On Timed Languages

Eugene Asarin

based on joint work with Paul Caspi, Oded Maler, Cătălin Dima, Matthieu Moy

VERIMAG

The Problem

Build a good (natural, simple, and usable) theory of timed languages

Applying classical recipes

Untimed case: one type of monoids, one class of languages

Timed case: 3 types of monoids

They are not isomorphic. No true Moore-Mealy equivalence

- They are not isomorphic. No true Moore-Mealy equivalence
- None of the monoids above satisfies requirements from Eilenberg, Schutzenberger etc...

- They are not isomorphic. No true Moore-Mealy equivalence
- None of the monoids above satisfies requirements from Eilenberg, Schutzenberger etc...
- Nevertheless we can try to apply classical recipes.

Recognizable languages in $\Sigma^* \oplus \mathbb{R}_{\geq 0}$

L recognizable \Leftrightarrow finitely many $w \setminus L$

• Is $\{5\} \subset \mathbb{R}_{\geq 0}$ recognizable?

L recognizable \Leftrightarrow finitely many $w \setminus L$

• Is $\{5\} \subset \mathbb{R}_{\geq 0}$ recognizable? No!

$$1 \setminus \{5\} = \{4\}$$

 $2 \setminus \{5\} = \{3\}$
 $2.19 \setminus \{5\} = \{2.81\}$

• Only four recognizable subsets of $\mathbb{R}_{\geq 0}$: $\emptyset, \{0\}, (0,\infty), \mathbb{R}_{\geq 0}$

L recognizable \Leftrightarrow finitely many $w \setminus L$

- Is $\{5\} \subset \mathbb{R}_{\geq 0}$ recognizable? No!
- Only four recognizable subsets of $\mathbb{R}_{\geq 0}$: $\emptyset, \{0\}, (0, \infty), \mathbb{R}_{\geq 0}$
- No quantitative timing! Recognizable timed languages : $(a + b\tau)^*$ etc... where τ stands for any positive time.

- 1st try. Kleene algebra on Σ* ⊕ ℝ_{≥0} generated by singletons: e.g. (a*π)* + 2* Known issues:
 - only countable languages. [2;3]a is not in
 - even if we add complementation [2;3]a is not in
 - non-computable numbers allowed

- 1st try. Kleene algebra on Σ* ⊕ ℝ≥0 generated by singletons: e.g. (a*π)* + 2*
- 2nd try(Cătălin's real-time languages.) Kleene algebra on Σ* ⊕ ℝ_{≥0} generated by a, b, c, ..., 1, (0, 1):
 e.g (a*[2,3])* + 2*

Classical recipes partly apply, but they give classes of languages too restricted to be useful

Timed automata

An automaton and its language

An automaton and its language

• Timed automaton :

• Its language : $\{t_1 \, a \, s_1 \, b \, t_2 \, a \, s_2 \, b \dots t_n \, a \mid \forall i. t_i \in [1; 2]\}$

- Rich enough for many real-life examples (real-time programs, scheduling, circuits ...)
- Membership and Empty Language decidable (finite bisimulation)
- Inclusion and Universal Language undecidable
- Languages closed under ∪, ∩ and morphism (renaming)
- Languages non-closed under complementation.
- No determinization.
- Model-checking algorithms implemented in

• They are infinite state : $(q, x_1, ..., x_k) \in Q \times \mathbb{R}_{\geq 0}^k$. Unavoidable since recognizable languages are too poor

- They are infinite state : $(q, x_1, ..., x_k) \in Q \times \mathbb{R}_{\geq 0}^k$. Unavoidable since recognizable languages are too poor
- There are long (or infinite) runs that never visit the same state.
 Nevertheless there are complicated pumping lemmata (D. Beauquier)

- They are infinite state : $(q, x_1, ..., x_k) \in Q \times \mathbb{R}_{\geq 0}^k$. Unavoidable since recognizable languages are too poor
- There are long (or infinite) runs that never visit the same state.
 Nevertheless there are complicated pumping lemmata (D. Beauquier)
- No direct way to have Kleene Theorem Nevertheless there are some ways to have it - see below

They are useful, they have nice properties, they look like automata, but in the strict sense THEY ARE NOT automata.

