos(t∞) = 2∗] 2∗1, where 2∗ is the set of occurrences of f , (22)∗1
is the set of occurrences of a and (22)∗21 is that of b.

There is a canonical F -algebra structure on T∞(F), of which T (F) is a subalgebra. If
M = 〈M, (fM)f∈F 〉 is an F -algebra, a value mapping is a homomorphism h : T∞(F)→M.
Its restriction to finite terms is uniquely defined. In some cases, we will use algebras with
two sorts. The corresponding modifications of the definitions are straightforward, see [17]
for details.

3 For the term t = f(a, g(b, c)) taken as an example, ε denotes the occurrence of f and the unique occurrences
of a, g, b and c are denoted respectively by the words 1,2,21 and 22.

4 B. COURCELLE

The partial order on terms. Let F contain a special nullary symbol Ω intended to be
the least term. We define on T (F) a partial order � by the following induction : Ω�t for
any t ∈ T (F), and f(t1, . . . , tk)�g(t′1, . . . , t′k′) if and only if k = k′, f = g and ti � t′i for
i = 1, .., k.

For terms in T∞(F), the definition (subsuming the previous one) is : t � t′ if and only
if Pos(t) ⊆ Pos(t′) and every occurrence in t of a symbol in F − {Ω} is an occurrence in t′

of the same symbol (an occurrence in t of Ω is an occurrence in t′ of any symbol).
Every increasing sequence of terms has a least upper bound. More details on this order

can be found in [9, 17].
If M = 〈M, (fM)f∈F 〉 is a partially ordered F -algebra, whose order is ω-complete

(increasing sequences have least upper bounds) and whose operations are ω-continous (they
preserve such least upper bounds), then, one can define the value in M of an infinite term
as the least upper bound of the values of the finite smaller terms [9, 17]. However, this
approach fails for our algebras of generalized trees, because no appropriate partial order can
be defined, as proved in Section 6 of [8]. Instead of orders, this article uses category theory.
This categorical setting could be used here but direct constructions of generalized trees from
terms (in Definitions 3.15, 3.28 and 4.9) are simpler and better formalizable in logic.

Regular terms. A term t ∈ T∞(F) as regular if there is a mapping h from Pos(t) into
a finite set Q and a mapping τ : Q→ F × Seq(Q) (where Seq(Q) denotes the set of finite
sequences of elements of Q) such that, if u is an occurrence of a symbol f of arity k, then
τ(h(u)) = (f, (h(u1), . . . , h(uk))) where (u1, . . . , uk) is the sequence of sons of u.

Intuitively, τ is the transition function of a top-down deterministic automaton with set
of states Q; h(ε) is its initial (root) state and h defines its unique run. This is equivalent to
requiring that t has finitely many different subterms, or is a component of a finite system
of equations that has a unique solution in T∞(F). (The set Q can be taken as the set of
unknowns of such a system, see [9].)

The above term t∞ is regular with Q := {1, 2, 3, 4}, τ(1) = (f, (2, 3)), τ(2) = (a, ()), τ(3)
= (f, (4, 1)), τ(4) = (b, ()).

We associate with a term t the relational structure btc := (Pos(t),≤t, (bri)1≤i≤ρ(F),
(labf)f∈F) where bri(u) is true if and only if u is the i-th son of his father and labf (u) is
true if and only if f occurs at position u. A term t can be reconstructed in a unique way
from any relational structure isomorphic to btc .

A term t is regular if and only if btc is MS definable, i.e., is, up to isomorphism, the
unique model of a monadic second-order sentence. This result is due to Rabin [25], see
Thomas [24].

1.3. Arrangements and labelled sets. We review a notion introduced in [8] and further
studied in [18, 23]. Let X be a set. A linear order (V,≤) equipped with a labelling mapping
lab : V → X is called an arrangement over X. It is simple if lab is injective. We denote by
A(X) the set of arrangements over X. We will generalize arrangements to tree structures.

An arrangement over a finite set X considered as an alphabet can be considered as a
generalized word. A linear order (V,≤) is identified with the simple arrangement (V,≤, IdV)
such that IdV (v) := v for each v ∈ V . In the sequel, Id denotes the identity function on any
set.

GENERALIZED TREES 5

An isomorphism of arrangements i : (V,≤, lab)→ (V ′,≤′, lab′) is an order preserving
bijection i : V → V ′ such that lab′ ◦ i = lab. Isomorphism is denoted by '.

If w = (V,≤, lab) ∈ A(X) and r : X → Y , then, r(w) := (V,≤, r◦ lab) is an arrangement
over Y . If r maps V into Y , then r((V,≤)) is the arrangement (V,≤, r) over Y since we
identify (V,≤) to the simple arrangement (V,≤, Id).

The concatenation of linear orders yields a concatenation of arrangements denoted by •.
We denote by Ω the empty arrangement and by a the one reduced to a single occurrence of
a ∈ X. Clearly, w • Ω = Ω • w = w for every w ∈ A(X). The infinite word w = aω is the
arrangement over {a} with underlying order ω; it is described by the equation w = a • w.
Similarly, the arrangement w = aη over {a} with underlying linear order (Q,≤) (that of
rational numbers) is described by the equation w = w • (a • w).

Let X be a set of first-order variables (they are nullary symbols) and t ∈ T∞({•,Ω}∪X).
Hence, Pos(t) ⊆ {1, 2}∗. The value of t is the arrangement val(t) := (Occ(t,X),≤lex, lab)
where Occ(t,X) is the set of positions of the elements of X and lab(u) is the symbol of X
occurring at position u. We say that t denotes w if w is isomorphic to val(t), and that w is
the frontier of the syntactic tree of t [8].

For an example, t• := •(a, •(b, •(a, •(b, •(.)))))) denotes the infinite word
abab Its value is defined from Occ(t•, {a, b}) = 2∗1, lexicographically ordered (we
have 1 < 21 < 221 < . . .) by taking lab(2i1) := a if i is even and lab(2i1) := b if i is odd.
The arrangements aω and aη are denoted respectively by t1 and t2 that are the unique
solutions in T∞({•,Ω, a}) of the equations t1 = a • t1 and t2 = t2 • (a • t2).

An arrangement is regular if it is denoted by a regular term. The term t• is regular.
The arrangements aω and aη are regular4.

An arrangement is regular if and only if it is a component of the initial5 solution of a
regular system of equations over F , or also, the value of a regular expression in the sense of
[18]. We will use the result of [23] that an arrangement over a finite alphabet is regular if
and only if is monadic second-order definable6. (We review monadic second-order logic in
the next section). For this result, we represent an arrangement w = (V,≤, lab) over a finite
set X by the relational structure bwc := (V,≤, (laba)a∈X) where laba(u) is true if and only
if lab(u) = a.

If r maps X to Y and w ∈ A(X) is regular, then r(w) is regular. This is clear from the
definitions because the substitution of r(x) for x ∈ X in a regular term in T∞({•,Ω} ∪X)
yields a regular term [9].

An X-labelled set is a pair m = (V, lab) where lab : V → X, or, equivalently, a relational
structure (V, (laba)a∈X) where each element of V belongs to a unique set laba. We denote
by set(w) the X-labelled set obtained by forgetting the linear order of an arrangement w
over X. Up to isomorphism, an X-labelled set m is defined by the cardinalities in N ∪ {ω}
of the sets laba, hence is a finite or countable multiset of elements of X, in other words, a
mapping that indicates for each a ∈ X the number, in N ∪ {ω}, of its occurrences in m.

If X is finite, each X-labelled set is MSfin -definable, i.e., is the unique, finite or countably
infinite model up to isomorphism of a sentence of monadic second-order logic extended with a
set predicate Fin(U) expressing that a set U is finite. It is also regular, i.e., is set(val(t)) for

4 The subalgebra of regular arrangements is characterized by equational axioms in [2].
5 in the sense of category theory, see [8].
6 The article [7] establishes that a set of arrangements is recognizable if and only if it is monadic second-order

definable.

6 B. COURCELLE

some regular term in T∞({•,Ω} ∪X). The notion of regularity is thus trivial for X-labelled
sets when X is finite.

2. Monadic second-order logic and related notions.

Monadic second-order logic7 extends first-order logic by the use of set variables X,Y, Z
. . . denoting subsets of the domain of the considered logical structure, and the atomic
formulas x ∈ X expressing membership of x in X. We call first-order a formula where set
variables are not quantified. For example, a first-order formula can express that X ⊆ Y . A
sentence is a formula without free variables.

Let R be a finite set of relation symbols, each symbol R being given with an arity ρ(R).
We call it a relational signature. For every set of variables W, we denote by MS(R,W)
the set of MS formulas written with R and free variables in W. An R-structure is a tuple
S = (DS , (RS)R∈R) where DS is a finite or countably infinite set, called its domain, and each
RS is a relation on DS of arity ρ(R). A property P of R-structures is monadic second-order
expressible if it is equivalent to the validity, in every R-structure S, of a monadic second-order
sentence ϕ, which we denote by S |= ϕ.

For example, a graph G without parallel edges can be identified with the {edg}-structure
(VG, edgG) where VG is its vertex set and edgG(x, y) means that there is an edge from x to
y, or between x and y if G is undirected. To take an example, 3-colorability is expressed by
the MS sentence :

∃X,Y
[
X ∩ Y = ∅ ∧ ¬∃u, v(edg(u, v) ∧ [(u ∈ X ∧ v ∈ X)∨

(u ∈ Y ∧ v ∈ Y) ∧ (u /∈ X ∪ Y ∧ v /∈ X ∪ Y)])
]
.

Many properties of partial orders (N,≤) can also be expressed by MS formulas. Here
are examples that will be useful in our proofs.

(a) The formula Lin(X) defined as ∀x, y.[(x ∈ X ∧ y ∈ X) =⇒ (x ≤ y ∨ y ≤ x)] expresses
that a subset X of N , partially ordered by ≤, is linearly ordered.

(b) The formula Lin(X) ∧ ∃a, b.[min(X, a) ∧ max(X, b) ∧ θ(X, a, b)] expresses that X is
linearly ordered and finite, where min(X, a) and max(X, b) are first-order formulas
expressing respectively that X has a least element a and a largest one b, and θ(X, a, b)
is an MS formula expressing, (1) that each element x of X except b has a successor c in
X (i.e., c is the least element of {y ∈ X | y > x}), and (2), that (a, b) ∈ Suc∗, where
Suc is the above defined successor relation (depending on X) and Suc∗ is its reflexive
and transitive closure.

Property (2) is expressed by the MS formula:

∀U [U ⊆ X ∧ a ∈ U ∧ ∀x, y((x ∈ U ∧ (x, y) ∈ Suc) =⇒ y ∈ U) =⇒ b ∈ U] .

First-order formulas expressing U ⊆ X, (x, y) ∈ Suc and Property (1) are easy to build.
Without a linear order, the finiteness of a set X is not MS expressible. It is thus useful, in
some cases, to enrich MS logic with a finiteness predicate Fin(X) expressing that the set X
is finite. We denote by MSfin the corresponding extension of MS logic.

7 MS will abreviate monadic second-order in the sequel.

GENERALIZED TREES 7

If S is a relational structure (N,≤, (bri)1≤i≤ρ(F), (labf)f∈F) isomorphic to the structure
btc representing a term t ∈ T∞(F), then a linear order v on N is definable by a first-order
formula as follows:

x v y :⇐⇒ x ≤ y ∨ (x⊥y and x is below the i-th son of x t y
and y is below the j-th son of x t y where i < j).

The definability of linear orders by MS formulas is studied in [6].
Monadic second-order transductions are transformations of logical structures specified

by MS or MSfin formulas. We will use them in the proofs of Theorems 3.21, 3.30, 4.11,
5.8 and 5.11. For these proofs, we will only need very simple transductions, said to be
noncopying and parameterless in [14]. We call them MS-transductions.

Let R and R′ be two relational signatures. A definition scheme of typeR → R′ is a tuple
of formulas of the form D = 〈χ, δ, (θR)R∈R′〉 such that χ ∈ MS(R), δ ∈ MS(R, {x}) and

θR ∈MS(R, {x1, . . . , xρ(R)}) for each R in R′. We define D̂(S) := S′ = (DS′ , (RS′)R∈R′) as
follows:

– S′ is defined if and only if S |= χ,
– DS′ is the set of elements d of DS such that S |= δ(d),
– RS′ is the set of tuples (d1, . . . , dρ(R)) of elements of DS such that S |= θR(d1, . . . , dρ(R)).

Our main tool is the following (well-known) result:

Theorem 2.1. Let D be a definition scheme as above and ϕ ∈MSfin(R′,W). There exists

a formula ϕD ∈MSfin(R,W) such that, for every R-structure S, for every W-assignment ν

in DS, we have (S, ν) |= ϕD if and only if

(1) S |= χ (so that D̂(S) = S′ is well-defined),
(2) ν is an W-assignment in DS′ (i.e., ν(x) ∈ DS′ and ν(X) ⊆ DS′ for x,X ∈ W) and
(3) (S′, ν) |= ϕ.

Proof. The proof is given in [14] (Backwards Translation Theorem, Theorem 7.10) for finite
structures, hence the finiteness predicate Fin(X) is of no use. However, it works as well for
infinite structures and formulas written with the predicate Fin(X) that translates back to
itself (under the assumption that ν(X) ⊆ DS′).

The formula ϕD is the conjunction of χ, a formula expressing Property (2) and a formula
ϕ′ obtained from ϕ by replacing each atomic formula R(x1, . . . , xr) by θR(x1, . . . , xρ(R)),
that is, by its definition given by D. If ϕ is a sentence, then W = ∅ and Property (2) is
trivially true.

It follows that, if the monadic theory of a class of structures S is decidable (which means

that one can decide whether a given sentence is true in all structures of S) and S ′ = D̂(S)
for some definition scheme D, then the monadic theory of S ′ is decidable, because S′ |= ϕ
for all S′ in S ′ if and only if S |= χ =⇒ ϕD for all S in S.

3. Join-trees

Join-trees have been used in [13] for defining the modular decomposition of countable graphs.

8 B. COURCELLE

3.1. Join-trees, join-forests and their structurings. Join-trees are defined as particular
partial-orders. Finite nonempty join-trees correspond to finite rooted trees.

Definition 3.1 (Join-tree).

(a) A join-tree8 is a pair J = (N,≤) such that:
(1) N is a possibly empty, finite or countable set called the set of nodes,
(2) ≤ is a partial order on N such that, for every node x, the set [x,+∞[(the set of

nodes y ≥ x) is linearly ordered,
(3) every two nodes x and y have a join x t y.

A minimal node is a leaf. If N has a largest element, we call it the root of J . The
set of strict upper bounds of a nonempty set X ⊆ N is a line L; if L has a smallest

element, we denote it by X̂ and we say that X̂ is the top of X. Note that X̂ /∈ X.
(b) A join-forest is a pair J = (N,≤) that satisfies Conditions (1), (2) and the following

weakening of (3):
(3’) if two nodes have an upper bound, they have a join.

