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The Problem

Build a good (natural, simple, and usable) theory
of timed languages
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Applying classical recipes
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Untimed case: one type of monoids,
one class of languages

a

b a b

a

b

A B

C A

A B
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b a b

a

bL1 ⊂ Σ∗
1 L2 ⊂ Σ∗

2 L3 ⊂ (Σ1 ∪ Σ2)
∗
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Timed case: 3 types of monoids

Time-event sequences Signals “Sigacts”

a, x > 3

b, y < 4

a, x := 0

b, x > 1

a, y := 0

b, y < 13

A B

C A

x > 3

y < 4
x := 0

x > 1

y := 0

y < 13

A B

C A

a, x > 3

b, y < 4

a, x := 0

b, x > 1

a, y := 0

b, y < 13
L1 ⊂ {a, b, c}∗ ⊕ R≥0 L2 ⊂ R≥0A ⊕ R≥0B ⊕ R≥0C L3 ⊂ {a, b, c}∗ ⊕ R≥0A ⊕ R≥0B ⊕ R≥0C
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Properties of timed monoids

• They are not isomorphic. No true Moore-Mealy
equivalence

• None of the monoids above satisfies requirements
from Eilenberg, Schutzenberger etc. . .

• Nevertheless we can try to apply classical recipes.
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Recognizable languages in Σ∗ ⊕ R≥0

L recognizable ⇔ finitely many w\L

• Is {5} ⊂ R≥0 recognizable?

No!
• Only four recognizable subsets of R≥0:
∅, {0}, (0,∞), R≥0

• No quantitative timing! Recognizable timed
languages : (a + bτ)∗ etc. . . where τ stands for any
positive time.

a

b a b

a

b
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Recognizable languages in Σ∗ ⊕ R≥0

L recognizable ⇔ finitely many w\L

• Is {5} ⊂ R≥0 recognizable? No!

1\{5} = {4}

2\{5} = {3}

2.19\{5} = {2.81}

• Only four recognizable subsets of R≥0:
∅, {0}, (0,∞), R≥0

• No quantitative timing! Recognizable timed
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positive time.

a

b a b

a

b

On Timed Languages – p.7/32



Recognizable languages in Σ∗ ⊕ R≥0

L recognizable ⇔ finitely many w\L

• Is {5} ⊂ R≥0 recognizable? No!
• Only four recognizable subsets of R≥0:
∅, {0}, (0,∞), R≥0

• No quantitative timing! Recognizable timed
languages : (a + bτ)∗ etc. . . where τ stands for any
positive time.

a

b a b

a

b

On Timed Languages – p.7/32



Timed rational languages

• 1st try. Kleene algebra on Σ∗ ⊕ R≥0 generated by
singletons: e.g. (a∗π)∗ + 2∗ Known issues:
• only countable languages. [2; 3]a is not in
• even if we add complementation [2; 3]a is not in
• non-computable numbers allowed

• 2nd try(Cătălin’s real-time languages.) Kleene
algebra on Σ∗ ⊕ R≥0 generated by a, b, c, . . . , 1, (0, 1):
e.g (a∗[2, 3])∗ + 2∗

[1; 8] [2; 11]

3 0

a

b a b

a

b
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Conclusion for part 1

Classical recipes partly apply, but
they give classes of languages
too restricted to be useful
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Timed automata
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An automaton and its language

• Timed automaton :

q1 q2

a, x ∈ [1; 2]?

b, x := 0

• Its language : {t1 a s1 b t2 a s2 b . . . tn a | ∀i.ti ∈ [1; 2]}
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Reminder: some old results

• Rich enough for many real-life examples (real-time
programs, scheduling, circuits . . . )

• Membership and Empty Language decidable
(finite bisimulation)

• Inclusion and Universal Language undecidable
• Languages closed under ∪,∩ and morphism

(renaming)
• Languages non-closed under complementation.
• No determinization.
• Model-checking algorithms implemented in

KRONOS and UPPAAL
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Some technical problems with TA

• They are infinite state : (q, x1, . . . xk) ∈ Q × R≥0
k.

Unavoidable since recognizable languages are too
poor

• There are long (or infinite) runs that never visit the
same state.
Nevertheless there are complicated pumping
lemmata (D. Beauquier)

• No direct way to have Kleene Theorem
Nevertheless there are some ways to have it - see
below
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Conclusions of Part 2

They are useful, they have nice
properties, they look like au-
tomata, but in the strict sense
THEY ARE NOT automata.
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Regular expressions for timed languages
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Existing approaches

ACM TRE - see below
BP99 Expressions with 2C compositions and stars

BP Expression with clocks

D “Multithread” regmino expressions
AD Balanced expressions
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Our old expressions - TRE

E ::= 0 | ε | t | a | E+E | E ·E | E∗ | 〈E〉I | E ∧ E | [a 7→ z]E

Semantics:

‖t‖ = R≥0 ‖a‖ = {a} ‖0‖ = ∅ ‖ε‖ = {ε}

‖E1 · E2‖ = ‖E1‖ · ‖E2‖ ‖E1 + E2‖ = ‖E1‖ ∪ ‖E2‖

‖〈E〉‖I = {σ ∈ ‖E‖ | `(σ) ∈ I} ‖E∗‖ = ‖E‖∗

‖E1 ∧ E2‖= ‖E1‖ ∩ ‖E2‖ ‖[a 7→ z]E‖= [a 7→ z]‖E‖
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A good example and a theorem

q1 q2

a, x ∈ [1; 2]?

b, x := 0

{L = {t1 a s1 b t2 a s2 b . . . tn a | ∀i.ti ∈ [1; 2]}

An expression for L :
(
〈ta〉[1;2]tb

)∗

“Kleene theorem” [ACM]Timed Automata
andTRE (with ∧ and [a 7→ z]) define the same
class of timed languages
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A nasty example

Intersection needed [ACM]

a
x2 := 0

b

x1 = 1?
c

x2 = 1?

