On Seese's Conjecture

Bruno Courcelle

Université Bordeaux 1, LaBRI

Summary

1. Graphs, Languages, Theories
2. MS-compatible structure transformations and

MS-transductions
3. Seese's Conjecture
4. Tree-width and Clique-width
5. Proved cases of the conjecture
6. Reductions between specific cases
7. Description of MS-compatible structure transformations
8. Other open questions

1. Logical expression of graph properties

Graphs are simple, directed, finite.
(Extension is easy to undirected graphs, to hypergraphs, and to relational structures)
$G=<V, \operatorname{edg}(.,)>$.
Vertices, edge relation
φ logical formula
$G \quad \mid=\varphi \quad$ is a property of G
$\mathrm{G} \mid=\varphi(\mathrm{x}, \mathrm{y}) \quad$ is a property of a pair (x, y) of vertices of G

Languages : FO : First-Order logic
MS : Monadic Second-Order logic
SO : Second-Order logic

Incidence graphs

$\operatorname{lnc}(G)=<V \cup E, \operatorname{src}(.,),. \operatorname{tgt}(.,)$.
Vertices and edges, source relation, target relation :

$$
\operatorname{src}(e, x) \text { and } \operatorname{tgt}(e, y) \text { iff } e: x \rightarrow y
$$

Using incidence graphs :
φ logical formula (with src, tgt): $\operatorname{Inc}(G) \quad \mid=\varphi \quad$ is a property of G expressed via its incidence graph.

Languages: $\mathrm{FO}_{2}, \mathrm{MS}_{2}, \mathrm{SO}_{2}$

Remark: $\mathrm{MS}_{2}=$ GSO, Guarded second-order logic (Graedel et al.)

Expressive powers:
$\mathrm{FO}=\mathrm{FO}_{2}<\mathrm{MS}<\mathrm{MS}_{2}<\mathrm{SO}=\mathrm{SO}_{2}$

Satisfiability, Theories

Let C be a class of finite graphs, let L be a logical language
$\operatorname{Th}(L, C)$ is the set of formulas in L that are true in all graphs in C
$\operatorname{Sat}(L, C)$ is the set of formulas in L that are true in some graph in C

Are these sets recursive ?

Is the L-theory of C decidable? Is the L-satisfiability
problem for \boldsymbol{C} decidable ?

\boldsymbol{C}	FO	MS	MS_{2}	SO
All (finite)	Und	Und	Und	Und
Grids	Dec	Und	Und	Und
Directed Cliques	Dec	Dec	Und	Und
Forests (Discrete graphs)	Dec	Dec	Dec	Und
Planar		Und	Und	Und

2. MS-compatible transformations

Definition of an MS-transduction (sometimes called an interpretation):

A transformation τ of structures such that :

$$
\begin{aligned}
& \mathrm{S} \longrightarrow \longrightarrow \mathrm{~T}=\tau(\mathrm{S}) \\
& \text { where } \mathrm{T} \text { is defined by MS formulas }
\end{aligned}
$$

inside the structure:

$$
S \oplus S \oplus \ldots \oplus S
$$

(fixed number of disjoint copies of S)

Example of an MS-transduction

The square mapping δ on words: u $\mid \rightarrow$ uu

$$
\text { We let } u=\text { aac }
$$

S	- \rightarrow • \rightarrow			
	a	a	c	
$S \oplus S$	- \rightarrow • \rightarrow •			
	a a c		a	a c
	p1 p1 p1		p2	p2 p2

$\delta(\mathrm{S})$

$$
\begin{aligned}
& \cdot \rightarrow \cdot \rightarrow \bullet \rightarrow \cdot \rightarrow \cdot \rightarrow \cdot
\end{aligned}
$$

In $\delta(S)$ we redefine Suc as follows:
$\operatorname{Suc}(\mathrm{x}, \mathrm{y}): \Leftrightarrow \mathrm{p} 1(\mathrm{x}) \& \mathrm{p} 1(\mathrm{y}) \& \operatorname{Suc}(\mathrm{x}, \mathrm{y})$

$$
\begin{aligned}
& v p 2(x) \& p 2(y) \& \operatorname{Suc}(x, y) \\
& v \mathrm{p} 1(x) \& \mathrm{p} 2(\mathrm{y}) \& \text { " } x \text { has no successor" } \\
& \text { \& "y has no predecessor" }
\end{aligned}
$$

We also remove the "marker" predicates p1, p2.