Regular expressions for timed languages

- ACM TRE see below
- **BP99** Expressions with 2^C compositions and stars
 - BP Expression with clocks
 - D "Multithread" regmino expressions
 - AD Balanced expressions

$E := 0 | \varepsilon | \underline{\mathbf{t}} | a | E + E | E \cdot E | E^* | \langle E \rangle_I | E \wedge E | [a \mapsto z]E$

$E := 0 | \varepsilon | \underline{\mathbf{t}} | a | E + E | E \cdot E | E^* | \langle E \rangle_I | E \wedge E | [a \mapsto z]E$ Semantics:

 $\|\underline{\mathbf{t}}\| = \mathbb{R}_{\geq 0} \quad \|a\| = \{a\} \qquad \|0\| = \emptyset \quad \|\varepsilon\| = \{\varepsilon\}$ $\|E_1 \cdot E_2\| = \|E_1\| \cdot \|E_2\| \qquad \|E_1 + E_2\| = \|E_1\| \cup \|E_2\|$ $\|\langle E\rangle\|_I = \{\sigma \in \|E\| \mid \ell(\sigma) \in I\} \qquad \|E^*\| = \|E\|^*$ $\|E_1 \wedge E_2\| = \|E_1\| \cap \|E_2\| \qquad \|[a \mapsto z]E\| = [a \mapsto z]\|E\|$

A good example and a theorem

$$\{L = \{t_1 \, a \, s_1 \, b \, t_2 \, a \, s_2 \, b \dots t_n \, a \mid \forall i. t_i \in [1; 2]\}$$

A good example and a theorem

$$\{L = \{t_1 \, a \, s_1 \, b \, t_2 \, a \, s_2 \, b \dots t_n \, a \mid \forall i. t_i \in [1; 2]\}$$

An expression for L : $\left(\langle \underline{\mathbf{t}} a \rangle_{[1; 2]} \underline{\mathbf{t}} b\right)^*$

A good example and a theorem

$$\{L = \{t_1 \, a \, s_1 \, b \, t_2 \, a \, s_2 \, b \dots t_n \, a \mid \forall i.t_i \in [1;2]\}$$

expression for L : $(\langle \underline{\mathbf{t}} a \rangle_{[1;2]} \underline{\mathbf{t}} b)^*$

"Kleene theorem" [ACM]Timed Automata and TRE (with \land and $[a \mapsto z]$) define the same class of timed languages

An

A nasty example

Intersection needed [ACM]

$$\begin{array}{c} \bullet \\ \hline \\ x_2 := 0 \end{array} \begin{array}{c} b \\ \hline \\ x_1 = 1? \end{array} \begin{array}{c} c \\ \hline \\ x_2 = 1? \end{array} \begin{array}{c} \hline \\ x_2 = 1? \end{array} \begin{array}{c} \hline \\ \end{array} \end{array}$$

 $\{t_1at_2bt_3c \mid t_1 + t_2 = 1, t_2 + t_3 = 1\} = \underline{\mathbf{t}}a\langle \underline{\mathbf{t}}b\underline{\mathbf{t}}c\rangle_1 \wedge \langle \underline{\mathbf{t}}a\underline{\mathbf{t}}b\rangle_1 \underline{\mathbf{t}}c$

 $[\underline{b} \mapsto \underline{a}] ((\underline{\mathbf{t}} a)^* \langle \underline{\mathbf{t}} b (\underline{\mathbf{t}} a)^* \rangle_1 \wedge \langle (\underline{\mathbf{t}} a)^* \underline{\mathbf{t}} b \rangle_1 (\underline{\mathbf{t}} a)^*).$

Timed regular expressions

- Equivalent to timed automata
- Automata-free
- Describing directly the timed words (projection-free)
- Without heavy/ugly operations
- With simple and natural semantics
- Elegant
- Ergonomic

• Intersection not needed! $\langle \underline{\mathbf{t}} a \langle \underline{\mathbf{t}} b \rangle_1 \underline{\mathbf{t}} c \rangle_1$

$$\begin{array}{c|c} \hline \\ \hline \\ x_2 := 0 \end{array} \begin{array}{c|c} b \\ \hline \\ x_1 = 1? \end{array} \begin{array}{c|c} c \\ \hline \\ x_2 = 1? \end{array} \begin{array}{c|c} \hline \\ \\ x_2 = 1? \end{array} \end{array}$$