The relation that two nodes have a join is an equivalence. Let Ns for s ∈ S be its
equivalence classes and Js := (Ns,≤� Ns), more simply denoted by (Ns,≤) by leaving
implicit the restriction to Ns. Then each Js is a join-tree, and J is the union of these
pairwise disjoint join-trees, called its components.

(c) A join-forest J = (N,≤) is included in a join-forest J ′ = (N ′,≤′), denoted by J ⊆ J ′,
if N ⊆ N ′, ≤ is ≤′� N and t is t′ � N ; if J and J ′ are join-trees, we say also that J is
a subjoin-tree of J ′.

Definition 3.2 (Direction and degree). Let J = (N,≤) be a join-forest, and x be one of its
nodes. Let ∼be the equivalence relation on]−∞, x[such that z ∼ y if and only if z t y < x.

Each equivalence class C is called adirection of J relative to x, and we have Ĉ = x. The
set of directions relative to x is denoted by Dir(x) and the degree of x is the number of
its directions. The leaves are the nodes of degree 0. A join-tree is binary if its nodes have
degree at most 2. We call it a BJ-tree for short.

For concatenating vertically two join-trees, we need that every join-tree has a distin-
guished ”branch”, a line, that we call an axis. As we want to construct join-trees with
operations including concatenation, all subtrees must be of the same type, hence must have
axes. It follows that a join-tree will be partionned into lines, one of them being its axis, the
others being the axes of its subtrees. We call such a partition a structuring.

Definition 3.3 (Structured join-trees and join-forests).

(a) Let J = (N,≤) be a join-tree. A structuring of J is a set U of nonempty lines forming
a partition of N that satisfies some conditions, stated with the following notation : if
x ∈ N , then U(x) denotes the line of U containing x, U−(x) := U(x) ∩]−∞, x[and
U+(x) := U(x) ∩ [x,+∞[. (The set [x,+∞[has no top but it can have a greatest
element). The conditions are :
(1) exactly one line A of U is upwards closed (i.e., [x,+∞[⊆ A if x ∈ A), hence, has no

strict upper bound and no top; we call it the axis; each other line U has a top Û ,

(2) for each x in N , the sequence y0, y1, y2, . . . such that y0 = x, yi+1 = Û(yi) is finite;
its last element is yk ∈ A (yk+1 is undefined) and we call k the depth of x.

8 The article [20] defines a tree as a partial order of any cardinality that satisfies Condition (2). A join-forest
is a tree in that sense.

GENERALIZED TREES 9

Figure 1: A structured binary join-tree.

The nodes on the axis are those at depth 0. The lines [yi, yi+1[for i ∈ [0, k − 1] and
[yk,+∞[are convex subsets of pairwise distinct lines of U . We have

[x,+∞[= [y0, y1[] [y1, y2[] · · ·] [yk,+∞[,

where [yi, yi+1[= U+(yi) for each i < k, [yk,+∞[= U+(yk) ⊆ A and the depth of yi is
k − i.

We call such a triple (N,≤,U) a structured join-tree, an SJ-tree for short. Every
linear order is an SJ-tree whose elements are all of depth 0.

Remark. If x < A for some x, then A has a smallest element, which is the node yk of
Condition 2) (because if z ∈ A is smaller than yk, then x < z, which contradicts the
observation that [yk−1, yk[⊆ U(yk−1) and U(yk−1) ∩A = ∅).

(b) Let J = (N,≤) be a join-forest whose components are Js, s ∈ S. A structuring of J is
a set U of nonempty lines forming a partition of N such that, if Us is the set of lines of
U included in Ns (every line of U is included in some Ns), then each triple (Ns,≤,Us)
is a structuring of Js.

Example 3.4. Figure 1 shows a structuring {U0, . . . , U5} of a binary join-tree. The axis is
U0. The directions relative to x2 are U0−(x2) ∪ U1 and U2 ∪ U3. The maximal depth of a
node is 2.

Proposition 3.5. Every join-tree and, more generally, every join-forest has a structuring.

Proof. Let J = (N,≤) be a join-tree. Let us choose an enumeration of N and a maximal line
B0 ; it is upwards closed. For each i > 0, we choose a maximal line Bi containing the first

10 B. COURCELLE

node not in Bi−1∪· · ·∪B0. We define U0 := B0 and, for i > 0, Ui := Bi− (Ui−1]· · ·]U0) =
Bi − (Bi−1 ∪ · · · ∪ B0). We define U as the set of lines Ui. It is a structuring of J . The
axis is U0. If J is a join-forest, it has a structuring that is the union of structurings of its
components.

Remark. Since each line Bi is maximal, if Ui has a smallest element, this element is a node
of degree 0 in J .

In view of our use of monadic second-order logic, we give a description of SJ-trees by
relational structures.

Definition 3.6 (SJ-trees as relational structures). If J = (N,≤,U) is an SJ-tree, we define
S(J) as the relational structure (N,≤, N0, N1) such that N0 is the set of nodes at even depth
and N1 := N −N0 is the set of those at odd depth. (N0 and N1 are sets but we will also
consider them as unary relations).

Proposition 3.7.

(1) There is an MS formula ϕ(N0, N1) expressing that a relational structure (N,≤, N0, N1)
is S(J) for some SJ-tree J = (N,≤,U).

(2) There exist MS formulas θAx(X,N0, N1) and θ(u, U,N0, N1) expressing, respectively, in

a structure (N,≤, N0, N1) = S((N,≤,U)), that X is the axis and that U ∈ U ∧ u = Û .

Proof. Let J = (N,≤) be a join-tree and X ⊆ N . We say that X is laminar if, for all
x, y, z ∈ X, if [x, z]∪ [y, z] ⊆ X (where x < z and y < z), then [x, z] ⊆ [y, z] or [y, z] ⊆ [x, z]
(the intervals [x, z] and [y, z] are relative to J). This condition implies that the lines of J
that are included in X and are maximal with this condition form a partition of X whose
parts will be called its components.

It is clear from the definitions that, if J = (N,≤,U) is an SJ-tree and S(J) = (N,≤,
N0, N1), then the sets N0 and N1 are laminar, U is the set of their components and the axis
A is a component of N0.

(1) That a partial order (N,≤) is a join-tree is first-order expressible. The formula ϕ(N0, N1)
will include this condition.

Let J = (N,≤) be a join-tree, N the union of two disjoint laminar sets N0 and
N1, and U the set of their components. Then, J = (N,≤,U) is an SJ-tree such that
S(J) = (N,≤, N0, N1) if and only if:

(i) every component of N1 has a top in N0 and every component of N0 except one
has a top in N1,

(ii) for each U in U , the sequence U0, U1, . . . of lines of U such that U0 = U , Û0 ∈
U1, . . . , Ûi ∈ Ui+1 terminates at some Uk that has no top, hence is included in N0.

These conditions are necessary. As they rephrase Definition 3.3, they are also sufficient.
The integer k in Condition (ii) is the common depth of all nodes in U .

That a set X is laminar is first-order expressible, and one can build an MS formula
ψ(U,X) expressing that U is a component of X assumed to be laminar. This formula
can be used to express that N is the union of two disjoint laminar sets N0 and N1 that
satisfy Conditions (i) and (ii). For expressing Condition (ii), we define, for each U in

U , a set of nodes W as follows : it is the least set such that Û ∈ W, and, for each
w ∈W , the top of U(w) belongs to W if it is defined (where U(w) is the unique set in

U that contains w). The set W is linearly ordered (it consists of Û0 < · · · < Ûi . . .) and
Condition (ii) says that it must be finite. To write the formula, we use the observation
made in Section 2 that the finiteness of a linearly ordered set is MS expressible.

GENERALIZED TREES 11

(2) The construction of ϕ actually uses the MS formulas θAx(X,N0, N1) and θ(u, U,N0, N1).

3.2. Description schemes of structured binary join-trees. In order to introduce tech-
nicalities step by step, we first consider binary join-trees. They are actually sufficient for
defining the rank-width of a countable graph. See Section 5.

Definition 3.8 (Structured binary join-trees). Let J = (N,≤) be a binary join-tree, a
BJ-tree in short. A structuring of J is a set U of lines satisfying the conditions of Definition
3.3 and, furthermore:

(1) if the axis A has a smallest element, then its degree is 0 or 1,
(2) each x ∈ N is the top of at most one set U ∈ U , denoted by Ux, and Ux := ∅ if x is the

top of no U ∈ U .

We call (N,≤,U) a structured binary join-tree, an SBJ-tree in short.

Proposition 3.9.

(1) Every BJ-tree J has a structuring.
(2) The class of stuctures S(J) for SBJ-trees J is monadic second-order definable.

Proof.

(1) We use the construction of Proposition 3.5 for J = (N,≤). The remark following it
implies that, if the axis A = U0 has a smallest element, this element has degree 0. It

implies also that, if Ûi = x, then x cannot have degree 0 in the BJ-tree Ji−1 induced
by Ui−1] · · ·] U0 because each line Bi is chosen maximal; furthermore, it cannot have
degree 2 or more in Ji−1 because J is binary. Hence it has degree 1 in Ji−1. It follows
that x is the top of no line Uj for j < i. Hence ii) holds and the construction yields an
SBJ-tree (N,≤,U).

(2) The formula ϕ of Proposition 3.7 can easily be modified so as to express that (N,≤, N0, N1)
is S(J) for some SBJ-tree J.

Definition 3.10 (Description schemes for SBJ-trees).

(a) A description scheme for an SBJ-tree, in short an SBJ-scheme, is a triple ∆ =
(Q,wAx, (wq)q∈Q) such that Q is a set called the set of states, wAx ∈ A(Q) (is an
arrangement over Q) and wq ∈ A(Q) for each q. It is regular if Q is finite and the
arrangements wAx and wq are regular.

(b) We recall that a linear order (V,≤) is identified with the arrangement (V,≤, Id). If
W ⊆ V and r : V → Q, then r((W,≤)) is the arrangement (W,≤� W, r � W) ∈ A(Q)
that we will denote more simply by (W,≤, r) leaving implicit the restrictions of ≤ and
r to W .

An SBJ-scheme ∆ describes an SBJ-tree J = (N,≤,U) whose axis is A if there exists
a mapping r : N → Q that we call a run, such that:

r((A,≤)) ' wAx and r((Ux,≤)) ' wr(x) for every x ∈ N.
We will also say that ∆ describes the BJ-tree fgs(J) := (N,≤), where fgs makes an
SBJ-tree into a BJ-tree by forgetting its structuring. The mapping r need not be
surjective, this means that some elements of Q and the corresponding arrangements
may be useless, and thus can be removed from ∆.

12 B. COURCELLE

Figure 2: A binary join-tree.

For an example, let ∆ = (Q,wAx, (wq)q∈Q) be the SBJ-scheme such that Q = {a, b, c},
wAx := (Z,≤, `) where `(i) = a if i is even and `(i) = b if i is odd, wa := {c}, wb := cc (two
nodes labelled by c) and wc = Ω. It describes the BJ-tree of Figure 2.

Proposition 3.11.

(1) Every SBJ–tree is descibed by some SBJ-scheme.
(2) Every SBJ-scheme ∆ describes a unique SBJ-tree, where unicity is up to isomorphism.

Proof.

(1) Each SBJ-tree J = (N,≤,U) has a standard description scheme

∆(J) := (N, (A,≤), ((Ux,≤))x∈N).

The run is the identity mapping r : N → N showing that ∆(J) describes J .
(2) We will denote by Unf (∆) the SBJ-tree described by ∆ and call it called the unfolding of

∆ (see the remark following the proof about terminology). Let ∆ = (Q,wAx, (wq)q∈Q) be
an SBJ-scheme, defined with arrangements wAx = (VAx, �, labAx) and wq = (Vq,�, labq)
such that, without loss of generality, the sets VAx and Vq are pairwise disjoint and the
same symbol � denotes their orders. We construct (N,≤,U) = Unf (∆) as follows.
(a) N is the set of finite nonempty sequences (v0, v1, . . . , vk) such that v0 ∈ VAx, vi ∈ Vqi

for 1 ≤ i ≤ k, where q1 = labAx(v0), q2 = labq1(v1), . . . , qk = labqk−1
(vk−1).

(b) (v0, v1, . . . , vk) ≤ (v′0, v
′
1, . . . , v

′
j) if and only if k ≥ j, (v0, v1, . . . , vj−1) = (v′0, v

′
1, . . . , v

′
j−1)

and vj � v′j .
(c) The axisA is the set of one-element sequences (v) for v ∈ VAx; for x = (v0, v1, . . . , vk),

we define U(x) as the set of sequences (v0, v1, . . . , vk−1, v) such that v ∈ Vqk , hence,

we have Û(x) = (v0, v1, . . . , vk−1).
Note that (v0, . . . , vk) < (v0, . . . , vj) if j < k and that (v0, . . . , vk−1, vk) ≤ (v0, . . . , vk−1, v)
if and only if vk � v. We claim that ∆ describes (N,≤,U). For proving that, we define
a run r : N → Q as follows:
– if x ∈ A, then x = (v) for some v ∈ VAx and r(x) := labAx(v);
– if x ∈ N has depth k ≥ 1, then x = (v0, v1, . . . , vk) for some v0, v1, . . . , vk as in a) and
r(x) := labqk(vk).

GENERALIZED TREES 13

It follows that r((A,≤)) ' wAx and that, for x = (v0, v1, . . . , vk) (of depth k), we have
r((Ux,≤)) ' wqk = wr(x), which proves the claim.

We now prove unicity. Assume that ∆ describes J = (N,≤,U) with axis A and
also J ′ = (N ′,≤′,U ′) with axis A′, by means of runs r : N → Q and r′ : N ′ → Q.
We construct an isomorphism h : J → J ′ as the common extension of bijections
hk : Nk → N ′k, where Nk (resp. N ′k) is the set of nodes of J (resp. of J ′) of depth at
most k, and such that they map ≤ to ≤′, and the lines of U to those of U ′ of same depth,
and finally, r′ ◦ hk = r � Nk.
– Case k = 0. We have:

r((A,≤)) = (A,≤, r) ' wAx ' r′((A′,≤)) = (A′,≤′, r′)
which gives the order preserving bijection h0 : N0 = A → N ′0 = A′ such that
r′ ◦ h0 = r � N0.

– Case k > 0. We assume inductively that hk−1 has been constructed.

Let U ∈ U be such that x = Û has depth k − 1; hence, U ∩ Nk−1 = ∅. Then
(U,≤, r) ' wr(x). Let x′ = hk−1(x); we have r′(x′) = r(x). Hence there is U ′ ∈ U ′

such that x′ = Û ′, U ′ ∩N ′k−1 = ∅ and(U ′,≤′, r′) ' wr′(x′) = wr(x). Hence, there is an
order preserving bijection hU : U → U ′ such that r′ ◦ hU = r � U.
We define hk as the common extension of the injective mappings hk−1 and hU such

that U ∈ U and the depth of Û is k − 1. These mappings have pairwise disjoint
domains whose union is Nk.