MS-compatible graph transformations.

Definition : A transformation of graphs
(represented by structures):

such that every MS formula ψ has an effectively computable backwards translation $\tau \#(\psi)$, an MS formula, such that :

$$
\text { S } \mid=\tau \#(\psi) \quad \text { iff } \quad \tau(S) \quad \mid=\psi
$$

The verification of ψ in the object structure $\tau(\mathrm{S})$ reduces to the verification of $\tau \#(\psi)$ in the given structure S .

Informally S describes $\tau(S)$ and the MS properties of $\tau(\mathrm{S}) \quad$ are described by MS properties of S .

Consequence: If a set of structures L has a decidable MS satisfiability problem, then so has $\tau(\mathrm{L})$.

The set Sat(MS, $\tau(\mathrm{L}))$ many-one reduces to the set $\operatorname{Sat}(\mathrm{MS}, \mathrm{L})$.
Proposition: Every MS-transduction is MS-compatible.

3. Monadic Second-Order Problems

Theorem (Seese): If $\operatorname{Sat}(\mathrm{MS} 2, C)$ is recursive, then $\operatorname{Inc}(C)=$
$\tau(T)$ for some MS - transduction τ and some set T of finite trees, equivalently, C has bounded tree-width.

Conjecture (Seese) : If $\operatorname{Sat}(\mathrm{MS}, \boldsymbol{C}$) is recursive, then \boldsymbol{C}
$=\tau(T)$ for some MS - transduction τ and some set T of finite trees, equivalently C has bounded clique-width.

Stronger forms :

Theorem (Lapoire): If $\operatorname{Sat}\left(\mathrm{MS}_{2}, C\right)$ is recursive, then $\operatorname{Inc}(\boldsymbol{C})$
$=\tau(T)$ and $T=\sigma(\operatorname{lnc}(C))$ for some MS - transductions τ and
σ and some set T of finite trees. Hence, $\operatorname{Sat}(\mathrm{MS}, T)$ is
recursive and $\operatorname{Sat}(\mathrm{MS} 2, C)$ reduces to $\operatorname{Sat}(\mathrm{MS}, T)$.

Conjecture : If Sat(MS, C) is recursive, then $C=\tau(T)$ and $T=\sigma(C)$ for some MS - transductions τ and σ and some set T of finite trees. Hence, $\operatorname{Sat}(\mathrm{MS}, T)$ is recursive.

4. Tree- width and clique-width

4.1 Tree- width

Tree-decompositions of width k :

Boxes have size at most $k+1$
Tree-width of $\mathrm{G}, \operatorname{twd}(\mathrm{G})=$ minimal width of a treedecomposition.

A syntax for tree-decompositions

We use graphs with distinguished vertices pointed to by labels from a set of size k :

$$
\{a, b, c, \ldots, h\}
$$

Operations are

Parallel composition

$\mathrm{G} / / \mathrm{H}$ is the disjoint union of G and H with distinguished vertices labelled in the same way fused.
(If G and H are not disjoint, one first makes a copy of H disjoint from G.)
and Forget a label
Forget $_{a}(\mathrm{G})$ is G without label a
(the distinguished vertex labelled by a is made "ordinary").

Basic graphs are the connected graphs with one or two vertices

Proposition: A graph has tree-width $\leq k$ iff it can be constructed from basic graphs with $\leq \mathrm{k}$ labels by using the operations // and Forgeta.

