Reconnaissabilité pour les langages de graphes et de posets

Pascal Weil

(LaBRI, CNRS, Université Bordeaux-1)

Graphs and posets (finite): representation

A a finite alphabet

Directed A-labeled graphs: $G = (V, E, \lambda)$ with $E \subset V \times V$ and $\lambda: V \to A$

For our purpose, self-loops are irrelevant: assume that E is anti-reflexive (if necessary, the presence of a self-loop at vertex x can be encoded in the letter labeling x)

Dag: directed acyclic graph

Poset (V,<): a transitive dag with < as the edge relation

Dag → Poset: transitive closure

Minimal representation: the *Hasse diagram* of (V, <), given by the **succ** relation; the only anti-transitive, anti-reflexive dag, whose transitive closure is <

Logics

MS = Monadic second order logic, on the structure (V, E): quantification is on (sets of) vertices, E is a binary predicate

CMS= Counting monadic second order logic: this is MS, enriched with special quantifiers of the form $\exists^{\mathbf{mod}}\,^q x \ \varphi(x)$, interpreted to mean that the set of values of x such that $\varphi(x)$ holds is 0 mod q

CMS is strictly more expressive than $MS\colon MS$ cannot express even size

Algebraic framework

Necessary to discuss notions such as recognizability, equationality of a graph language ${\cal L}$

Endow the set of all finite A-labeled graphs with a structure of \mathcal{F} -algebra, for a well-chosen signature \mathcal{F}

(Roughly) L is \mathcal{F} -recognizable if it is a union of classes in a finite index congruence of the \mathcal{F} -algebra of graphs (Mezei, Wright, 1967)

Several signatures in the literature

VR-signature: for graphs with ports, decorated with finitely many flags from a set C; operations are \oplus (disjoint union, binary), $\mathbf{add}_{c,d}$ (unary), \mathbf{mdf}_P (for $P \subset_{fin} \mathcal{C} \times \mathcal{C}$, unary)

HR-signature: for graphs with sources, decorated with flags from a set \mathcal{C} , each flag used at most once; operations are $\|_{\mathcal{C},\mathcal{C}'}$ (\mathcal{C},\mathcal{C}' finite subsets of \mathcal{C} , parallel composition, binary), source renaming (wrt a given selfmap of \mathcal{C} , unary), source fusion (wrt a given equivalence relation on \mathcal{C} , unary)

modular signature: for graphs without flags; the operations are derived from the modular decomposition of graphs, precise definitions will be given

From results of Courcelle, Engelfriet, Olariu:

$$CMS$$
-def $\Longrightarrow VR$ -recog

$$CMS_2$$
-def $\Longrightarrow HR$ -recog

(quantification on vertex sets and on edge sets)

$$CMS_2$$
-def $\Leftarrow=HR$ -recog

for languages of tree-width $\leq k$ (Courcelle, Lapoire)

Composition of graphs

H = ([n], F) defines an n-ary operation on graphs

$$H = H\langle G_1, \ldots, G_4 \rangle =$$

Particular cases:

$$H_{\oplus} = G_1 \oplus G_2 = G_1 \sqcup G_2$$

 $H_{ullet}=G_1ullet G_2=G_1\sqcup G_2$ with all arrows from V_1 to V_2

 $H_{\otimes} = G_1 \otimes G_2 = G_1 \sqcup G_2$ with all arrows from V_1 to V_2 and back (does not preserve posets)

If
$$H = K\langle L_1, \ldots, L_r \rangle$$
, then $H\langle G_1, \ldots, G_n \rangle = K\langle L'_1, \ldots, L'_r \rangle$ and $L'_j = L_j \langle G_{i_{j,1}}, \ldots, G_{i_{j,r_j}} \rangle$ associativity of substitution

Use only prime (indecomposable) graphs as operations

Modular decomposition of graphs

$$G = (V, E)$$

Modules: $X \subseteq V$ interacting uniformly with $V \setminus X$

Prime module: a module X s.t. for every module Y, either $Y \subseteq X$ or $X \subseteq Y$ or $X \cap Y = \emptyset$

If X_1, \ldots, X_n are the maximal proper modules, then $G = H\langle X_1, \ldots, X_n \rangle$ for

$$H = 1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n$$
 or

$$H=1$$
 2 ··· n or

$$H = 1 \xrightarrow{\longrightarrow} 2 \xrightarrow{\longleftarrow} \cdots \xrightarrow{\longrightarrow} n$$
 or

H = ([n], F) is a prime graph

Thus each graph can be expressed from singletons using the composition operations associated with prime graphs,

This expression, the *modular decomposition*, is unique up to associativity of \bullet , \oplus , \otimes and commutativity of \oplus , \otimes

$$H\langle G_1, G_2, G_3, G_4, G_5 \rangle = H\langle G_5, G_4, G_3, G_2, G_1 \rangle$$

The modular signature, \mathcal{F}_{∞} is infinite

A-labeled graphs = the \mathcal{F}_{∞} -algebra generated by letter-labeled singletons = A-generated \mathcal{F}_{∞} -algebra