The extension to N of all these mappings hk is the desired isomorphism h.

Remarks.

(1) We call unfolding the transformation of ∆ into Unf (∆) because it generalizes the
unfolding of a directed graph G into a finite or countable rooted tree. The unfolding
is done from a particular vertex s of G, and the nodes of the tree are the sequences of
the form (x0, . . . , xk) such that s = x0 and there is a directed edge in G from xi to xi+1,
for each i < k. If ∆is such that the arrangements wAx and wq are reduced to a single
element, the corresponding directed graph has all its vertices of outdegree one and the
tree resulting from the unfolding consists of one infinite path: the SBJ-tree Unf (∆) is
the order type ω− of negative integers and the sets in U are singletons.

(2) An SBJ-scheme ∆ describing an SBJ-tree J can be seen as a quotient of ∆(J). We
define quotients in terms of surjective mappings.

Let ∆ = (Q,wAx, (wq)q∈Q) and s : Q → Q′ be surjective such that, if s(q) = s(q′),
then s(wq) ' s(wq′). We define ∆′ := (Q′, s(wAx), (w′p)p∈Q′) where w′s(q) ' s(wq) for

each q in Q. If ∆ describes J via a run r : N → Q, then ∆′ describes J via s◦r : N → Q′.
We say that ∆′ is the quotient of ∆ by the equivalence ≈ on Q such that q ≈ q′ if and
only if s(q) = s(q′), and we denote it by ∆/ ≈. If ∆ is regular, then ∆/ ≈ is regular
and its set of sates is smaller than that of ∆ unless s is a bijection.

Let us now start from an SBJ-tree J = (N,≤,U) with axis A. For x ∈ N , let Jx be
the SBJ-tree (Nx,≤x,Ux) such that Nx :=↓ (Ux),≤x is the restriction of ≤to Nx, and
Ux := {Ux} ∪ {Uy | y ∈ Nx} − {∅}. Its axis is Ux. For the example of Figure 1, we have
Ux2 = {U2, U3} and U2 is the axis.

From J, we define as follows a canonical SBJ-scheme ∆(J)/ ≈ based on the equivalence
≈ on N such that x ≈ x′ if and only if Jx ' Jx′ . Let s be the surjective mapping :

14 B. COURCELLE

N → N ′ := N/ ≈. If Jx ' Jy by an isomorphism h : Nx → Ny, then (Ux,≤) ' (Uy,≤)
by h � Ux : Ux → Uy and furthermore, if w ∈ Nx, then Jw ' Jh(w) by h � Nw :
Nw → Nh(w). It follows that s((Ux,≤)) ' s((Uy,≤)), hence, the quotient SBJ-scheme
∆(J)/ ≈:= (N ′, s((A,≤)), (w′p)p∈N ′) such that w′p ' s((Ux,≤)) if s(x) = p is well-defined
and describes J .

Let ∆ = (Q,wAx, (wq)q∈Q) describe J via a surjective run r : N → Q and consider
the equivalence relation on Q such that q ≡ q′ if and only if there exist x, y such that
r(x) = q, r(y) = q′ and Jx ' Jy. It is well-defined because if r(x) = r(y) = q, then
r((Ux,≤)) ' r((Uy,≤)) ' wq, and furthermore Jx ' Jy: one constructs an isomorphism
h that extends the one between r((Ux,≤)) and r((Uy,≤)) (this construction uses an
induction on the depth of u in Jx for defining h(u)). Hence, ∆/ ≡ is well-defined and
describe J via the run r′ such that r′(x) is the equivalence class of r(x) with respect
to ≡ . It follows that ∆/ ≡ is isomorphic to ∆(J)/ ≈ . If J is regular, then ∆(J)/ ≈ is
the unique regular SBJ-scheme describing J that has a minimum number of states. As
usual, unicity is up to isomorphism. This construction is similar to that of the minimal
deterministic automaton of a regular language, defined from its quotients (see e.g., [26],
chapter I.3.3).

Proposition 3.12. A BJ-tree is monadic second-order definable if it is described by a
regular SBJ-scheme.

Proof. That J = (N,≤) is a BJ-tree is first-order expressible. Assume that J = fgs(J ′)
where J ′ = (N,≤,U) ' Unf (∆) for some regular SBJ-scheme ∆ = (Q,wAx, (wq)q∈Q) such
that Q = {1, . . . ,m}. Let r be the corresponding mapping: N → Q (cf. Definition 3.10(b)).
For each q ∈ Q, let ψq be an MS sentence that characterizes wq, up to isomorphism, by the
main result of [23]. Similarly, ψAx characterizes wAx. We claim that a relational structure
(X,≤) is isomorphic to J if and only if there exist subsets N0, N1,M1, . . . ,Mm of X such
that:

(i) (X,≤) is a BJ-tree and (X,≤, N0, N1) = S(J ′′) for some SBJ-tree J ′′ = (X,≤,U ′),
(ii) (M1, . . . ,Mm) is a partition of X; we let r′ maps each x ∈ X to the unique q ∈ Q

such that x ∈Mq,

(iii) for every q ∈ Q and x ∈Mq, the arrangement r′((Ux,≤)) over Q (where Ux ∈ U ′) is
isomorphic to wq,

(iv) the arrangement r′((A′,≤)) over Q where A′ is the axis of J ′′ is isomorphic to wAx.

Conditions (ii)-(iv) express that ∆ describes J ′′, hence that J ′′ is isomorphic to J ′, and so
that (X,≤) ' fgs(J ′) = J .

By Proposition 3.9, Condition (i) is expressed by an MS formula ϕ(N0, N1), and the

property U ∈ U ∧ x = Û is expressed in terms of N0, N1 by an MS formula θ(x, U,N0, N1).
Conditions (iii) and (iv) are expressed by means of the MS sentences ψAx and ψq suitably
adapted to take N0, N1,M1, . . . ,Mm as arguments. Hence, J is (up to isomorphism) the
unique model of an MS sentence of the form:

∃N0, N1.
[
ϕ(N0, N1) ∧ ∃M1, . . . ,Mm.ϕ

′(N0, N1,M1, . . . ,Mm)
]

where ϕ′ expresses conditions (ii)-(iv).

Theorem 3.21 will establish a converse.

GENERALIZED TREES 15

3.3. The algebra of binary join-trees. We define three operations on structured binary
join-trees (SBJ-trees in short). The finite and infinite terms over these operations will define
all SBJ-trees.

Definition 3.13 (Operations on SBJ-trees).

– Concatenation along axes.
Let J = (N,≤,U) and J ′ = (N ′,≤′,U ′) be disjoint SBJ-trees, with respective axes A and
A′. We define:

J • J ′ := (N]N ′,≤′′,U ′′) where

x ≤′′ y :⇐⇒ x ≤ y ∨ x ≤′ y ∨ (x ∈ N ∧ y ∈ A′),
U ′′ := {A]A′}] (U−{A})] (U ′−{A′}).

It follows that J • J ′ is an SBJ-tree with axis A]A′; the depth of a node in J • J ′ is the
same as in J or J ′. This operation generalizes the concatenation of linear orders: if (N,≤)
and (N ′,≤′) are disjoint linear orders, then the SBJ-tree (N,≤, {N}) • (N ′,≤′, {N ′})
corresponds to the concatenation of (N,≤) and (N ′,≤′) usually denoted by (N,≤) +
(N ′,≤′), cf. [20]. If K = (M,≤,V) is an SBJ-tree with axis B, and B = A]A′ such that
A < A′, then K = J • J ′ where:
· N :=↓ (A), N ′ := M −N,
· U is the set of lines of V included in N −A together with A,
· U ′ is the set of lines of V included in N ′ −A′ together with A′ and
· the orders of J and J ′ are the restrictions of ≤ to N and N ′.

– The empty SBJ-tree.
The nullary symbol Ω denotes the empty SBJ-tree.

– Extension.
Let J = (N,≤,U) be an SBJ-tree, and u /∈ N . Then:

extu(J) := (N] {u},≤′, {{u}}] U) where

x ≤′ y :⇐⇒ x ≤ y ∨ y = u,

the axis is {u}. Clearly, extu(J) is an SBJ-tree. The depth of v ∈ N is its depth in J
plus 1. The axis of J is turned into an ”ordinary line” of the structuring of extu(J) with
top equal to u. When handling SBJ-trees up to isomorphism, we use the notation ext(J)
instead of extu(J).

– Forgetting structuring.
If J is an SBJ-tree as above, fgs(J) := (N,≤) is the underlying BJ-tree (binary join-tree),
where fgs forgets the structuring.

Anticipating the sequel, we observe that a linear order a1 < · · · < an, identified with the
SBJ-tree ({a1, . . . , an},≤, {{a1, . . . , an}}) is defined by the term t := exta1(Ω) • exta2(Ω) •
· · · • extan(Ω). The binary (it is even ”unary”) join-tree ({a1, . . . , an},≤) is defined by the
term fgs(t) and also, in a different way, by the term fgs(extan(extan−1(. . . (exta1(Ω)))..))).

Definition 3.14 (The algebra SBJT). We let F be the signature {•, ext,Ω}. We obtain an
algebra SBJT whose domain is the set of isomorphism classes of SBJ-trees. Concatenation
is associative with neutral element Ω.

Definition 3.15 (The value of a term).

16 B. COURCELLE

Figure 3: A finite SBJ-tree J .

(a) In order to define the value of a term t in T∞(F), we compare its positions by the
following equivalence relation:

u ≈ v if and only if every position w such that u <t w ≤t u tt v or v <t w ≤t
u tt v is an occurrence of •.

We will also use the lexicographic order ≤lex (positions are Dewey words). If w is an
occurrence of a binary symbol, then s1(w) is its first (left) son and s2(w) its second
(right) one.

(b) We define the value val(t) := (N,≤,U) of t in T∞(F) as follows:
– N := Occ(t, ext), the set of occurences in t of ext,
– u ≤ v :⇐⇒ u ≤t w ≤lex v for some w ∈ N such that w ≈ v,
– U is the set of equivalence classes of ≈ .
Equivalently, we have :

u ≤ v :⇐⇒ u ≤t v or u ≤t s1(u tt v), v ≤t s2(u tt v) and v ≈ u tt v (the
position u tt v is an occurrence of •),

and so (we recall that ⊥ denotes incomparability) :
u⊥v :⇐⇒ u ≤t s1(u tt v), v ≤t s2(u tt v) and there is an occurrence of ext
between v and u tt v or vice-versa by exchanging u and v.

(c) We now consider terms t written with the operations exta (such that a is the node
created by applying this operation). For each a, the operation exta must have at most
one occurrence in t. Assuming this condition satisfied, then val(t) := (N,≤,U), where
– N is the set of nodes a such that exta has an occurence in t that we will denote by
ua,

– a ≈ b :⇐⇒ ua ≈ ub, with ≈as in (a),
– a ≤ b :⇐⇒ ua ≤ ub, with ≤ as in (b),
– U is the set of equivalence classes of ≈ .
Clearly, the mapping val in (b) is a value mapping T∞(F)→ SBJT.

We say that t denotes an SBJ-tree J if J is isomorphic to val(t), and, in this case, we also
say that fgs(t) denotes the BJ-tree fgs(J).

GENERALIZED TREES 17

Figure 4: A term t denoting J .

Note that we do not define the value of term as the least upper bound of the values of
its finite subterms. We could use a notion of least upper bound based on category theory
as in [8], at the cost of heavy definitions. Our simpler definition shows furthermore that
the mapping associating the join-tree (N,≤) with btc for t ∈ T∞(F) is an MS-transduction
(cf. Section 2) defined by D = 〈χ, δ, θ≤〉 where χ expresses that the considered input structure
S is isomorphic to btc for some t ∈ T∞(F), δ(x) is labext(x) (expressing that x ∈ N) and
θ≤(x, y) expresses that x ≤ y, cf. Definition 3.15(b).

Examples 3.16.

(1) The term t0 that is the unique solution in T∞(F) of the equation t0 = t0 • t0 denotes
the empty SBJ-tree Ω.

(2) Figure 3 shows a finite SBJ-tree J whose structuring consists of U0, . . . , U5, and U0 is the
axis. The linear order on U0 can be described by the word fedca (with f < e < d < . . .).
Similarly, U1 = b, U2 = hg, U3 = i , U4 = kj and U5 = m.

Let us examine the term t of Figure 4 that denotes J . A function symbol extu
specifies the node u of J , and we also denote by u its occurrence, a position of t (hence
b denotes position 21). The occurrences of • and Ω are denoted by Dewey words. For
example, the occurrences of • above the symbols ext are the words ε, 1, 2, 12. The set
{ε, 1, 2, 12, f, e, d, c, a} is an equivalence class of ≈. Another one is {1221, k, j}. Each
line Ui is the set of positions of the ext symbols in some equivalence class of ≈. Let us
now examine how each line is ordered.

18 B. COURCELLE

Figure 5: The SBJ-tree val(t1).

The case where u < v holds because u <t v is illustrated, to take a few cases, by
i < g, g < e,m < j and j < d. The case where u < v holds because u⊥tv, u ≤t s1(uttv),
v ≤t s2(u tt v) and v ≈ u tt v is illustrated by f < e, e < d, d < c and i < d. We have
i < d because i tt d = 12, i <t s1(12), d ≤t s2(12) and d ≈ 12. We do not have i < j
because j is not ≈-equivalent to 12, whereas i tt j = 12, i <t s1(12) and j ≤t s2(12).
This case illustrates the characterization of ⊥ Definition 3.15(c).

(3) Let t1 be the solution in T∞(F) of the equation t1 = ext(ext(Ω)) • t1. We write
it by naming a, a′, b, b′, c, c′ . . . the nodes created by the operations ext, hence, t1 =
exta(exta′(Ω)) • (extb(extb′(Ω)) • (extc(extc′(Ω)) • . . .))). This term and its value are
shown in Figure 5. The bold edges link nodes in the axis. The nodes a′ and c′ are
incomparable because the corresponding occurrences of ext, that are 111 and 2211, have
least common ancestor ε and 221 is an occurrence of ext between 2211 and ε.

(4) The following BJ-tree is defined by Fräıssé in [16] (Section 10.5.3). We let W :=
(Seq+(Q),�) where Seq+(Q) is the set of nonempty sequences of rational numbers, par-
tially ordered as follows :(xn, . . . , x0) � (ym, . . . , y0) if and only if n ≥ m, (xm−1, . . . , x0) =
(ym−1, . . . , y0) and xm ≤ ym. In particular, ≺ is the transitive closure of ≺0 ∪ ≺1 where
(xp+1, xp, . . . , x0) ≺0 (xp, . . . , x0) and (y, xp−1, . . . , x0) ≺1 (z, xp−1, . . . , x0) if y < z. It is
easy to check that W is a BJ-tree. In particular, two nodes (xn, . . . , x0) and (ym, . . . , y0)
are incomparable if and only if (ym, . . . , y0) = (ym, . . . , yp+1, xp, . . . , x0) and yp+1 6= xp+1

for some p < n,m. In this case, their join is (min{yp+1, xp+1}, xp, . . . , x0). The two
directions relative to a node x = (xp, . . . , x0) are:

∂0(x) := {(ym, . . . , yp+1, xp, . . . , x0) | n > p, ym, . . . , yp+1 ∈ Q} and,
∂1(x) := {(ym, . . . , yp+1, x

′
p, . . . , x0) | n ≥ p, x′p, ym, . . . , yp+1 ∈ Q, x′p < xp}.