Theorem :

(1) For fixed k, the mapping :

$$
\text { term } \mathrm{t} \mid \rightarrow \operatorname{lnc}(\mathrm{G})
$$

where G is denoted by t (where t is a term using k labels, whence G has tree-width at most k) is an MS-transduction.
(2) The set $\operatorname{Inc}(\mathrm{G})$ for G of tree-width at most k is τ (FiniteTrees) for some MS-transduction τ.
(3) Conversely, if C is a set of graphs and $\operatorname{Inc}(C)=\tau($ FiniteTrees $)$ for some MS-transduction τ,
then C has bounded tree-width. [B.C. and J. Engelfriet].

4.2 (Bi)clique-decompositions and cliquewidth

Clique-width is another complexity measure on graphs that defines a more powerful hierarchy.

Notation: $\quad \operatorname{cwd}(G)$
Facts: 1. If $\operatorname{twd}(G) \leq k$, then $\operatorname{cwd}(G) \leq 2 O(k)$
2. Cliques (and cographs) have clique- width 2
(and unbounded twd).
3. Planar graphs have unbounded clique-width.
4. Deciding if $\operatorname{cwd}(G) \leq k$ is $N P$,
polynomial if $k \leq 3$,
perhaps NP-complete for $\mathrm{k}=4$.

Operations defining clique-width

We use k labels: a, b, c, \ldots, h.
Each vertex has one and only one label.

Operations are the disjoint union \oplus,
and 2 (types of) unary operations:

Add-edga, $b(\mathrm{G})=\mathrm{G}$
augmenting G with edges from
every vertex labelled by a to
every vertex labelled by b
Relaba, $b(G)=G \quad$ relabelling in G every vertex labelled by a into b

Basic graphs are those with a single vertex.

Definition: A graph G has clique-width $\leq \mathrm{k}$ iff
it can be constructed from basic graphs with k
labels by using the operations \oplus,

Add-edga,b and Relaba,b .

Its (exact) clique-width $\operatorname{cwd}(\mathrm{G})$ is the minimum such k.

Theorem (comparison with a previous theorem):

(1) For fixed k, the mapping :

$$
\text { term } \mathrm{t} \mid \rightarrow \mathrm{G}(\text { resp. } \operatorname{Inc}(\mathrm{G}))
$$

where G is denoted by t (term using k labels) is an
MS-transduction; G has clique-width (resp. tree-width) at most k .
(2) The set of graphs G of clique-width at most k (of graphs $\operatorname{Inc}(G)$ for G of tree-width at most k)
is τ (FiniteTrees) for some MS-transduction τ.
(3) Conversely, if C is a set of graphs $=\tau$ (FiniteTrees)
(resp. $\operatorname{Inc}(C)=\tau($ FiniteTrees)) for some MS-
transduction τ, then C has bounded clique-width
[J.Engelfriet] (resp. tree-width, [B.C. and J. Engelfriet]).

These results yield the equivalent forms of Seese's Theorem and Conjecture.

5. Proofs: Theorem and special cases of the conjecture.

5.1 Proof Sketch of the Theorem (for MS_{2} and treewidth).

It uses the result of Robertson and Seymour (Graph Minors V, 1986) that graphs without a fixed planar graph as a minor have bounded tree-width.

1. The transformation

Minors: $(\operatorname{lnc}(\mathrm{G}), \mathrm{X}, \mathrm{Y}) \mid \rightarrow \operatorname{Inc}(\mathrm{H})$
for G a graph,
X a set of edges to be contracted,
Y a set of vertices and edges to be deleted
H : the resulting minor,
is an MS-transduction.
2. If $\operatorname{Sat}\left(\mathrm{MS}_{2}, C\right)$ is decidable, so is $\operatorname{Sat}\left(\mathrm{MS}_{2}, \operatorname{Minors}(C)\right)$,
3. and $\operatorname{Minors}(C)$ can only contain finitely many square grids (otherwise, $\operatorname{Sat}\left(\mathrm{MS}_{2}, C\right.$) is undecidable because arbitrary long Turing Machine computations can be encoded).
4. Hence C has bounded tree-width by R\&S, GM V.