Consider finite subsignatures $\mathcal{F} \subseteq \mathcal{F}_{\infty}$

 $\mathcal{F} = \{ ullet \}$ A-generated \mathcal{F} -algebra: A-labeled graphs with vertices $\{1,\ldots,n\}$ and edges of the form (i,j) with i < j = the free semigroup A^+

 $\mathcal{F}=\{\oplus\}$ A-generated \mathcal{F} -algebra: finite A-labeled discrete graphs (no edges) = the free commutative semigroup on A

 $\mathcal{F} = \{ \otimes \}$ A-generated \mathcal{F} -algebra = finite A-labeled cliques (also the free commutative semigroup on A)

 $\mathcal{F} = \{\oplus, \otimes\}$ The \mathcal{F} -graphs are the $cographs = P_4$ -free undirected graphs — where P_4 is

 $\mathcal{F} = \{ \bullet, \oplus \}$ The \mathcal{F} -graphs are the *series-parallel* posets = N-free directed graphs — where N is

Characterization of \mathcal{F} -recognizability (Courcelle 1997)

 ${\mathcal F}$ finite subset of ${\mathcal F}_{\infty}$, L a ${\mathcal F}$ -graph language:

 $L \ CMS$ -definable $\Longrightarrow L \ \mathcal{F}$ -recognizable

 $L \mathcal{F}_{\infty}$ -recognizable

a certain tree-like normal form language is CMS-definable

Courcelle shows more:

 \mathcal{F} -recognizable $\iff MS_{lin}$ -definable

Some special cases

 $\mathcal{F} = \{ ullet \}$: Büchi's theorem on the free semigroup; recognizability $\iff MS$ -definability

 $\mathcal{F} = \{\oplus\}$: discrete graphs = free commutative semigroup; recognizability $\iff CMS$ -definability

 $\mathcal{F} = \{ \otimes \}$: same thing

 $\mathcal{F} = \{ \bullet, \oplus \}$: sp-languages; recognizability $\iff CMS$ -definability (Kuske '02)

For sp-languages of bounded width (= with a uniform bound on the size of an antichain):

CMS-def is equivalent to MS-def (Courcelle); recognizability is characterized by a branching automaton model and by *series-rational expressions* (union, \bullet , \oplus , \bullet -iteration, i.e. Kleene star (Lodaya-Weil)

Weil: extension of this equivalence to larger signatures $\mathcal{F} \subseteq \mathcal{F}_{\infty}$

In Kuske's and other proofs: use the fact that \bullet -nodes in a tree (term) decomposition of an sp-poset have a notion of first-child

Weakly rigid operations

H = ([n], F) a prime graph

If $H=C_n$, no child of an H-node is distinguished

 $Aut(H) = \langle (123)(456), (12)(56) \rangle$ does not act transitively on [n]: there are two orbits; distinguish $\{1,2,3\}$ as the **first** nodes, and $\{4,5,6\}$ as the **last** ones

If H is a dag and not discrete, the H-product is weakly rigid

Weakly rigid signature: a finite subset of \mathcal{F}_{∞} , consisting of at most one of \oplus and \otimes , and of weakly rigid operations H = ([n], F),

for each such H, the designation of a distinguished set of children (an orbit of [n] under Aut(H))

+

Ex. Any finite signature consisting of dags (distinguished children: say, the maximal ones);

Any signature consisting of \oplus and prime graphs with non-uniform in- (resp. out-) degree

Theorem: For a weakly rigid signature \mathcal{F}

 \mathcal{F} -recognizability $\iff CMS$ -definability

Hasse diagram representation of posets

the modular decomposition does not help

for each operation in
$$\mathcal{F}_{\infty}$$
, say $(G_1,\ldots,G_n)\longmapsto f(G_1,\ldots,G_n)$,

define
$$f^h$$
: (hasse $(G_1), \ldots, \text{hasse}(G_n) \mapsto$
hasse $(f(G_1, \ldots, G_n))$

In order to preserve properties such as CMS-definability $\Rightarrow \mathcal{F}$ -recognizability,

it is necessary to consider **enriched** graph structures: S = (V, E, m, M) where E is an antireflexive, anti-transitive, antisymmetric binary relation, m and M are unary, representing minimal and maximal elements

Example: if f is the binary \bullet -product, $S \bullet^h S'$ is the disjoint union of S, S', with edges from M to m', new minimum predicate m, new maximal predicate M'

The operations f^h can be expressed using disjoint unions and quantifier-free operations

If L is a poset language and $L^h = \mathbf{hasse}(L)$, if $\mathcal{F} \subset_{fin} \mathcal{F}_{\infty}$ and $\mathcal{F}^h = \{f^h \mid f \in \mathcal{F}\}$, we have

L is CMS-definable $\iff L^h$ is CMS-definable

L is \mathcal{F} -recognizable $\iff L^h$ is \mathcal{F}^h -recognizable

Quelques perspectives

Liens entre \mathcal{F} -, HR- et VR-reconnaissabilité FO-définissabilité pour les \mathcal{F} -graphes (sp-posets) po-traces