A structuring U of W consists of the sets {(xn, . . . , x0) | xn ∈ Q} for each (possibly
empty) sequence (xn−1, . . . , x0). The set of one element sequences (r) for r ∈ Q is the
axis, and U−(x) ⊆ ∂1(x) for all x ∈ Seq+(Q).

The proof in [16] that every finite or countable generalized tree in the sense of [20]
(i.e., partial order satisfying Condition 2) of Definition 3.1(a)) is isomorphic to (X,�� X)
for some subset X of Seq+(Q) uses implicitely the structuring U . Our description of the
two directions of a node shows that W = W • (ext(W) •W), hence, that W is denoted
by the regular term t ∈ T∞(F) such that t = t • (ext(t) • t).

GENERALIZED TREES 19

Definition 3.17 (The description scheme associated with a term).

(1) Let t ∈ T∞(F) and u ∈ Pos(t). We denote by Max(t, ext, u) the set of maximal
occurrences of ext in t that are below u or equal to it. Positions are denoted by Dewey
words, hence, these sets are linearly ordered by ≤lex. We denote by W (t, u) the simple
arrangement (Max(t, ext, u),≤lex). Let J = (N,≤,U) be the value of t (cf. Definition
3.15) and x be an occurrence of ext with son u. We have (Ux,≤) = (Max(t, ext, u),≤lex).
For the term t in Example 3.16(2), see Figure 4, we have

W (t, ε) = fedca,W (t, 1) = fed,W (t, 1211) = hg.

For t1 in Example 3.16(3), we have

W (t1, ε) = abc . . . ,W (t1, 1) = a,W (t1, 11) = a′ and W (t1, 111) = Ω.

(2) We define ∆(t) as the SBJ-scheme (Occ(t, ext),W (t, ε), (W (t, s(x)))x∈Occ(t,ext)) where
s(x) is the unique son of an occurrence x of ext. We obtain

∆(t1) = (2∗1] 2∗11, abc . . . , (wx)x∈Occ(t1,ext))

with w1 = a′, w21 = b′, . . . , w11 = Ω, w211 = Ω, . . . for the term t1 of Example 3.16(3).

Lemma 3.18. If t ∈ T∞(F), then val(t) is described by ∆(t).

Proof. Let val(t) = (N,≤,U). The conditions of Definition 3.10(b) hold with the identity
on Occ(t, ext) as mapping r because (Ux,≤) = (Max(t, ext, s(x)),≤lex) as observed in
Definition 3.17(a).

Proposition 3.19. Every SBJ-tree is the value of a term.

Proof. Let J = (N,≤,U) be an SBJ-tree. For each k, we let Jk be the SBJ-tree (Nk,≤,Uk)
where Nk is the set of nodes of depth at most k and Uk is the set of lines U ∈ U of depth at
most k. By induction on k, we define for each k a term tk that defines Jk such that tk �
tk′ if k < k′, and then, the least upper bound of the terms tk is the desired term t whose
value is J . We define terms using the symbols exta where a names the node created by the
corresponding occurrence of the extension operation.

If k = 0, then J0 = (A,≤, {A}). There exists a term t ∈ T∞({•}, ExtA) whose value
is J0, where ExtA is the set of terms exta(Ω) for a ∈ A (we use ExtA as a set of nullary
symbols). We use here Theorem 2.3 of [8], that follows immediately from the representation
of a linear order by the lexicographic order on a prefix-free language9 recalled in Section 1.

Let k ≥ 1, where tk−1 defines Jk−1. Then Jk is obtained from Jk−1 by adding below
some nodes x at depth k − 1 the line Ux (if Ux = ∅, there is nothing to add below x).
Let tx ∈ T∞({•}, ExtUx) whose value is (Ux,≤). We obtain tk by replacing in tk−1 each
subterm extx(Ω) by extx(tx), for x at depth k− 1 such that Ux 6= ∅. It is clear that tk−1 �
tk and that the least upperbound of the terms tk defines J .

9 Also used in the related paper [11],

20 B. COURCELLE

For an example, we apply this construction to the SBJ-tree J of Figure 3. For defining J0,
we can take:

t0 = ((extf (Ω) • exte(Ω)) • extd(Ω)) • (extc(Ω) • exta(Ω)).

To obtain t1, we replace exte(Ω) by exte(exth(Ω)•extg(Ω)), extd(Ω) by extd(extk(Ω)•extj(Ω))
and extc(Ω) by extc(extb(Ω)), which gives:

t1 = ((extf (Ω)•exte(exth(Ω)•extg(Ω)))•extd(extk(Ω)•extj(Ω))•(extc(extb(Ω))•exta(Ω)).

Then, we obtain t2 that defines J by replacing extg(Ω) by extg(exti(Ω)) and extj(Ω) by
extj(extm(Ω)).

3.4. Regular binary join-trees. As said in the introduction, the regular objects are those
defined by regular terms. We apply this meta-definition to binary join-trees and their
structurings.

Definition 3.20 (Regular BJ- and SBJ-trees). A BJ-tree (resp. an SBJ-tree) T is regular
if it is denoted by fgs(t) (resp. by t) where t is a regular term in T∞(F).

Theorem 3.21. The following properties of a BJ-tree J are equivalent:

(1) J is regular,
(2) J is described by a regular scheme,
(3) J is MS definable.

Proof.

(1)=⇒(2) Let J = fgs(J ′) with J ′ denoted by a regular term t in T∞(F). Let h : Pos(t)→ Q
and τ be as in the definition of a regular term in Section 1. Without loss of generality,
we can assume that h(Pos(t)) = Q. If this is not the case, we replace Q by h(Pos(t))
and τ by its restriction to this set.
Claim.
(a) For each u ∈ Pos(t), the arrangement h(W (t, u)) = (Max(t, ext, u), ≤lex, h) over Q

is regular.
(b) If u′ is another position in t and h(u′) = h(u), then t/u′ = t/u and furthermore10

h(W (t, u′)) ' h(W (t, u)).
Leaving its routine proof, we define ∆ := (Q,wAx, (wq)q∈Q) as follows:

(i) wAx := h(W (t, ε)),
(ii) if q ∈ Q, then wq := h(W (t, s(u))) where s(u) is the unique son of an occurrence

u of ext such that h(u) = q; if v is another occurrence of ext such that h(v) = q,
then h(s(v)) = h(s(u)) and so by the claim, h(W (t, s(v))) ' h(W (t, s(u))). Hence,
wq is well-defined up to isomorphism.

Informally, ∆ is obtained from ∆(t) by replacing the labelling mapping Id of the
arrangements W (t, u) by h, so that these arrangements are turned into arrangements
h(W (t, u)) over Q. Clearly, ∆ is a regular scheme. As mapping r showing that it
describes J ′ (cf. Definition 3.10), hence also J , we take the resriction of h to Occ(t, ext)
that is the set of nodes of J ′ = val(t).

(2)=⇒(3) is proved in Proposition 3.12.

10 Unless u = u′, the sets Max(t, ext, u) and Max(t, ext, u′) are not equal, so that the arrangements h(W (t, u))

and h(W (t, u′)) are isomorphic but not equal.

GENERALIZED TREES 21

(3)=⇒(1) By Definition 3.15, the mapping α that transforms the relational structure btc for
t in T∞(F) into the BJ-tree J = (N,≤) = fgs(val(t)) is an MS-transduction because an
MS formula can identify the nodes of J among the positions of t and another one can
define ≤.

Let J = (N,≤) be an MS definable BJ-tree. It is, up to isomorphism, the unique
model of an MS sentence β. It follows by a standard argument11 that the set of terms t
in T∞(F) such that α(btc) |= β is MS definable and thus, contains a regular term, a
result by Rabin [24, 25]. This term denotes J , hence J is regular.

Corollary 3.22. The isomorphism problem for regular BJ-trees is decidable.

Proof. A regular BJ-tree can be given, either by a regular term, a regular scheme or an
MS sentence. The proof of Theorem 3.21 is effective : algorithms can convert any of these
specifications into another one. Hence, two regular BJ-trees can be given, one by an MS
sentence β, the other by a regular term t. They are isomorphic if and only if α(btc) |= β
(cf. the proof of (3)=⇒(1) of Theorem 3.21) if and only if btc |= β′ where β′ obtained by
applying Theorem 2.1 to the sentence β and the transduction α. This is decidable [24, 25].

3.5. Logical and algebraic descriptions of join-trees. We now extend to join-trees the
definitions and results of the previous sections. Structured join-trees are defined in Section
3.1 (Definition 3.3). We extend to them the definitions and results of Sections 3.2-3.4. A first
novelty is that the argument of the extension operation ext will be an SJ-forest, equivalently
a set of SJ-trees, instead of a single SBJ-tree. We will need an algebra with two sorts, the
sort of SJ-trees and that of SJ-forests. A second difference consists in the use in monadic
second-order formulas of a finiteness predicate (cf. Section 2).

Definition 3.23 (Description schemes for SJ-trees).

(a) A description scheme for an SJ-tree, in short an SJ-scheme, is a 5-tuple ∆ = (Q,D,wAx,
(mq)q∈Q, (wd)d∈D) such that Q,D are sets, wAx ∈ A(Q), wd ∈ A(Q) for each d ∈ D
and mq = (Mq, labq) is a D-labelled set (cf. Section 2) for each q ∈ Q. Without loss of
generality, we will assume that the domains VAx and Vd of the arrangements wAx, wd
and the sets Mq are pairwise disjoint, because these arrangements and labelled sets
will be used up to isomorphism. Informally, Mq encodes the different lines U such that

Û = x where x is labelled by q, and each of these lines is defined, up to isomorphism,
by the arrangement wd where d is its label in D, defined by labq.

We say that ∆ is regular if Q ∪D is finite and the arrangements wAx and wd are
regular. The finiteness of D implies that each D-labelled set mq is regular.

(b) Let J = (N,≤,U) be an SJ-tree with axis A; for each x ∈ N , we denote by Ux the set of

lines U ∈ U such that Û = x. In the example of Figure 3, we have Ud = {U4}. An SBJ-
scheme ∆ as in a) describes J if there exist mappings r : N → Q and r̃ : U − {A} → D
such that:
(b.1) the arrangement (A,≤, r) over Q is isomorphic to wAx,

11 If α is an MS-transduction and β is an MS sentence, then the set of structures S such that α(S) |= β is
MS-definable (Theorem 2.1).

22 B. COURCELLE

(b.2) for each x ∈ N , the D-labelled set12 (Ux, r̃) is isomorphic to mr(x),
(b.3) for each U ∈ U − {A}, the arrangement (U,≤, r) over Q is isomorphic to wr̃(U).

We will also say that ∆ describes the join-tree fgs(J) := (N,≤), obtained from J by forgetting
the structuring.

Proposition 3.24.

(1) Every SJ-tree is described by some SJ-scheme.
(2) Every SJ-scheme ∆ describes a unique SJ-tree Unf (∆) where unicity is up to isomor-

phism.

Proof. We extend the proof of Proposition 3.11.

(1) Each SJ-tree J = (N,≤,U) has a standard description scheme ∆(J) := (N,U − {A},
(A,≤), ((Ux, Id))x∈N , ((U,≤))U∈U−{A}). The identity mappings N → N and U−{A} →
U − {A} show that ∆(J) describes J . 13

(2) Let ∆ = (Q,D,wAx, (mq)q∈Q, (wd)d∈D) be an SJ-scheme, defined with arrangements
wAx = (VAx,�, labAx) and wd = (Vd,�, labd), and labelled sets mq = (Mq, labq) such
that the sets VAx, Vd and Mq are pairwise disjoint and the same symbol � denotes the
orders of the arrangements wAx and wd. We construct Unf (∆) := (N,≤,U) as follows.
(a) N is the set of finite nonempty sequences (v0, s1, v1, s2, . . . , sk, vk) such that:

v0 ∈ VAx, vi ∈ Vdi and si ∈Mqi−1 for 1 ≤ i ≤ k, where
q0 = labAx(v0), d1 = labq0(s1), q1 = labd1(v1), d2 = labq1(s2), . . . ,
qi = labdi(vi), di+1 = labqi(si+1) for 1 ≤ i ≤ k − 1.

(b) (v0, s1, v1, . . . , sk, vk) ≤ (v′0, s
′
1, v
′
1, . . . , s

′
j , v
′
j) if and only if

k ≥ j, (v0, s1, v1, . . . , sj) = (v′0, s
′
1, v
′
1, . . . , s

′
j) and vj � v′j (vj , v

′
j ∈ Vdj).

(c) the axis A is the set of one-element sequences (v) for v ∈ VAx and, for x =
(v0, s1, v1, . . . , sk, vk), U(x) is the set of sequences inN of the form (v0, s1, v1, s2, . . . , sk, v)

for v ∈ Vdk , so that Û(x) = (v0, s1, v1, . . . , sk−1, vk−1).
Note that (v0, s1, v1, . . . , vk) < (v0, s1, v1, . . . , vj) if j < k and that (v0, s1, v1, . . . , sk, vk) ≤
(v0, s1, v1, . . . , sk, v) if and only if vk � v. In order to prove that ∆ describes J, we define
r : N → Q and r̃ : U − {A} → D as follows:
– if x ∈ A, then x = (v) for some v ∈ VAx and r(x) := labAx(v);
– if x ∈ N has depth k ≥ 1, then x = (v0, s1, v1, . . . , sk, vk) for some v0, s1, . . . , sk, vk

and r(x) := labdk(vk);
– if U ∈ U − {A}, then U = U(x) for some x = (v0, s1, v1, . . . , sk, vk), k ≥ 1, and
r̃(U) := dk.

We check the three conditions of 3.23(b). We have (A,≤, r) ' wAx, hence (b.1) holds.
For checking (b.2), we consider x = (v0, s1, v1, . . . , sk, vk) ∈ N, k ≥ 1. The sets U in
Ux are those of the form {(v0, s1, v1, . . . , sk, vk, s, v) | v ∈ Vdk+1

} for all s ∈ Mqk where
qk = labdk(vk) = r(x), hence (b.2) holds. For checking (b.3), we let U = U(x) for some
x = (v0, s1, v1, . . . , sk, vk), k ≥ 1; it is the set of sequences (v0, s1, v1, s2, . . . , sk, v) for
v ∈ Vdk ordered by � on the last components. Hence, (U,≤, labdk) is isomorphic to wdk ,
which proves the property since r̃(U) := dk.

Unicity is proved as in Proposition 3.11.