5.2 Cases where the conjecture reduces to the theorem :

Planar graphs (Seese, 1991), graphs of bounded degree, graphs without a fixed graph H as a minor, and, subsuming all these cases :

For the class Uk of uniformly k-sparse graphs G, i.e. those
such that every (finite) subgraph M of G has at most
k. $|V(M)|$ edges.

Theorem (Courcelle, to app.) : For each k, the mapping :

$$
\mathrm{G} \mid \rightarrow \operatorname{Inc}(\mathrm{G})
$$

is an MS-transduction on Uk.

Corollary: For graphs in Uk, MS_{2} formulas can be translated into equivalent MS formulas ; hence if $\boldsymbol{C} \mu \mathrm{Uk}$ and $\operatorname{Sat(MS,~} \boldsymbol{C}$) is decidable, so is $\operatorname{Sat}\left(\mathrm{MS}_{2}, \boldsymbol{C}\right)$ hence \boldsymbol{C} has bounded twd.

No hint for a general proof of the conjecture!

Corollary : For every k, for every class of graphs C
having uniformly k-sparse edge-complements,
if $\operatorname{Sat}(\mathrm{MS}, \boldsymbol{C})$ is decidable, then \boldsymbol{C} has bounded clique-width.

Hint : Because then, Sat(MS, $\boldsymbol{K})$ is decidable where \boldsymbol{K} is the class of edge-complements of the graphs in C,
hence has bounded tree-width (because $\boldsymbol{K} \mu \mathrm{Uk}$), hence has bounded clique-width,
hence so has C because bounded clique-width is preserved under edge-complement.

Observation :

The conjecture holds for sets of graphs that are :
either very sparse (uniformly k-sparse),
or very dense (with uniformly k-sparse edgecomplements)

What happens in the middle ?

5.3 Classes of unbounded tree-width

Method:

```
Class \(G\)
\(U_{k}\)
```

τ : σ :

where τ, σ are MS-transductions,
H is uniformly k-sparse and «describes» G
τ maps G to H and σ maps H to G;
If C is a subclass of G :

Sat(MS, C) decidable $\Rightarrow \operatorname{Sat}(\mathrm{MS}, \tau(C))$ decidable
$\Rightarrow \tau(C)$ has bounded twd
$\Rightarrow \tau(C)$ has bounded cwd
$C=\sigma(\tau(C))$ has bounded cwd.

The strong form of the conjecture holds.

Cases where this method applies.

1. Chordal graphs of clique-degree at most d.

Tree-decompositions with cliques as boxes, each vertex belongs to at most d maximal cliques :

H is a bipartite graph; its vertices corresponding to those of G have degree at most d. The transduction σ creates cliques from stars.
2. Convex bipartite graphs (or hypergraphs)

A hypergraph is convex if there exists a linear order on vertices such that every hyperedge is an interval

Order is unique only for prime convex hypergraphs, and can be defined in MS logic.

Convex nonprime hypergraphs can be built from prime ones by vertex substitution. There exists a unique canonical modular decomposition.

G

3. N-free Hasse diagrams

We use directed line graphs:
Simple DAG with source and sink
(bipolar orientation)
N-free Hasse diagram

DL

Fact (Heuchenne, 1964): The mapping DL is a bijection.

The mapping δ (directed line graph) is bijective:

δ and its inverse are MS transductions.

Hence, the conjecture holds for N -free Hasse diagrams, and for the corresponding posets.
(Because the bijective correspondence between a finite posets and its Hasse diagram is an MS transduction in both directions.)

This class of posets properly includes that of N -free posets, also called quasi-series-parallel because they
can be generated by certain operations on posets,among which are series composition and disjoint union (equiv. parallel composition).

The corresponding Hasse diagrams are N^{*}-free, not necessarily N -free.

What would help for the proof of the general case.