• Intersection not needed! $\langle \underline{\mathbf{t}} a \langle \underline{\mathbf{t}} b \rangle_1 \underline{\mathbf{t}} c \rangle_1$

$$\begin{array}{c} \bullet \\ \hline \\ x_2 := 0 \end{array} \begin{array}{c} b \\ \hline \\ x_1 = 1? \end{array} \begin{array}{c} c \\ \hline \\ x_2 = 1? \end{array} \begin{array}{c} \hline \\ \\ x_2 = 1? \end{array} \end{array}$$

• Renaming not needed! $\langle (\underline{\mathbf{t}}a)^* \langle \underline{\mathbf{t}}a \rangle_1 (\underline{\mathbf{t}}a)^* \rangle_1$

Color is not enough

$$L = \langle \underline{\mathbf{t}} a \, \underbrace{\mathbf{t}} b \rangle_1 \langle \underline{\mathbf{t}} a \, \underbrace{\mathbf{t}} b \rangle_1 \langle \underline{\mathbf{t}} a \, \underline{\mathbf{t}} b \rangle_1 \dots \langle \underline{\mathbf{t}} a \, \underbrace{\mathbf{t}} b \rangle_1 \underline{\mathbf{t}} a}_1$$

Color is not enough

$$L = \langle \underline{\mathbf{t}} a \underbrace{\underline{\mathbf{t}} b}_1 \langle \underline{\mathbf{t}} a \underbrace{\underline{\mathbf{t}} b}_1 \langle \underline{\mathbf{t}} a \underbrace{\underline{\mathbf{t}} b}_1 \rangle_1 \langle \underline{\mathbf{t}} a \underbrace{\underline{\mathbf{t}} b}_1 \rangle_1 \dots \langle \underline{\mathbf{t}} a \underbrace{\underline{\mathbf{t}} b}_1 \underbrace{\underline{\mathbf{t}} a}_1$$

Color does not help, intersection needed:

 $\langle \underline{\mathbf{t}} a \rangle_{]0;1[} \langle \underline{\mathbf{t}} b \underline{\mathbf{t}} a \rangle_1^* \wedge \langle \underline{\mathbf{t}} a \underline{\mathbf{t}} b \rangle_1^* \underline{\mathbf{t}} a$

$$\langle \underline{\mathbf{t}} a \Big(\langle \underline{\mathbf{t}} b \rangle_1 \langle \underline{\mathbf{t}} a \rangle_1 \Big)^* \langle \underline{\mathbf{t}} b \rangle_1 \underline{\mathbf{t}} a \rangle_1$$

$$\langle \underline{\mathbf{t}} a \Big(\langle \underline{\mathbf{t}} b \rangle_1 \langle \underline{\mathbf{t}} a \rangle_1 \Big)^* \langle \underline{\mathbf{t}} b \rangle_1 \underline{\mathbf{t}} a \rangle_1 + \langle \underline{\mathbf{t}} a \rangle_{]0,1[}$$

$$\langle \underline{\mathbf{t}} a \Big(\langle \underline{\mathbf{t}} b \rangle_1 \langle \underline{\mathbf{t}} a \rangle_1 \Big)^* \langle \underline{\mathbf{t}} b \rangle_1 \underline{\mathbf{t}} a \rangle_1 + \langle \underline{\mathbf{t}} a \rangle_{]0,1[}$$

Syntax. BRE - a regular expression *E* over
Σ̃ = Σ ∪ {⟨,⟩_I, ⟨,⟩_I, ⟨,⟩_I, ...}

- Syntax. BRE a regular expression *E* over $\widetilde{\Sigma} = \Sigma \cup \{\langle, \rangle_I, \langle, \rangle_I, \langle, \rangle_I, \dots\}$
- Two-stage semantics

- Syntax. BRE a regular expression *E* over $\widetilde{\Sigma} = \Sigma \cup \{\langle, \rangle_I, \langle, \rangle_I, \langle, \rangle_I, \dots\}$
- Two-stage semantics
 - 1. |E| untimed language over $\tilde{\Sigma}$ generated by E. Each $w \in |E|$ can be considered as a (colored) timed regular expression!