12 Ux is a set of subsets of N and r̃ replaces each set in Ux by some d ∈ D. Hence, r̃(Ux . . .) is a multiset of
elements of D.

13 QUESTION: Here, we removed the lonely colons. Is the sentence ok as it is?

GENERALIZED TREES 23

As for SBJ-trees, every SJ-tree is described by a canonical SJ-scheme, that is regular and
has a minimum number of states if the SJ-tree is regular. The following proposition extends
Proposition 3.12.

Proposition 3.25. A join-tree is MSfin-definable if it is described by a regular SJ-scheme.

Proof. Let (N,≤) be a join-tree J (this property is first-order expressible). Assume
that J = fgs(J ′) where J ′ = (N,≤,U) ' Unf (∆) for some regular SJ-scheme ∆ =
(Q,D,wAx, (mq)q∈Q, (wd)d∈D) such that Q = {1, . . . ,m} and D = {1, . . . , p}. Let r,r̃
be the corresponding mappings (cf. Definition 3.23(b)). For each d ∈ D, let ψd be an MS
sentence that characterizes wd up to isomorphism, by the main result of [23]. Similarly, ψAx
characterizes wAx.

A D-labelled set mq is described up to isomorphism by a p-tuple (m1
q , . . . ,m

p
q) where

mj
q is the number (possibly ω) of elements having label j. By Proposition 3.7, there is a

bipartition (N0, N1) of N that describes the structuring U ; from this bipartition, we can

define the axis A, the lines forming U and the node Û for each U ∈ U −{A} by MS formulas.
There is a partition (Y1, . . . , Ym) of N that describes r by Yq := r−1(q). There is a partition
(Z1, . . . , Zp) where Zj is the union of the lines U ∈ U − {A} such that r̃(U) = j.

Consider a relational structure (X,≤, N0, N1, Y1, . . . , Ym, Z1, . . . , Zp). By MS formulas,
one can express the following properties:

(i) (X,≤, N0, N1) is S(J ′′) for some SJ-tree J ′′ = (X,≤,U ′); its axis is denoted by A′,
(ii) (Y1, . . . , Ym) is a partition of X; we let r(x) := q if and only if x ∈ Yq,
(iii) (Z1, . . . , Zp) is a partition of X such that each Zj is a union of sets U ∈ U ′ − {A′}

such that (U,≤, r) ' wj ,
(iv) (A′,≤, r) ' wAx,

(v) for each q ∈ Q and x ∈ Yq, the number of lines U ∈ U ′x that are contained in Zj is mj
q.

These formulas are constructed as follows: ϕ(N0, N1) for (i) is from Proposition 3.7.
The formula for (ii) is standard. All other formulas are constructed so as to express the
desired properties when (i) and (ii) do hold. For (iii), we use a suitable adaptation of ψi
and the fact from Proposition 3.7 that, if (i) holds, we can define from (N0, N1), by MS

formulas, the axis A′, the lines forming U ′ and the node Û for each U ∈ U ′. The mapping r
is given by (Y1, . . . , Ym). For (iv), we do as for (iii) with ψAx.

For (v), we do as follows. We write an MS formula γ(x,N0, N1, Z,W) expressing that
W consists of one node of each set U ∈ U ′ − {A′} that is contained in Z and is such that

Û = x. For any x and Z, all sets W satisfying γ(x,N0, N1, Z,W) have same cardinality.
Then, Property (v) holds if and only if, for all q = 1, . . . ,m, x ∈ Yq and j = 1, . . . , p, if

γ(x,N0, N1, Zj ,W) holds, then W has cardinality mj
q. If some number mj

q is ω, we need the
finiteness predicate Fin(W) to express this condition14.

Let β(N0, N1, Y1, . . . , Ym, Z1, . . . , Zp) express conditions (ii)-(v) in (X,≤). If a join-
tree (X,≤) satisfies ϕ(N0, N1) ∧ β(N0, N1, Y1, . . . , Ym, Z1, . . . , Zp), it has a structuring U ′
described by N0, N1: we let J ′′ := (X,≤,U ′). The sets Y1, . . . , Ym, Z1, . . . , Zp yield a scheme
∆ that describes J ′′ (by Conditions (iii)-(v)), hence J ′′ is isomorphic to J ′ by the unicity
property of Proposition (3.24), and so, we have (X,≤) ' fgs(J ′) = J .

Hence, J is (up to isomorphism) the unique model of the MSfin sentence:

∃N0, N1(ϕ(N0, N1) ∧ ∃Y1, . . . , Ym, Z1, . . . , Zp.β(N0, N1, Y1, . . . , Ym, Z1, . . . , Zp))).

14 If the nodes of J have degree at most a ∈ N, then mj
i ≤ a for all i, j and the finiteness predicate is not

needed, hence, J is MS definable.

24 B. COURCELLE

Theorem 3.30 will establish a converse.

Definition 3.26 (Operations on SJ-trees and SJ-forests). We recall from Definition 3.1
that a join-forest is the union of disjoint join-trees. A structured join-forest (an SJ-forest,
cf. Definition 3.3) is the union of disjoint SJ-trees. It has no axis (each of its components
has an axis, but we do not single out any of them). We will use objects of three types :
join-trees, SJ-trees and SJ-forests, but a 2-sorted algebra will suffice (similarly as above for
SBJT, we have not introduced a separate sort for BJ-trees). The two sorts are t for SJ-trees
and f for SJ-forests.

– Concatenation of SJ-trees along axes. The concatenation J • J ′ of disjoint SJ-trees J and
J ′ is defined exactly as in Definition 3.13 for SBJ-trees.

– The empty SJ-tree is denoted by the nullary symbol Ωt.
– Extension of an SJ-forest into an SJ-tree. Let J = (N,≤,U) be an SJ-forest and u /∈ N .

Then extu(J) is an SJ-tree defined as in Definition 3.13. When handling SJ-trees up to
isomorphism, we will use the notation ext(J) instead of extu(J).

– The empty SJ-forest is denoted by the nullary symbol Ωf .
– Making an SJ-tree into an SJ-forest.

This is done by the unary operation mkf that is actually the identity on the triples
that define SJ-trees.

– The union of two disjoint SJ-forests is denoted by].

The types of these operations are thus:

• : t× t→ t, Ωt : t, ext : f → t,

] : f × f → f , Ωf : f , mkf : t→ f .

In addition, we have, as in Definition 3.13 the Forgetting the structuring: If J is an SJ-tree,
fgs(J) is the underlying join-tree.

Definition 3.27 (The algebra SJT). We let F ′ be the 2-sorted signature {•,], ext,mkf ,Ωt,
Ωf} where the types of these six operations are as above. We obtain an F ′-algebra SJT whose
domains are the sets of isomorphism classes of SJ-trees and of SJ-forests. Concatenation is
associative with neutral element Ωt and disjoint union is associative and commutative with
neutral element Ωf .

Definition 3.28 (The value of a term). The definition is actually identical to that for
SBJ-trees (Definition 3.15). We recall it for the reader’s convenience. The equivalence
relation ≈ is as in this definition. The value val(t) = (N,≤,U) of t ∈ T∞(F ′) is defined as
follows:

– N := Occ(t, ext), the set of occurences in t of ext,
– u ≤ v :⇐⇒ u ≤t w ≤lex v for some w ∈ N such that w ≈ v,
– U is the set of equivalence classes of ≈ .
If t has sort t (resp. f) then val(t) is an SJ-tree (resp. an SJ-forest). It is clear that we
have a value mapping : T∞(F ′)→ SJT.

For terms t written with the operations exta, then val(t) := (N,≤,U) where :

– N is the set of nodes a such that exta has an occurence in t, actually a unique one, that
we will denote by ua,

– a ≤ b :⇐⇒ ua ≤ ub,
– a ≈ b :⇐⇒ ua ≈ ub, and
– U is the set of equivalence classes of ≈ .

GENERALIZED TREES 25

Definition 3.29 (Regular join-trees). A join-tree (resp. an SJ-tree) T is regular if it is
denoted by fgs(t) (resp. by t) where t is a regular term in T∞(F ′) of sort t.

Theorem 3.30. The following properties of a join-tree J are equivalent:

(1) J is regular,
(2) J is described by a regular scheme,
(3) J is MSfin-definable.

Proof. (1)=⇒(2). Similar to that of Theorem 3.21.
(2)=⇒ (3) By Proposition 3.25.
(3)=⇒(1) As in the proof of Theorem 3.21, the mapping α that transforms the relational

structure btc for t in T∞(F ′)t (the set of terms in T∞(F ′) of sort t) into the join-tree
J = (N,≤) = fgs(val(t)) is an MS-transduction. Let J = (N,≤) be an MSfin -definable
join-tree. It is, up to isomorphism, the unique model of an MSfin sentence β. The set L
of terms t in T∞(F ′)t such that α(btc) |= β is thus MSfin -definable. However, since the
relational structures btc have MS definable linear orderings, L is also MS definable (see
Section 2), hence, it contains a regular term. This term denotes J , hence J is regular.

The same proof as for Corollary 3.22 yields:

Corollary 3.31. The isomorphism problem for regular join-trees is decidable.

The rooted trees of unbounded degree, without order on the sets of sons of their nodes
are the join-trees defined by the terms in T∞(F ′ − {•})t. Theorem 3.30 and Corollary 3.31
hold for them.

4. Ordered join-trees

Definition 4.1 (Ordered join-trees and join-hedges). Let (N,≤) be a join-forest. A direction
relative to a node x is a maximal subset C of]−∞, x[such that y t z < x for all y, z ∈ C
(cf. Definition 3.2. The set of directions relative to x is denoted by Dir(x). The notation
x ⊥ y means that x and y are incomparable with respect to ≤, so that x < x t y and
y < x t y if x ⊥ y and x t y is defined.

(a) We say that a join-tree J = (N,≤) is ordered (is an OJ-tree) if each set Dir(x) is
equipped with a linear order vx. (In this way, we generalize the notion of an ordered
tree, cf. Section 1.) From these orders, we define a single linear order v on N as follows:

x v y if and only if x ≤ y or, x ⊥ y and δ @xty δ
′

where δ, δ′ ∈ Dir(x t y), x ∈ δ and y ∈ δ′.
(b) The linear order v satisfies the following properties, for all x, y, x′, y′:

(i) x ≤ y implies x v y,
(ii) if x ≤ y, x′ ≤ y′ and y ⊥ y′, then x @ x′ if and only if y @ y′.

Claim. If J = (N,≤) is a join-tree and v is a linear order on N satisfying conditions
(i) and (ii), then J is ordered by the family of orders (vx)x∈N such that, for all δ, δ′ in
Dir(x), we have δ vx δ′ if and only if δ = δ′ or y @ y′ for some y ∈ δ and y′ ∈ δ′ (if
and only if δ = δ′ or y @ y′ for all y ∈ δ and y′ ∈ δ′).

26 B. COURCELLE

Proof Sketch. Consider different directions δ, δ′ ∈ Dir(x) such that y @ y′ for some
y ∈ δ and y′ ∈ δ′. We have also y1 @ y′1 for any y1 ∈ δ and y′1 ∈ δ′ because
(y t y1) < x, (y′ t y′1) < x and (y t y1) ⊥ (y′ t y′1), hence, Condition (ii) implies that
y t y1 @ y′ t y′1 and y1 @ y′1.

Hence, each relation vx is a linear order on Dir(x). It is clear that v is derived from
the relations vx by (a).

It follows that an ordered join-tree can be equivalently defined as a triple (N,≤,v)
such that (N,≤) is a join-tree and v is a linear order that satisfies Conditions (i) and
(ii). These conditions are first-order expressible.

(c) We define a join-hedge as a triple H = (N,≤,v) such that (N,≤) is a join-forest and v
is a linear order that satisfies Conditions (i) and (ii). Let Js, for s ∈ S, be the join-trees
composing (N,≤). Each of them is ordered by v according to the above claim, and the
index set S is linearly ordered by vS such that s @S s′ if and only if s 6= s′ and x @ y
for all nodes x of Js and y of Js′ . Hence H is also a simple arrangement of pairwise
disjoint join-trees.

Definition 4.2 (Structured join-hedges and structured ordered join-trees).

(a) A structured join-hedge, an SJ-hedge in short, is a 4-tuple J = (N,≤,v, U) such that
(N,≤,v) is a join-hedge and U is a structuring of the join-forest (N,≤).

A structured ordered join-tree could be defined in the same way, as an OJ-tree
(N,≤,v) equipped with a structuring U . However, we will need a refinement in order
to define the operations that construct ordered join-trees and join-hedges (cf. Definition
4.8 and Remark 4.12 below).

(b) Let J be an OJ-tree (N,≤,v) and U be a structuring of (N,≤). For each node x, the
set Dir(x) of its directions consists of the following sets:
– the sets ↓ (U) for each line U ∈ Ux (we recall that ↓ (U) := {y | y ≤ z for some
z ∈ U}),

– the set ↓ (U−(x)) (cf. Definition 3.3) if U−(x) is not empty; in this case we call it the
central direction of x.
If x is the smallest element of U(x), it has no central direction but Ux may be

nonempty. It is clear that ↓ (U)∩ ↓ (U ′) = ∅ if U and U ′ are distinct lines in Ux. We
get a linear order on Ux based on that on directions, that we also denote by vx: we
have U @x U ′ if and only if y @ y′ for all y ∈ U and y′ ∈ U ′.

(c) A structured ordered join-tree (an SOJ-tree) is a tuple (N,≤,v, A,U−, U+) such that
(N,≤,v) is an OJ-tree and U := {A}] U−] U+ is a structuring of (N,≤) with axis
A, such that, for each node x: if U ∈ Ux ∩ U− and U ′ ∈ Ux ∩ U+, then U @x U ′ and
furthermore, if x has a central direction δ, then U @x δ @x U ′.

We define then Dir−(x) as the set of directions ↓(U) for U ∈ Ux∩U− and, similarly, Dir+(x)
with U ∈ Ux ∩ U+.

Let U ∈ U and x /∈ U be such that [x,+∞[∩ U 6= ∅. By Condition (2) of Definition
3.3(a), there is a node yi in U for some i > 0 (we use the notation of that definition). We
say that x is to the left (resp. to the right) of U if, for some direction δ relative to yi, we
have x ∈ δ ∈ Dir−(yi) (resp. x ∈ δ ∈ Dir+(yi)).

As in Propositions 3.5 and 3.9, we have:

Proposition 4.3. Every join-hedge and every ordered join-tree has a structuring.

GENERALIZED TREES 27

Proof. For a join-hedge (N,≤,v), we take any structuring U of the join-forest (N,≤). Let
(N,≤,v) be an OJ-tree and U be any structuring of the join-tree (N,≤). Let A be its axis.
In order to define U− and U+, we need only partition each set Ux into two sets Ux ∩ U−
and Ux ∩U+. If x has a central direction δ, we let Ux ∩U− consist of the lines U in Ux such
that ↓(U) @x δ, and Ux ∩ U+ consist of those such that δ @x ↓(U). Otherwise, we let U+

contain15 Ux so that Ux ∩ U− = ∅.