We have:

G large tree-width $\quad \Rightarrow \quad G$ contains large grid minor

We need :

G large clique-width $\Rightarrow \tau(\mathrm{G})$ is a large grid
for some fixed MS-transduction τ
hence a knownledge of the structure of graphs of large clique-width.

6. Reductions between specific cases

Let C and D be two classes.
We write $C \Rightarrow D$, if one can prove the conjecture
for all subsets of D assuming it is proved for all
subsets of C.

Questions:

1. ? Finite graphs \Rightarrow countable graphs ?
(For countable graphs,the same proof as for finite graphs works for tree-width and MS_{2} satisfiability).
2. ? Finite graphs \Rightarrow finite relational structures ?
3. Theorem (for classes of finite graphs):

Directed graphs
\Leftrightarrow Directed acyclic graphs
\Leftrightarrow Partial orders
\Leftrightarrow Undirected graphs
\Leftrightarrow Bipartite graphs
\Leftrightarrow Chordal graphs
\Leftrightarrow Vertex/edge labeled such classes.

Proof sketches:

1. Class $C \Rightarrow$ k-color-vertex (C).

If L included in C has decidable MSsatisfiability problem, so has L' = L with colors removed, hence L' has bounded clique-width, so has L.
2. General tool to prove $C \Rightarrow D$:
encode G of D into H of C by MStransduction, so that its inverse is also an MS-transduction.

Directed \Rightarrow Undirected :

*

4-vertex-colored bipartite undirected \Rightarrow Directed

Decoding : - - $\longmapsto * \longrightarrow *$, other edges contracted

4-vertex-colored bipartite Hasse diagrams \Rightarrow
 Directed

Decoding : $\longrightarrow * \mapsto * \longrightarrow *$, other edges contracted
Case of a loop:

For edge labels, the technique is similar :

Decoding : $\rightarrow \longrightarrow * \mid \longrightarrow * \longrightarrow *$, $* \longrightarrow * \longmapsto * \longrightarrow *$, other edges contracted

3-vertex-colored chordal graphs \Rightarrow Directed

Directed graph, n vertices,
$\mathrm{K}_{\mathrm{n}}+$ vertices, edges

Directed edges are created from this pattern ; blue and red vertices are deleted

7. Description of MS compatible structure transformations ?

Which structure transformations are MS -compatible ?
MS compatible transformations of structures :

1. MS-transductions
2. The composition of two MS compatible transformations (clear from the definition)
3. Unfolding
4.The Shelah-Stupp-Muchnik tree expansion (proved by Walukiewicz).

Can every MS-compatible transformation be obtained from these cases ?

The Shelah-Stupp-Muchnik Construction

Structure
M

$M=\langle V$, edg(.,.) \rangle
Tree(M) $=<\operatorname{Seq}(\mathrm{V})$, edgSeq(...),son(...),clone(.)>

Seq(V) = nonempty sequences over V ,
edgSeq $\quad=\left\{(w x, w y) \quad / w \in V^{*},(x, y) 2\right.$ edg $\}$
son $\quad=\{(w, w x) \quad / w \in \operatorname{Seq}(V), x 2 V\}$,
clone $\quad=\left\{w x x \quad / w \in V^{*}, x \in V\right\}$, (clone = copy of its father).

Theorem (Walukiewicz): The mapping $\mathrm{M} \longrightarrow$ Tree(M) is MS-compatible.

Observation: For a graph G , the tree $\operatorname{Unf}(\mathrm{G})$ is $M S$ - definable inside Tree(G) (whence, definable from Tree(G) by an MS-transduction).

Consequence: The mapping Unf is MS-compatible, as composition of two MS-compatible mappings.

8. Other open questions

8.1 For a Noetherian and confluent term rewriting
system, the normal form mapping goes from
finite terms to finite terms.

When is it an MS-transduction?

When is it MS-compatible?
8.2 Operations on finite graphs such that the value mapping
has good algorithmic behaviour but is not an MS transduction?
(Might give counter-examples to Seese's conjecture.)