- Syntax. BRE a regular expression *E* over $\widetilde{\Sigma} = \Sigma \cup \{\langle, \rangle_I, \langle, \rangle_I, \langle, \rangle_I, \dots\}$
- Two-stage semantics
 - 1. |E| untimed language over $\tilde{\Sigma}$ generated by E. Each $w \in |E|$ can be considered as a (colored) timed regular expression!
 - 2. Take the union of their timed languages: $||E|| = \bigcup \{ ||w|| \mid w \in |E| \}$

- Syntax. BRE a regular expression *E* over $\widetilde{\Sigma} = \Sigma \cup \{\langle, \rangle_I, \langle, \rangle_I, \langle, \rangle_I, \dots\}$
- Two-stage semantics
 - 1. |E| untimed language over $\tilde{\Sigma}$ generated by E. Each $w \in |E|$ can be considered as a (colored) timed regular expression!
 - 2. Take the union of their timed languages: $||E|| = \bigcup \{||w|| \mid w \in |E|\}$
- **Restriction.** Each $w \in |E|$ should be well parenthesized wrt each color $|E| \subset Bal$

- Syntax. BRE a regular expression *E* over $\widetilde{\Sigma} = \Sigma \cup \{\langle, \rangle_I, \langle, \rangle_I, \langle, \rangle_I, \dots\}$
- Two-stage semantics
 - 1. |E| untimed language over $\tilde{\Sigma}$ generated by E. Each $w \in |E|$ can be considered as a (colored) timed regular expression!
 - 2. Take the union of their timed languages: $||E|| = \bigcup \{ ||w|| \mid w \in |E| \}$
- **Restriction.** Each $w \in |E|$ should be well parenthesized wrt each color $|E| \subset Bal$

Back to the example

•
$$E = \langle \underline{\mathbf{t}} a \Big(\langle \underline{\mathbf{t}} b \rangle_1 \langle \underline{\mathbf{t}} a \rangle_1 \Big)^* \langle \underline{\mathbf{t}} b \rangle_1 \underline{\mathbf{t}} a \rangle_1 + \langle \underline{\mathbf{t}} a \rangle_{]0,1[}$$

- $|E| = \left\{ \langle \underline{\mathbf{t}} a \rangle_{]0,1[}; \langle \underline{\mathbf{t}} a \langle \underline{\mathbf{t}} b \rangle_1 \underline{\mathbf{t}} a \rangle_1; \langle \underline{\mathbf{t}} a \langle \underline{\mathbf{t}} b \rangle_1 \langle \underline{\mathbf{t}} a \rangle_1 \langle \underline{\mathbf{t}} b \rangle_1 \underline{\mathbf{t}} a \rangle_1; \dots \right\}$
- ||E|| = $||\langle \underline{\mathbf{t}}a \rangle_{]0,1[} ||\cup||\langle \underline{\mathbf{t}}a \langle \underline{\mathbf{t}}b \rangle_1 \underline{\mathbf{t}}a \rangle_1 ||\cup||\langle \underline{\mathbf{t}}a \langle \underline{\mathbf{t}}b \rangle_1 \langle \underline{\mathbf{t}}a \rangle_1 \langle \underline{\mathbf{t}}b \rangle_1 \underline{\mathbf{t}}a \rangle_1 ||\cup\dots$

Kleene Theorem

Balanced Expressions and Timed Automata define the same class of timed languages

Key lemma

Any TA \mathcal{A} is equivalent to a TA $\overline{\mathcal{A}}$ s.t on each accepting run each clock is checked exactly once after each reset.

Proof idea It is useless to check whether $x \in I$ million times : it should be checked only the first and the last time. This allows to check each clock at most twice...

How to check syntactic correctness: $|E| \subset Bal$?