We now establish the MS definability of these structurings. If J = (N,≤,v, A,U−,U+)
is an SOJ-tree, we define S(J) as the structure (N,≤,v, A,N−0 , N

+
0 , N

−
1 , N

+
1) such that A

is the axis, N−0 (resp. N+
0) is the union of the lines U ∈ U− (resp. U ∈ U+) of even depth

and N−1 (resp. N+
1) is the union of the lines U ∈ U− (resp. U ∈ U+) of odd depth.

Proposition 4.4. (1) There is an MS formula ϕ(A,N−0 , N
+
0 , N

−
1 , N

+
1) expressing that a

structure S = (N,≤,v, A,N−0 , N
+
0 , N

−
1 , N

+
1) is S(J) for some SOJ-tree

J = (N,≤,v, A,U−,U+).
(2) There exists an MS formula θ−(u, U,N−0 , N

+
0 , N

−
1 , N

+
1) expressing in a structure

(N,≤,v, A,N−0 , N
+
0 , N

−
1 , N

+
1) = S(N,≤,v, A,U−, U+) that U ∈ U−∧u = Û ; similarly,

there exists an MS formula θ+(u, U,N−0 , N
+
0 , N

−
1 , N

+
1) expressing that U ∈ U+ ∧ u = Û .

Proof. Easy modification of the proof of Proposition 3.7.

Definition 4.5 (Description schemes for SOJ-trees). (a) A description scheme for an SOJ-
tree, in short an SOJ-scheme, is a 6-tuple ∆ = (Q,D,wAx, (w

−
q)q∈Q, (w

+
q)q∈Q, (wd)d∈D)

such that Q,D are sets, called respectively the set of states and of directions, wAx ∈
A(Q), (wd)d∈D is a family of arrangements over Q and (w−q)q∈Q and (w+

q)q∈Q are
families of arrangements over D. Without loss of generality, we will assume that the
domains of these arrangements are pairwise disjoint, and the same symbol � denotes
their orders. Informally, (w−q)q∈Q and (w+

q)q∈Q encodes the sets of lines, ordered by vx
of the two sets Dir−(x) and Dir+(x) where x is labelled by q.

We say that ∆ is regular if Q ∪D is finite and the arrangements wAx, wd, w
−
q and

w+
q are regular.

(b) Let J = (N,≤,v, A,U−,U+) be an SOJ-tree. An SOJ-scheme ∆ as in (a) describes J
if there exist mappings r : N → Q and r̃ : U− ∪ U+ → D such that:
(b.1) (A,≤, r) ' wAx,
(b.2) for each x ∈ N , the arrangement (Ux ∩ U−,vx, r̃) over D is isomorphic to w−r(x),

(b.3) for each x ∈ N , the arrangement (Ux ∩ U+,vx, r̃) over D is isomorphic to w+
r(x),

(b.4) for each U ∈ U− ∪ U+, the arrangement (U,≤, r) over Q is isomorphic to wr̃(U).
We also say that ∆ describes the OJ-tree fgs(J) := (N,≤,v) where fgs forgets the

structuring.

Proposition 4.6. (1) Every SOJ-tree is described by some SOJ-scheme.
(2) Every SOJ-scheme describes an SOJ-tree that is unique up to isomorphism.

Proof. (1) The proof is similar to those of Propositions 3.11 and 3.24.
(2) Let ∆ = (Q,D,wAx, (w

−
q)q∈Q, (w

+
q)q∈Q, (wd)d∈D) be an SOJ-scheme, defined with

arrangements wAx = (VAx,�, labAx), wd = (Vd,�, labd), w−q = (W−q ,�, labq) and

w+
q = (W+

q ,�, labq) such that the sets VAx, Vd,W
−
q and W+

q are pairwise disjoint.

15 We might alternatively partition Ux into any two sets Ux∩U− and Ux∩U+ such that Ux∩U− @x Ux∩U+.

28 B. COURCELLE

Furthermore, we extend ≺ by letting s ≺ s′ for all s ∈ W−q , s′ ∈ W+
q and q ∈ Q. We

construct J = Unf (∆) = (N,≤,v, A,U−,U+) as follows. Clauses a) to d) are essentially
as in Proposition 3.24.
a) N is the set of finite nonempty sequences (v0, s1, v1, s2, . . . , sk, vk) such that:

v0 ∈ VAx, vi ∈ Vdi and si ∈W−qi−1
∪W+

qi−1
for 1 ≤ i ≤ k, where

q0 = labAx(v0), d1 = labq0(s1), q1 = labd1(v1), d2 = labq1(s2), . . . ,
qi = labdi(vi), di+1 = labqi(si+1) for 1 ≤ i ≤ k − 1.

b) (v0, s1, v1, . . . , sk, vk) ≤ (v′0, s
′
1, v
′
1, . . . , s

′
j , v
′
j) if and only if :

k ≥ j, (v0, s1, v1, . . . , sj) = (v′0, s
′
1, v
′
1, . . . , s

′
j) and vj � v′j (vj , v

′
j ∈ Vdj).

c) The axis A is the set of one-element sequences (v) for v ∈ VAx.
d) If x = (v0, s1, v1, . . . , sk, vk), the line U(x) is the set of sequences (v0, s1, v1, s2, . . . , sk, v)

for v ∈ Vdk ; it belongs to U− if sk ∈W−qk−1
and to U+ if sk ∈W+

qk−1
; in both cases,

Û(x) = (v0, s1, v1, . . . , sk−1, vk−1).
e) x = (v0, s1, v1, . . . , sk, vk) v y = (v′0, s

′
1, v
′
1, . . . , s

′
j , v
′
j) if and only if

either x ≤ y or, for some ` < {j, k}, we have
e.1) (v0, s1, v1, . . . , v`) = (v′0, s

′
1, v
′
1, . . . , v

′
`) and s`+1 ≺ s′`+1,

e.2) or (v0, s1, v1, . . . , s`) = (v′0, s
′
1, v
′
1, . . . , s

′
`), s`+1 ∈W−q` and v′` ≺ v`,

e.3) or (v0, s1, v1, . . . , s`) = (v′0, s
′
1, v
′
1, . . . , s

′
`), s

′
`+1 ∈W+

q`
and v` ≺ v′`.

In Case e.1), x and y are in different directions of z := (v0, s1, v1, . . . , v`) that are
not its central direction; in Case e.2), x is to the left of the central direction δ of z
and y ≤ u where u := (v0, s1, v1, . . . , v

′
`) is here below z on δ; in Case e.3), y is to

the right of the central direction δ′ of u and x ≤ z where z is below u on δ′.
In order to prove that ∆ describes J, we define r : N → Q and r̃ : U− ∪ U+ → D as
follows:
– if x ∈ A, then x = (v) for some v ∈ VAx and r(x) := labAx(v);
– if x ∈ N has depth k ≥ 1, then x = (v0, s1, v1, . . . , sk, vk) for some v0, s1, . . . , sk, vk

and r(x) := labdk(vk);
– if U ∈ U− ∪ U+, then U = U(x) for some x = (v0, s1, v1, . . . , sk, vk), and r̃(U) := dk.

In the last case, as dk = labqk−1
(sk), it depends only on sk and vk−1 (via qk−1). It

follows that r̃(U) is the same if we consider U as U(y) with y = (v0, s1, v1, . . . , sk, v)
hence, is well-defined.

We check the four conditions of Definition 4.5(b). We have (A,≤, r) ' wAx, hence
(b.1) holds. For (b.2) and (b.3), we consider x = (v0, s1, v1, . . . , sk, vk) ∈ N . The sets U
in Ux are those of the form {(v0, s1, v1, . . . , sk, vk, s, v) | v ∈ Vdk+1

} for all s ∈W−qk ∪W
+
qk

where qk = labdk(vk) = r(x), hence (b.2) and (b.3) hold.
For checking (b.4), we let U = U(x) for some x = (v0, s1, v1, . . . , sk, vk), k > 0; then

U is the set of sequences (v0, s1, v1, s2, . . . , sk, v) such that v ∈ Vdkordered by � on the
last components. Hence, (U,≤, labdk) is isomorphic to wdk , which proves the property
since r̃(U) := dk.

Unicity is proved as in Proposition 3.11.

Proposition 4.7. An SOJ-tree is MS definable if it is described by a regular SOJ-scheme.

Proof. Similar to the proofs of Propositions 3.12 and 3.25.

GENERALIZED TREES 29

Note that, we need not the finiteness predicate as in Proposition 3.25 because we deal
with arrangements that are linearly ordered structures, and not with labelled sets. Next we
define an algebra SOJT with two sorts: t for SOJ-trees and h for SJ-hedges.

Definition 4.8 (Operations on SOJ-trees and SJ-hedges).

– Concatenation of SOJ-trees along axes.
Let J1 = (N1,≤1,v1, A1,U−1 ,U

+
1) and J2 = (N2,≤2,v2, A2,U−2 ,U

+
2) be disjoint SOJ-trees.

We define their concatenation as follows:

J1 • J2 := (N1]N2,≤,v, A1]A2,U−1] U
−
2 ,U

+
1] U

+
2) where

x ≤ y :⇐⇒ x ≤1 y ∨ x ≤2 y ∨ (x ∈ N1 ∧ y ∈ A2),

x v y :⇐⇒ x ≤ y ∨ x v1 y ∨ x v2 y,

∨ (x⊥y ∧ x ∈ N1 ∧ y ∈ N2 ∧ y ∈ U ∈ U+
2 ∩ U

xty
2)

∨ (x⊥y ∧ x ∈ N2 ∧ y ∈ N1 ∧ x ∈ U ∈ U−2 ∩ U
xty
2), for some U.

The relations x⊥y and x t y are relative to ≤. It is clear that J1 • J2 is an SOJ-tree. Its
axis is A1] A2,U+ = U+

1] U
+
2 and U− = U−1] U

−
2 . The empty SOJ-tree is denoted by

the nullary symbol Ωt.
– Extension of two SJ-hedges into a single SOJ-tree.

Let H1 = (N1,≤1,v1,U1) and H2 = (N2,≤2,v2,U2) be disjoint SJ-hedges and u /∈
N1]N2. Then:

extu(H1, H2) := (N1]N2] {u},≤,v, {u},U1,U2), where

x ≤ y :⇐⇒ x ≤1 y ∨ x ≤2 y ∨ y = u,

x v y :⇐⇒ x ≤ y ∨ x v1 y ∨ x v2 y ∨ (x ∈ N1 ∧ y ∈ N2).

Clearly, extu(H1, H2) is an SOJ-tree, where u has no central direction. When handling
SOJ-trees and SJ-hedges up to isomorphism, we replace the notation extu(H1, H2) by
ext(H1, H2).

– The empty SJ-hedge is denoted by the nullary symbol Ωh.
– Making an SOJ-tree into an SJ-hedge.

This is done by the unary operation mkh such that, if J = (N,≤,v, A,U−,U+) is an
SOJ-tree, then

mkh(J) := (N,≤,v, {A}] U−] U+).

Similarly as fgs, this operation forgets some information, here, it merges three sets. Note
that in mkh(J), we distinguish neither U− from U+ nor the axis A from the other lines.

– The concatenation of two disjoint SJ-hedges.
Let H1 = (N1,≤1,v1,U1) and H2 = (N2,≤2,v2,U2) be disjoint SJ-hedges. Their ”hori-
zontal” concatenation is:

H1 ⊗H2 := (N1]N2,≤1] ≤2,v,U1] U2) where

x v y :⇐⇒ x v1 y ∨ x v2 y ∨ (x ∈ N1 ∧ y ∈ N2).

We let F ′′ be the 2-sorted signature {•,⊗, ext,mkh,Ωt,Ωh} whose operation types are :

• : t× t→ t, Ωt : t, ext : h× h→ t,

⊗ : h× h→ h, Ωh : h, mkh : t→ h.

30 B. COURCELLE

In addition, we have, as in Definitions 3.13 and 3.26:

– Forgetting the structuring: If J = (N,≤,v, A,U−,U+) is an SOJ-tree, then fgs(J) :=
(N,≤,v) is the underlying OJ-tree.

Definition 4.9 (The value of a term). If u is an occurrence of a binary symbol in a term t,
we denote by s1(u) its first son and by s2(u) the second one (cf. Definition 3.15). The value

val(t) := (N,≤,v, A,U−,U+) of a term t ∈ T∞(F
′′
)t is an SOJ-tree defined in a similar

way16 as for t ∈ T∞(F ′)t, cf. Definitions 3.15 and 3.28:

– N := Occ(t, ext),
– x ≤ y :⇐⇒ x ≤t w ≤lex y for some w ∈ N such that w ≈ y,
– A := Max(t, ext, ε),

where ≈ is the equivalence relation on N defined as in Definition 3.15(a):

– U− is the set of equivalence classes of ≈ of nodes in Max(t, ext, s1(u)) for some occurrence
u of ext,

– U+ is the set of equivalence classes of ≈ of nodes in Max(t, ext, s2(u)) for some occurrence
u of ext.

Hence, U(x) ∈ U− if x ≤t s1(Û(x)) and U(x) ∈ U+ if x ≤t s2(Û(x)).
Next we define x v y :⇐⇒ x ≤ y or x⊥y (⊥ is relative to ≤, not to ≤t) and we have

one of the following cases:

(i) x tt y is an occurrence of ⊗ or ext, x ≤t s1(x tt y) and y ≤t s2(x tt y),
(ii) x tt y is an occurrence of •, x ≤t s1(x tt y) and y ≤t s2(z) where z is the unique

maximal occurrence of ext such that y <t z ≤t s2(x tt y),
(iii) x tt y is an occurrence of •, y ≤t s1(x tt y) and x ≤t s1(z) where z is the unique

maximal occurrence of ext such that x <t z ≤t s2(x tt y).

If t ∈ T∞(F ′′)h its value val(t) is (N,≤,v,U) with (N,≤,v) defined as above and U as in
Definition 3.28.

Claim. (1) The mapping val is a value mapping T∞(F
′′
) :→ SOJT.

(2) The transformation α of btc into (N,≤,v) is an MS-transduction.

Proof. (1) is clear from the definitions and (2) holds because the conditions of Definition 4.9
are expressible in btc by MS formulas.

Example 4.10. We now illustrate this definition. Figure 6 shows a term T where A,B,C
and D are subterms of type t and E,F and G are subterms of type h. They contain
occurrences of ext that define nodes x, x′, y, y′, w, z and z′ of val(T).

The OJ-tree val(T) is shown on Figure 7, where we designate by A,B, . . . ,G the trees
and hedges defined by the terms A,B, . . . , G. We have the following comparisons for < :

– {z, z′, u} < v, because {z, z′} <T v, u <lex v and u ≈ v,
– {y, y′, w} < u, because {y, y′, w} <T u,
– x ≤ {u, v} because x ≤T a <lex {u, v} and a ≈ u ≈ v where a is the root position of A,
– v < x′ if and only if x′ is on X, the axis of B, because in this case, v ≈ x′ and otherwise v

and x′ are incomparable with respect to ≤; in all cases we have v <lex x
′.