{t1at2bt3c | t1 + t2 = 1, t2 + t3 = 1} = ta〈tbtc〉1∧〈tatb〉1tc
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Another nasty example

Renaming needed [Herrmann]

y := 0 x = 1? y = 1?

a

a a a

a

[b 7→ a]
(
(ta)∗〈tb(ta)∗〉1∧〈(ta)∗tb〉1(ta)∗

)
.
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Wanted!

Timed regular expressions
• Equivalent to timed automata
• Automata-free
• Describing directly the timed words

(projection-free)
• Without heavy/ugly operations
• With simple and natural semantics
• Elegant
• Ergonomic
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Sometimes Color may help

• Intersection not needed! 〈ta〈tb〉1tc〉1

a
x2 := 0

b

x1 = 1?
c

x2 = 1?

• Renaming not needed! 〈(ta)∗〈ta〉1(ta)∗〉1

y := 0 x = 1? y = 1?

a

a a a

a
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Sometimes Color may help

• Intersection not needed! 〈ta〈tb〉1tc〉1

a
x2 := 0

b

x1 = 1?
c

x2 = 1?

• Renaming not needed! 〈(ta)∗〈ta〉1(ta)∗〉1

y := 0 x = 1? y = 1?

a

a a a

a
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Color is not enough

a

b

x = 1?

y = 1?

x := 0

y := 0

x := 0
x ∈ ]0,1[ ?

a

L = 〈ta tb〉1〈ta︸ ︷︷ ︸
1

tb〉1〈ta︸ ︷︷ ︸
1

tb〉1 . . . 〈ta tb〉1ta︸ ︷︷ ︸
1

Color does not help, intersection needed:

〈ta〉]0;1[〈tbta〉
∗

1 ∧ 〈tatb〉∗1ta
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Color is not enough
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Let us try again

a

b

x = 1?

y = 1?

x := 0

y := 0

x := 0
x ∈ ]0,1[ ?

a

〈ta〈tb〉1〈ta〉1〈tb〉1〈ta〉1〈tb〉1 . . . 〈ta〉1〈tb〉1ta〉1

How to write it shortly?

Eureka!
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Balanced Expressions

• Syntax. BRE - a regular expression E over
Σ̃ = Σ ∪ {〈, 〉I , 〈, 〉I , 〈, 〉I , . . . }

• Two-stage semantics
1. |E| - untimed language over Σ̃ generated by E.

Each w ∈ |E| can be considered as a (colored)
timed regular expression!

2. Take the union of their timed languages:
‖E‖ =

⋃
{‖w‖ | w ∈ |E|}

• Restriction. Each w ∈ |E| should be well
parenthesized wrt each color |E| ⊂ Bal
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Back to the example

•
a

b

x = 1?

y = 1?

x := 0

y := 0

x := 0
x ∈ ]0,1[ ?

a

• E = 〈ta
(
〈tb〉1〈ta〉1

)∗

〈tb〉1ta〉1 + 〈ta〉]0,1[

• |E| ={
〈ta〉]0,1[; 〈ta〈tb〉1ta〉1; 〈ta〈tb〉1〈ta〉1〈tb〉1ta〉1; . . .

}

• ‖E‖ =
‖〈ta〉]0,1[‖∪‖〈ta〈tb〉1ta〉1‖∪‖〈ta〈tb〉1〈ta〉1〈tb〉1ta〉1‖∪. . .
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Kleene Theorem

Balanced Expressions and Timed Automata de-
fine the same class of timed languages
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Key lemma

Any TA A is equivalent to a TA A s.t on each ac-
cepting run each clock is checked exactly once
after each reset.
Proof idea It is useless to check whether x ∈ I million
times : it should be checked only the first and the last
time. This allows to check each clock at most twice. . .
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Checking expression for balance

How to check syntactic correctness: |E| ⊂ Bal?

Idea: Count unmatched parentheses (structural
induction over E).
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The Algorithm
eff(a) =

{
(0n,0n)

}

eff(t) =
{
(0n,0n)

}

eff(〈i) =
{
(ei,0n)

}

eff(〉i
I
) =

{
(0n, ei)

}

eff(E1 + E2) =




⊥ iff eff(E1) =⊥ or eff(E2) =⊥

eff(E1) ∪ eff(E2) otherwise

eff(E1 · E2) =




⊥ iff eff(E1) =⊥ or eff(E2) =⊥

eff(E1) 	 eff(E2) otherwise

eff(E∗) =





⊥ iff eff(E) =⊥

⊥ iff ϕ(eff(E)) 6= {0n}
⋃

k≤card(eff(E)) eff(E)k	 otherwise

Expression E is balanced iff eff(E) = {(0n,0n)}
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Comparing formalisms

BP TRE Color BRE
Equivalent to timed automata X X X X

Automata-free X X X X

Projection-free X X X X

No heavy/ugly operations X X X X

Simple and natural semantics X X X X

Elegant ? ? ? ?
Ergonomic X X X X

Easy syntactic analysis X X X X
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Conclusion of Part 4

We know several solutions, but
not the perfect one. . .
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