Idea: Count unmatched parentheses (structural induction over E).

$$\begin{split} & \underset{\text{eff}(a) = \{(\mathbf{0}_n, \mathbf{0}_n)\}}{\text{eff}(\underline{\mathbf{t}}) = \{(\mathbf{0}_n, \mathbf{0}_n)\}} \\ & \underset{\text{eff}(i) = \{(\mathbf{0}_n, \mathbf{0}_n)\}}{\text{eff}(i) = \{(e_i, \mathbf{0}_n)\}} \\ & \underset{\text{eff}(i) = \{(e_i, \mathbf{0}_n)\}}{\text{eff}(i) = \{(\mathbf{0}_n, e_i)\}} \\ & \underset{\text{eff}(E_1 + E_2) = \begin{cases} \bot & \text{iff eff}(E_1) = \bot \text{ or eff}(E_2) = \bot \\ & \underset{\text{eff}(E_1) \cup \text{eff}(E_2) & \text{otherwise}} \end{cases} \\ & \underset{\text{eff}(E_1 \cdot E_2) = \begin{cases} \bot & \text{iff eff}(E_1) = \bot \text{ or eff}(E_2) = \bot \\ & \underset{\text{eff}(E_1) \ominus \text{eff}(E_2) & \text{otherwise}} \end{cases} \\ & \underset{\text{eff}(E^*) = \begin{cases} \bot & \underset{\text{iff eff}(E_1) = \bot \\ & \underset{\text{eff}(E_1) \ominus \text{eff}(E_2) & \text{otherwise}} \end{cases} \\ & \underset{\text{eff}(E^*) = \begin{cases} \bot & \underset{\text{iff eff}(E_1) = \bot \\ & \underset{\text{eff}(E_1) \ominus \text{eff}(E_1) & \text{otherwise}} \end{cases} \\ & \underset{\text{eff}(E^*) = \begin{cases} \bot & \underset{\text{iff eff}(E_1) = I \\ & \underset{\text{eff}(E_1) \ominus \text{eff}(E_1) & \text{otherwise}} \end{cases} \\ & \underset{\text{eff}(E^*) = \begin{cases} \bot & \underset{\text{iff eff}(E_1) = I \\ & \underset{\text{eff}(E_1) \oplus \text{eff}(E_1) & \text{otherwise}} \end{cases} \\ & \underset{\text{eff}(E^*) = \begin{cases} \bot & \underset{\text{iff eff}(E_1) = I \\ & \underset{\text{eff}(E_1) \oplus \text{eff}(E_1) & \text{otherwise}} \end{cases} \\ & \underset{\text{eff}(E^*) = \begin{cases} 1 & \underset{\text{iff eff}(E_1) \oplus \text{eff}(E_1) & \text{otherwise}} & \text{otherwise} \end{cases} \\ & \underset{\text{eff}(E^*) = \begin{cases} 1 & \underset{\text{eff}(E_1) \oplus \text{eff}(E_1) \oplus \text{eff}(E_1) & \text{otherwise}} & \text{eff}(E_1) & \text{otherwise} \end{cases} \\ & \underset{\text{eff}(E^*) = \begin{cases} 1 & \underset{\text{eff}(E_1) \oplus \text{eff}(E_1) \oplus \text{eff}(E_1) & \text{otherwise} & \text{otherwise} \end{cases} \\ & \underset{\text{eff}(E^*) \to \text{eff}(E_1) \oplus \text{eff}(E_1) \oplus \text{eff}(E_1) & \text{otherwise} & \text{otherwise} \end{cases} \\ & \underset{\text{eff}(E^*) \to \text{eff}(E_1) \oplus \text{eff}(E_1) \oplus \text{eff}(E_1) \oplus \text{eff}(E_1) & \text{eff}(E_1) & \text{eff}(E_1) & \text{eff}(E_1) & \text{eff}(E_1) \oplus \text{eff}(E_1) & \text{eff}(E_1) &$$

Expression E is balanced iff $eff(E) = \{(\mathbf{0}_n, \mathbf{0}_n)\}$

	BP	TRE	Color	BRE
Equivalent to timed automata	\checkmark	\checkmark	\checkmark	\checkmark
Automata-free	\checkmark	\checkmark	\checkmark	\checkmark
Projection-free	\checkmark	\checkmark	\checkmark	\checkmark
No heavy/ugly operations	\checkmark	\checkmark	\checkmark	\checkmark
Simple and natural semantics	\checkmark	\checkmark	\checkmark	\checkmark
Elegant	?	?	?	?
Ergonomic	\checkmark	\checkmark	\checkmark	\checkmark
Easy syntactic analysis	\checkmark	\checkmark	\checkmark	\checkmark

We know several solutions, but not the perfect one...