16 Example 4.10 will illustrate this definition.

GENERALIZED TREES 31

Figure 6: Term T of Example (4.10).

Figure 7: The OJ-tree val(T) of Example (4.10).

For @ we have: z @ y @ y′ @ x @ w @ u @ z′ @ v and x′ @ z if x′ is to the left of X ;
otherwise v @ x′. All inequalities for < yield the corresponding inequalities for @. We now
compare z, y, y′, x, w, z′ that are pairwise incomparable for <.

– By Case (i) of Definition 4.9, we get {y, y′} @ w, y @ y′ and z @ z′.
– By Case (ii), we get x @ w, {x,w} ≺ z′ and {y, y′} ≺ w.

32 B. COURCELLE

– By Case(iii) we get {z, y, y′} ≺ x and z ≺ {y, y′}.
Finally, if x′ is to the left of X, then Case (iii) gives x′ @ z, and if it to its right, then

Case (ii) gives z @ x′.

Theorem 4.11. The following properties of an OJ-tree J are equivalent :

(1) J is regular,
(2) J is described by a regular SOJ-scheme,
(3) J is MS definable.

Proof. The proof is similar to that of Theorem 3.21. We only indicate some differences.

(1)=⇒(3): Follows from Proposition 4.7.
(2)=⇒(1): As observed in Definition 4.9 (cf. the claim), the mapping α that transforms

the relational structure btc for t in T∞(F
′′
)t into the OJ-tree (N,≤,v) = fgs(val(t))

is an MS-transduction. Let J = (N,≤,v) be an MS definable OJ-tree. It is, up to
isomorphism, the unique model of an MS sentence β. The set of terms t in T∞(F ′′)t
such that α(btc) |= β is thus MS definable, hence, it contains a regular term. This term
denotes J , hence J is regular.

As in Corollaries 3.22 and 3.31, we deduce that the isomorphism problem for regular
OJ-trees is decidable.

Remark 4.12 (An alternative notion of SOJ-tree). We present a variant of Definition 4.2.
If J = (N,≤,v, A,U−,U+) is an SOJ-tree, Definition 4.2(c) shows that, for each x ∈ N , the
partition (Ux ∩ U−,Ux ∩ U+) of Ux is defined in a unique way from v and the structuring
U := {A}] U−] U+ of (N,≤), except if x has no central direction (cf. Proposition 4.3).
This partition is useful only when x is the minimal element of A, denoted by min(A)
when it exists. To see that, we consider J and another structuring of the same OJ-
tree, J ′ = (N,≤,v, A,U ′−,U ′+), such that U ′x = Ux for each node x 6= min(A) and
Ux ∩ U− 6= U ′x ∩ U− if x = min(A). Let K be a nonempty SOJ-tree. Then K • J is not
equal to K • J ′.

We could thus define an SOJ-tree as a tuple S = (N,≤,v,U ′,U−Ax,U
+
Ax) such that

(N,≤,v) is an OJ-tree, U := U ′]U−Ax]U
+
Ax is a structuring of (N,≤) with axis A (belonging

to U ′), U−Ax]U
+
Ax = ∅ if A has no minimal element, and, otherwise, U−Ax]U

+
Ax = Umin(A) and

U @ U ′ for all U ∈ U−Ax and U ′ ∈ U+
Ax. Then, the structure S corresponding to an SOJ-tree

(N,≤,v, A,U−,U+) is (N,≤,v,U ′,U−Ax,U
+
Ax) where:

– U−Ax := U− ∩ Umin(A) and U+
Ax := U+ ∩ Umin(A) if A has a minimal element,

– U−Ax := U+
Ax := ∅ otherwise, and, in both cases,

– U ′ := {A} ∪ U− ∪ U+ − (U−Ax ∪ U
+
Ax).

It is not difficult conversely to construct (A,U−,U+) from (N,≤,v,U ′,U−Ax,U
+
Ax) and

to redefine the operations of Definition 4.8 in terms of the structures S as above. This
alternative definition of SOJ-trees contains no redundant information. However, we found
the initial definition easier to handle in our logical setting.

GENERALIZED TREES 33

5. Quasi-trees

Quasi-trees can be viewed intuitively as “undirected join-trees”. As in [11], we define them
in terms of a ternary betweenness relation. Their use for defining rank-width is reviewed at
the end of the section.

Definition 5.1 (Betweenness).

(a) Let L = (X,≤) be a linear order. Its betweenness relation is the ternary relation on X
such that BL(x, y, z) holds if and only if x < y < z or z < y < x. It is empty if X has
less than 3 elements.

(b) If T is a tree, its betweenness relation is the ternary relation on NT , such that BT (x, y, z)
holds if and only if x, y, z are pairwise distinct and y is on the unique path between x
and z. If R is a rooted tree and T = Und(R) is the tree obtained from R by forgetting
its root and edge directions, then BT (x, y, z) :⇐⇒ x, y, z are pairwise distinct and,
either x <R y ≤R x tR z or z <R y ≤R x tR z.

(c) If B is a ternary relation on a set X, and x, y ∈ X, then [x, y]B := {x, y} ∪ {z ∈ X |
B(x, z, y)}. This set is finite if B = BT for some tree T .

Proposition 5.2 (cf. [11]).

(1) The betweenness relation B of a linear order (X,≤) satisfies the following properties for
all x, y, z, u ∈ X.
A1: B(x, y, z)⇒ x 6= y 6= z 6= x.
A2: B(x, y, z)⇒ B(z, y, x).
A3: B(x, y, z)⇒ ¬B(x, z, y).
A4: B(x, y, z) ∧B(y, z, u)⇒ B(x, y, u) ∧B(x, z, u).
A5: B(x, y, z) ∧B(x, u, y)⇒ B(x, u, z) ∧B(u, y, z).
A6: B(x, y, z) ∧B(x, u, z)⇒ y = u ∨ [B(x, u, y) ∧B(u, y, z)] ∨ [B(x, y, u) ∧B(y, u, z)].
A7’: x 6= y 6= z 6= x⇒ B(x, y, z) ∨B(x, z, y) ∨B(y, x, z).

(2) The betweenness relation B of a tree T satisfies the properties A1-A6 for all x, y, z, u in
NT together with the following weakening of A7’:
A7: x 6= y 6= z 6= x⇒ B(x, y, z) ∨B(x, z, y) ∨B(y, x, z)∨

∃w.(B(x,w, y) ∧B(y, w, z) ∧B(x,w, z))
.

Proposition 5.3. Let B be a ternary relation on a set X that satisfies properties A1-A7’
for all x, y, z, u in X. Let a and b be distinct elements of X. There is a unique linear
order L = (X,≤) such that a < b and BL = B. It is quantifier-free definable in the logical
structure (X,B, a, b).

Proof. Let X,B, a, b be as in the statement. Let us enumerate X as x1 = a, x2 = b,
x3, . . . , xn, . . . Let Xn := {x1, . . . , xn} for n ≥ 3. Observe that B � Xn satisfies properties
A1-A7’. We prove by induction on n the existence and unicity of a linear order Ln = (Xn,≤)
such that a < b and BLn = B � Xn.

– Basis: n = 3. The conclusion follows from A7’.
– Induction case: We assume the conclusion true for n.

Claim. If B(xi, xn+1, xj) holds for some i < j ≤ n, then, there is a unique pair k, l such
that k < l ≤ n, B(xk, xn+1, xl) holds and [xk, xl]L ∩Xn+1 = {xk, xn+1, xl}.

34 B. COURCELLE

Proof. Assume that xm ∈ [xi, xj]L ∩Xn+1 − {xi, xn+1, xj}, which implies m ≤ n. Then,
by A6, we have B(xi, xn+1, xm) or B(xm, xn+1, xj) and we can repeat the argument with
(xi, xm) or (xm, xj) instead of (i, j). Furthermore, the considered set, [xi, xm]L ∩Xn+1 or
[xm, xj]L ∩Xn+1 has less elements than [xi, xj]L ∩Xn+1.Hence, we must obtain k, l such
that [xk, xl]L ∩Xn+1 = {xk, xn+1, xl} as desired.

In this case, there is a unique way to extend Ln into Ln+1: we put xn+1 between xk
and xl. There is another case.

Claim. If B(xi, xn+1, xj) holds for no i < j ≤ n, then there is a unique k such that k ≤ n,
B(xl, xk, xn+1) holds for some l ≤ n, and [xk, xn+1]L ∩Xn+1 = {xk, xn+1}. The element
xk is extremal in Ln, that is, either maximal or minimal.

The proof is similar. In this case, there is a unique way to extend Ln into Ln+1: we
put xn+1 after xk if it is maximal in Ln or before it if it is minimal. By taking the union
of all orders Ln, we get the desired and unique linear order on X, that we will denote by
≤a,b . We now define it by a first-order formula.

We first observe a particularly simple case. If there are no u, v ∈ X such that B(u, b, v)
holds, we have x ≤a,b y ⇐⇒ x = y ∨ y = b∨B(x, y, b)). A similar description can be given
if there are no u, v such that B(u, a, v) holds. From (X,B, a, b) as in the statement, we
define the following binary relation:

Z(x, y) :⇐⇒ x 6= y∧
[(B(x, a, b) ∧ ¬B(y, x, a)) ∨ (x = a ∧ ¬B(y, a, b)) ∨ (B(a, x, b) ∧ ¬B(y, x, b))∨

(x = b ∧B(a, b, y)) ∨ (B(a, b, x) ∧B(b, x, y))].

It is easy to see that x <a,b y implies Z(x, y). In particular, Z(a, b) holds by the clause
x = a ∧ ¬B(y, a, b) with y = b. For the converse, assume that Z(x, y) holds and x <a,b y
does not. Then, we have y <a,b x because ≤a,b is a linear order. By looking at the different
relative positions of x, y, a and b, we get a contradiction. Hence x ≤a,b y if and only if
x = y ∨ Z(x, y), which is expressed by a quantifier-free formula ξ(a, b, x, y).

Remark 5.4. If there are no u, v ∈ X such that B(u, b, v) holds, then:

Z(x, y)⇐⇒ x 6= y ∧ [(B(x, a, b) ∧ ¬B(y, x, a)) ∨ (x = a ∧ ¬B(y, a, b))∨
(B(a, x, b) ∧ ¬B(y, x, b))]

which is equivalent to y = b∨B(x, y, b)) as one can (painfully) check by using axioms A1-A7’.

Definition 5.5 (Quasi-trees).

(a) A quasi-tree is a structure S = (N,B) such that B is a ternary relation on N , called
the set of nodes, that satisfies conditions A1-A7 (a definition from [11]). To avoid
uninteresting special cases, we also require that N has at least 3 nodes.

Lemma 11 of [11] shows that in a quasi-tree, the four cases of the conclusion of
A7 are exclusive and that, in the fourth one, there is a unique node w satisfying
B(x,w, y) ∧B(y, w, z) ∧B(x,w, z), which we denote by MS(x, y, z). 17

A leaf (of S) is a node z such that B(x, z, y) holds for no x, y. A line is set of nodes L
such that [x, y]B ⊆ L if x, y ∈ L and (L,B � L) satisfies A7’. We say that S is discrete
if each set [x, y]B is finite. A quasi-tree S = (N,B) is a subquasi-tree of a quasi-tree

17 QUESTION: This sentence does not seem define anything. Should the sentence become a remark after
the definition?

GENERALIZED TREES 35

S′ = (N ′, B′), which we denote by S ⊆ S′, if N ⊆ N ′ and B = B′ � N . This condition
implies that MS = MS′ � N .

(b) From a join-tree J = (N,≤), we define a ternary relation BJ on N by:

BJ(x, y, z) :⇐⇒ x 6= y 6= z 6= x and (x < y ≤ x t z) ∨ (z < y ≤ x t z).

Proposition 5.6.

(1) The structure qt(J) := (N,BJ) associated with a join-tree J = (N,≤) having at least 3
nodes is a quasi-tree. Every line of J is a line of qt(J). If J is a subjoin-tree of J ′, then
qt(J) is a subquasi-tree of qt(J ′).

(2) Every quasi-tree S is qt(J) for some join-tree J .
(3) A quasi-tree is discrete if and only if it is qt(J) for some rooted tree J .

Proof.

(1) Let J = (N,≤) be a join-tree with at least 3 nodes.
If it is finite, then it is (NT ,≤T) for a finite rooted tree T , and qt(J) is a finite

quasi-tree by Proposition 5.2(b).
Otherwise consider distinct elements x, y, z, u of N . We want to prove that they satisfy

A1-A7. There is a set N ′ ⊆ N of cardinality at most 7 that contains x, y, z, u and is closed
under t. Then J ′ = (N ′,≤� N ′) is a finite join-tree, J ′ ⊆ J and qt(J ′) = (N ′, BJ � N ′)
is a quasi-tree by the initial observation, so that x, y, z, u satisfy A1-A7 for B = BJ ′
hence, also for BJ . (The node w that may be necessary to satisfy A7 may have to be
chosen in the set {x t y, x t z, x t u, . . . }). As x, y, z, u are arbitrary, A1-A7 hold for
BJ and all x, y, z, u ∈ N. Hence, (N,BJ) is a quasi-tree.

That every line of J is a line of qt(J) follows from the definitions. (The converse does
not hold.) The assertion about subjoin-trees is also easy to prove.

(2) Let S = (N,B) be a quasi-tree and r be any element of N . We define x ≤r y :⇐⇒ y ∈
[x, r]B. Then (N,≤r) is a join-tree J with root r and S = qt(J) by Lemma 14 of [11].

(3) A quasi-tree S = qt(J) is discrete if J is rooted tree. Conversely, if S is a discrete
quasi-tree, then S = qt(T) for some tree T by Proposition 17 of [11]. By choosing any
node as a root, one makes T into a rooted tree, and its betweenness relation is that
of T .

We say that a quasi-tree S is described by an SJ-scheme if this scheme describes a
join-tree J such that qt(J) = S. It is regular if it is qt(J) for some regular join-tree J .

Proposition 5.7. A quasi-tree is MSfin-definable if it is described by a regular SJ-scheme.

Proof. We first prove a technical result.

Claim. There exists a first-order formula µ(L, a, b, u, v) such that, for every join-tree
J = (N,≤), if S = qt(J) = (N,B), then there is a subset L of N and elements a, b of N
such that, for every u, v ∈ N , (N,B) |= µ(L, a, b, u, v) if and only if u ≤ v.

Proof of the claim. The formula µ(L, a, b, u, v) will be defined as u = v ∨ µ1(L, a, b, u, v) ∨
µ2(L, a, b, u, v) so as to handle two exclusive cases relative to J = (N,≤).

– Case J = (N,≤) has a root r. Then, u < v if and only if v = r or B(u, v, r). Hence, we
define µ1(L, a, b, u, v) as L = ∅ ∧ a = b ∧ (v = b ∨B(u, v, b)).

– Case J has no root. It has a line L that is upwards closed, i.e., such that y ∈ L if x ≤ y
and x ∈ L. This line has no maximal element (otherwise its maximal element would be a

36 B. COURCELLE

root of J) and is infinite. Moreover, for every u ∈ N , we have u < x for some x ∈ L (to
prove that, consider u t y where y is any element of L). For all u, v ∈ N we have:

u < v ⇐⇒ ∃x, y ∈ L[x < y ∧B(u, v, x) ∧B(v, x, y)].

If u < v we have u < v < x < y for some x, y in L. Hence, we have B(u, v, x)∧B(v, x, y).
Assume for the converse that x < y ∧B(u, v, x) ∧B(v, x, y) for some x, y in L. We first
prove that u, v < x. Since B = BJ , B(v, x, y)⇐⇒ v < x ≤ vty∨y < x ≤ ytv. As x < y,
we must have v < x. Axiom A4 gives B(u, x, y), from which we get similarly u < x. From
B(u, v, x) we get u < v ≤ u t x or x < v ≤ x t v. As v < x, we have u < v. Let a, b ∈ L
such that a < b. Proposition 5.3 is applicable to (L,B � L) that satisfies Conditions
A1-A7’. Hence the quantifier-free formula ξ(a, b, x, y) defines x <a,b y for x, y ∈ L. We
define µ2(L, a, b, u, v) as ∃x, y ∈ L[a, b ∈ L ∧ ξ(a, b, x, y) ∧B(u, v, x) ∧B(v, x, y)].

We now complete the proof. If J = (N,≤) has a root r, we choose L = ∅ ∧ a = b = r,
µ2(L, a, b, u, v) is false and µ1(L, a, b, u, v) is equivalent to u < v. If J has no root, we let L
be an upwards closed line, and a, b ∈ L such that a < b. Then µ1(L, a, b, u, v) is false and
µ2(L, a, b, u, v) is equivalent to u < v.

We let µ′(L, a, b, u, v) be u = v ∨ µ(L, a, b, u, v). For proving the main assertion, we let
S = qt(J) be a quasi-tree defined from a regular join-tree J and ψ be the MSfin sentence
expressing that a structure (N,≤) is a join-tree isomorphic to J ; this sentence exists by
Theorem 3.30. Let ϕ be the MSfin sentence expressing that a structure (D,B) is a quasi-tree
that satisfies ∃L, a, b(ψ′∧”B is the betweenness relation of the order relation ≤ defined by
µ′”) where ψ′ is obtained from ψ by replacing each atomic formula x ≤ y by µ′(L, a, b, x, y).

Then qt(J) satisfies ϕ by the claim. If conversely, (D,B) satisfies ϕ for some L, a and b,
then (D,≤) is a join-tree J ′, where x ≤ y is defined in (D,B) by µ′(L, a, b, x, y) (because ψ′

holds), (D,B) = qt(J ′) (because B is the betweenness relation of ≤) and J ′ ' J (because
of ψ′). Hence, (D,B) ' qt(J). Hence qt(J) is characterized by ϕ up to isomorphism.

The next theorem establishes a converse. As algebra for quasi-trees, we take the algebra
SJT of join-trees together with the (external) operation qt (similar to fgs) that makes a
join-tree into a quasi-tree.

Theorem 5.8. The following properties of a quasi-tree S are equivalent:

(1) S is regular,
(2) S is described by a regular SJ-scheme,
(3) S is MSfin definable.

Hence, the isomorphism problem of regular quasi-trees is decidable. 18

Proof.

(1)⇒(2): The proof is similar to that of Theorem 3.21.
(2)⇒(3): By Proposition 5.7.
(3)⇒(1): The mapping α that transforms the relational structure btc for t in T∞(F ′)t into

the quasi-tree S = qt(fgs(val(t))) is an MS-transduction by Definitions 4.9 (cf. the
claim) and 5.5(b). The proof continues as in Theorem 3.21.

The decidability of the isomorphism problem is as in Corollary 3.22.

18 QUESTION: We inserted “Hence” and “problem”; is the sentence ok as it is?

GENERALIZED TREES 37

We make these results more precise for subcubic quasi-trees: they are useful for defining
the rank-width of countable graphs, as we will recall.

Definition 5.9 (Directions). Let S = (N,B) be a quasi-tree and x a node of S.

(a) We say that y, z ∈ N − {x} are the same direction relative to x (or of x) if, either
y = z or B(y, z, x) or B(z, y, x) or B(y, u, x) ∧B(z, u, x) for some node u (a definition
from [11]). Equivalently, y tx z <x x (<x is as in Proposition 5.6(2)). Hence, if
B(y, x, z) holds, then y and z are in different directions relative to x. This relation is
an equivalence, denoted by y ∼x z, and its classes are the directions of x.

(b) The degree of x is the number of classes of ∼x. A node has degree 1 if and only if it is
a leaf. We say that S is subcubic if its nodes have degree at most 3. If S = qt(T) for a
tree T , then a direction of x is associated with each neighbour y of x and is the set of
nodes of the connected component of T − {x} that contains y.

(c) If S = qt(J) for a join tree J = (N,≤), then, the directions of x in S are those of x in
J together with the set N −]−∞, x] if it is not empty. It follows that S is subcubic if
J is a BJ-tree.

Lemma 5.10. Every subcubic quasi-tree is qt(fgs(J)) for some SBJ-tree J .

Proof. Let S be a subcubic quasi-tree. Then S = qt(J) for some join-tree J . We choose
a maximal line L of J and a, b ∈ L such that a < b. By Proposition 5.7, the partial order
≤ of J is defined by µ′(L, a, b, x, y). The method of Proposition 3.5 with U0 := L, gives
structuring K of J , making it into an SBJ-tree as defined in Definition 3.8.

Theorem 5.11. The following properties of a subcubic quasi-tree S are equivalent :

(1) S is regular,
(2) S is described by a regular SBJ-scheme,
(3) S is MS definable.

Proof. By Lemma 5.10 and Proposition 3.19, every subcubic quasi-tree S is qt(fgs(val(t)))
for some term t ∈ T∞(F).

Property (1) means that S = qt(fgs(val(t))) for some regular term in T∞(F ′)t. Let (1’)
mean that S = qt(fgs(val(t))) for some regular term in T∞(F). Then (1’)=⇒(2) by the
similar implication in Theorem 3.21.

(2)=⇒(3) by the similar implication in Theorem 3.21 and the observation that, in a
quasi-tree S, the SBJ-trees J such that S = qt(fgs(J)) can be specified by MS formulas in
terms of a 5-tuple (A,N0, N1, a, b) satisfying the formula ϕ′(A,N0, N1, a, b) of the proof of
Proposition 5.7.

(3)=⇒(1’) by the observation that the mapping α that transforms the relational structure
btc for t in T∞(F) into the subcubic quasi-tree qt(fgs(val(t))) is an MS-transduction. The
proof goes then as in Theorem 3.21.

The implication (1’)=⇒(1) is trivial and (1) implies that S is MSfin definable by
Proposition 5.7. But a term t ∈ T∞(F) that defines S is MS definable, and the relational
structure representing a term has an MS definable linear order. It follows that S has an MS
definable linear order, hence that S is MS definable by the facts recalled in Section 2.

We now review the use of quasi-tree for rank-width [11], a width measure first defined
and investigated in [21] and [22] for finite graphs.

38 B. COURCELLE

Definition 5.12 (Rank-width for countable graphs). We consider finite or countable, loop-
free, undirected graphs without parallel edges. The adjacency matrix of such a graph
G is MG : VG × VG → {0, 1} with MG[x, y] = 1 if and only if x and y are adjacent. If
U and W are disjoint sets of vertices, MG[U,W] is the matrix that is the restriction of
MG to U ×W . The rank (over GF (2)) of MG[U,W] is the maximum cardinality of an
independent set of rows (equivalently, of columns) and is denoted by rk(MG[U,W]); it
belongs to N ∪ {ω}. We take rk(MG[∅,W]) = rk(MG[U, ∅]) := 0. If X] Y is infinite, then
rk(MG[X,Y]) = sup{rk(MG[U,W]) | U ⊆ X,W ⊆ Y and, U and W are finite}.

A discrete layout of a graph G is an unrooted tree T of maximal degree 3 whose set of
leaves is VG. Its rank is the least upper-bound of the ranks rk(MG[X ∩ VG, Xc ∩ VG]) such
that X and Xc := NT −X are the two connected components of T minus one edge. The
discrete rank-width of G, denoted by rwddis(G), is the smallest rank of a discrete layout.
If G is finite, this value is the rank-width defined in [21]. By using for countable graphs
G quasi-trees with nodes of maximal degree 3 instead of trees, one obtains their rank-with
rwd(G) (cf. [11] for details). We have rwd(G) ≤ rwddis(G). The notation G ⊆i H means
that G is an induced subgraph of H.

Theorem 5.13 (cf. [11]). For every graph G:

(1) if H ⊆i G, then rwd(H) ≤ rwd(G) and rwddis(H) ≤ rwddis(G),
(2) Compactness : rwd(G) = Sup{rwd(H) | H ⊆i G and H is finite},
(3) Compactness with gap : rwddis(G) ≤ 2 · Sup{rwd(H) | H ⊆i G and H is finite}.

The gap function in (3) is n 7→ 2n, showing a weak form of compactness. The proof of
(2) uses Koenig’s Lemma, and consists in taking G as the union of an increasing sequence of
finite induced subgraphs. The desired layout of G is obtained from an increasing sequence
of finite layouts of finite induced subgraphs where nodes are successively added. The union
of these layouts is in general a quasi-tree and not a tree.

6. Conclusion

We have defined regular join-trees of different kinds and regular quasi-trees from regular
terms. These terms have finitary descriptions. Other infinite terms have finitary descriptions:
the algebraic ones [9] and more generally, those of Caucal’s hierarchy [5]. Such terms also
yield effective (algorithmically usable) notions of join-trees and quasi-trees. It is unclear
whether the corresponding isomorphism problems are decidable19.

The article [7] establishes that a set of arrangements is recognizable if and only if it is
MS definable. One might wish to extend this result to sets of join-trees and quasi-trees. An
appropriate notion of recognizability must be defined.

19 Z. Ésik proved in [15] that the isomorphism of the lexicographic orderings of two context-free languages is
undecidable. As algebraic linear orders are defined from deterministic context-free languages [4], deciding
their isomorphism might be nevertheless possible.

GENERALIZED TREES 39

References

[1] S. Bloom and Z.Ésik. Deciding whether the frontier of a regular tree is scattered. Fundam. Inform. 55
(2003) 1-21.

[2] S. Bloom and Z.Ésik. The equational theory of regular words. Inf. Comput. 197 (2005) 55-89.

[3] S. Bloom and Z.Ésik. Algebraic ordinals. Fundam. Inform. 99 (2010) 383-407.

[4] S. Bloom and Z.Ésik. Algebraic linear orderings. Int. J. Found. Comput. Sci. 22 (2011) 491-515.
[5] A. Blumensath, T. Colcombet and C.Löding. Logical theories and compatible operations, in Logic and

Automata: History and perspectives, J. Flum et al. eds, Amsterdam University Press, 2008, pp. 73-106.
[6] A. Blumensath and B. Courcelle. Monadic second-order definable graph orderings. Logical Methods in

Computer Science 10 (2014), issue 1.
[7] O. Carton, T. Colcombet and G. Puppis. Regular languages of words over countable linear orderings,

2015, submitted, see https://arxiv.org/abs/1702.05342, Extended abstract in Proccedings of ICALP,
Lecture Notes in Computer Science 6756 (2011) 125-136.

[8] B. Courcelle. Frontiers of infinite trees. ITA (Informatique Théorique et Applications) 12 (1978) 317-339
(former name of the journal: RAIRO Informatique Théorique).

[9] B. Courcelle. Fundamental properties of infinite trees. Theor. Comput. Sci. 25 (1983) 95-169.
[10] B. Courcelle. Clique-width of countable graphs: a compactness property. Discrete Mathematics 276

(2004) 127-148.
[11] B. Courcelle. Several notions of rank-width for countable graphs, J. Comb. Theory, Ser. B 123 (2017)

186-214.
[12] B. Courcelle. Regularity equals monadic second-order definability for quasi-trees, in Fields of Logic and

Computation II, Lec. Notes Comput. Sci. 9300 (2015) 129-141.
[13] B. Courcelle and C. Delhommé. The modular decomposition of countable graphs. Definition and

construction in monadic second-order logic. Theor. Comput. Sci. 394 (2008) 1-38.
[14] B. Courcelle and J. Engelfriet. Graph structure and monadic second-order logic, a language theoretic

approach, Cambridge University Press, 2012.

[15] Z. Ésik. An undecidable property of context-free linear orders. Inf. Process. Lett. 111 (2011) 107-109.
[16] R. Fräıssé, Theory of relations, Studies in Logic, Volume 145, North-Holland, 2000.
[17] J. Goguen, J. Thatcher, E. Wagner and J. Wright. Initial algebra semantics and continuous algebras. J.

ACM 24 (1977) 68-95.
[18] S. Heilbrunner. An algorithm for the solution of fixed-point equations for infinite words. ITA 14 (1980)

131-141.
[19] I. Kriz and R. Thomas. Clique-sums, tree-decompositions and compactness. Discrete Mathematics 81

(1990) 177-185.
[20] S. Lifsches and S. Shelah. Uniformization, choice functions and well orders in the class of trees, Journal

of Symbolic Logic 61 (1996) 1206-1227.
[21] S. Oum. Rank-width and vertex-minors, J. Comb. Theory, Ser. B 95 (2005) 79-100.
[22] S. Oum and P. Seymour. Approximating clique-width and branch-width. J. Comb. Theory, Ser. B 96

(2006) 514-528.
[23] W. Thomas. On frontiers of regular trees, ITA 20 (1986) 371-381.
[24] W. Thomas. Automata on infinite objects, in Handbook of Theoretical Computer Science, Volume B,

Elsevier 1990, pp. 133-192.
[25] M. Rabin. Decidability of second-order theories and automata on infinite trees, Transactions of the

American Mathematical Society, 141 (1969) 1-35.
[26] J. Sakarovitch. Elements of Automata Theory, Cambridge University Press, 2009.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit https://creativecommons.org/licenses/by-nd/4.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	Introduction
	1. Orders, trees and terms
	1.1. Trees
	1.2. Finite and infinite terms
	The partial order on terms.
	Regular terms
	1.3. Arrangements and labelled sets

	2. Monadic second-order logic and related notions.
	3. Join-trees
	3.1. Join-trees, join-forests and their structurings
	3.2. Description schemes of structured binary join-trees
	3.3. The algebra of binary join-trees
	3.4. Regular binary join-trees
	3.5. Logical and algebraic descriptions of join-trees

	4. Ordered join-trees
	5. Quasi-trees
	6. Conclusion
	References

