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1. Logical expression of graph properties

Graphs are simple, directed, finite.
(Extension is easy to undirected graphs, to hypergraphs,

and to relational structures)

G =<V, edq(.,.) >

Vertices, edge relation

¢ logical formula
Gl=¢ is a property of G

G |= ¢ (x,y) IS a property of a pair (x,y) of vertices of G

Languages : FO : First-Order logic

MS : Monadic Second-Order logic
SO : Second-Order logic



Incidence graphs

Inc(G) =<V UOE, src(.,.), tgt(.,.) >

Vertices and edges, source relation, target relation :

src(e,x) and tgt(eyy) iff e: x>y

Using incidence graphs :
¢ logical formula (with src, tgt):
Inc(G) |= () IS a property of G expressed via

its incidence graph.
Languages : FO,, MS,, SO,
Remark : MS, = GSO, Guarded second-order logic
(Graedel et al.)
Expressive powers :

FO =FO, < MS < MS;, < S0=8S50;,



Satisfiability, Theories
Let C be aclass of finite graphs, let L be a logical language

Th(L,C) is the set of formulas in L that are true in

all graphs in C

Sat(L,C) is the set of formulas in L that are true in

some graphin C

Are these sets recursive ?

Is the L -theory of C decidable ? Is the L -satisfiability

problem for C decidable ?

C FO MS MS, SO

All (finite) Und Und Und und

Grids Dec Und Und Und

Directed Dec Dec Und Und
Cliques
Forests

(Discrete Dec Dec Dec und

graphs)
Planar Und Und Und




2. MS-compatible transformations

Definition of an MS-transduction (sometimes called an

Interpretation):

A transformation 1 of structures such that :
S |— T =1(9)
where T is defined by MS formulas
inside the structure:
sOsd..Oos

(fixed number of disjoint copies of S)



Example of an MS-transduction

The square mapping ® on words: u | - uu

We let u = aac
S - -
a a ¢
S[S e e o e e o
a a ¢ a a ¢
Pl Pl Pl p2 p2 P2
O(S) G > e > e > e > e > .

In d(S) we redefine Suc as follows :
Suc(x,y) : = p1(X) & p1(y) & Suc(x,y)
v p2(x) & p2(y) & Suc(x,y)
v p1(X) & p2(y) & "x has no successor"

& "y has no predecessor”

We also remove the "marker" predicates p1, p2.



MS-compatible graph transformations.

Definition : A transformation of graphs
(represented by structures):
S —— T1(S)
THY) «—— Y

such that every MS formula  has an effectively
computable backwards translation T #()) , an MS formula,
such that :

S |=t#uy) iff T(S) I=y

The verification of ¢ in the object structure 1(S) reduces
to the verification of T#(p) in the given structure S.

Informally S describes 1(S) and the MS properties of
1(S) are described by MS properties of S.

Consequence: If a set of structures L has a decidable MS
satisfiability problem, then so has t(L).
The set Sat(MS, t(L)) many-one reduces to the set Sat(MS, L).

Proposition: Every MS-transduction is MS-compatible.



3. Monadic Second-Order Problems

Theorem (Seese): If Sat(MS2, C) is recursive, then Inc(C) =

T(T) for some MS - transduction T and some set T of finite

trees, equivalently, C has bounded tree-width.

Conjecture (Seese) : If Sat(MS, C) is recursive, then C

= T(T) for some MS - transduction T and some set T of finite
trees, equivalently C has bounded clique-width.

Stronger forms :

Theorem (Lapoire): If Sat(MS2, C) is recursive, then Inc(C)
=17(T) and T = o(Inc(C)) for some MS - transductions T and

0 and some set T of finite trees. Hence, Sat(MS, T) is

recursive and Sat(MS2, C) reduces to Sat(MS, T).

Conjecture : If Sat(MS, C) is recursive, then C = 1(T) and
T = o(C) for some MS - transductions T and o and some set
T of finite trees. Hence, Sat(MS, T) Is recursive.



4. Tree- width and cligue-width

4.1 Tree-width

Tree-decompositions of width k :

Boxes have size at most k +1
Tree-width of G, twd(G) = minimal width of a tree-

decomposition.



A syntax for tree-decompositions

We use graphs with distinguished vertices pointed to by labels

from a set of size k:
{a, b, c, ..., h}

Operations are Parallel composition

G/IH is the disjoint union of G and H
with distinguished vertices
labelled in the same way fused.

(If G and H are not disjoint, one first makes a copy of
H disjoint from G .)

and Forget a label

Forgeta(G) is G without label a
(the distinguished vertex labelled
by a is made "ordinary").

Basic graphs are the connected graphs
with one or two vertices

Proposition: A graph has tree-width <k iff it can be
constructed from basic graphs with < k labels by
using the operations // and Forgets .



Theorem :
(1) For fixed k, the mapping :
term t | - Inc(G)
where G is denoted by t (where tis a term using k

labels, whence G has tree-width at most k) is an

MS-transduction.

(2) The set Inc(G) for G of tree-width at most k

Is T(FiniteTrees) for some MS-transduction T.

(3) Conversely, if C is a set of graphs and
Inc(C) = 1(FiniteTrees) for some MS-transduction T,

then C has bounded tree-width. [B.C. and J. Engelfriet].



4.2 (Bi)cligue-decompositions and clique-
width

Clique-width is another complexity measure on graphs that
defines a more powerful hierarchy.

Notation: cwd(G)
Facts: 1. If twd(G) < k , then cwd(G) < 20(K)
2. Cliques (and cographs) have cligue- width 2
(and unbounded twd).
3. Planar graphs have unbounded clique-width.
4. Deciding if cwd(G) < k is NP,
polynomial if k< 3,

perhaps NP-complete for k =4.



Operations defining clique-width

We use k labels: a,b,c, ..., h.
Each vertex has one and only one label.

Operations are the disjoint union [,

and 2 (types of) unary operations:
Add-edga,b(G) = G augmenting G with edges from

every vertex labelled by a to
every vertex labelled by b

Relabg b(G) = G relabelling in G every vertex labelled
by ainto b

Basic graphs are those with a single vertex.

Definition: A graph G has clique-width < k iff
it can be constructed from basic graphs with k
labels by using the operations [,
Add-edga,b and Relaba,b .

Its (exact) cligue-width cwd(G) is the minimum such K.



Theorem (comparison with a previous theorem):
(1) For fixed k, the mapping :
term t | > G (resp. Inc(G))

where G is denoted by t (term using k labels) is an
MS-transduction; G has cligue-width (resp. tree-width) at
most K.
(2) The set of graphs G of cligue-width at most k

(of graphs Inc(G) for G of tree-width at most k)
Is T(FiniteTrees) for some MS-transduction T.
(3) Conversely, if C is a set of graphs = T(FiniteTrees)
(resp. Inc(C) = 1(FiniteTrees) ) for some MS-

transduction T, then C has bounded clique-width

[J.Engelfriet] (resp. tree-width, [B.C. and J. Engelfriet]).

These results yield the equivalent forms of Seese's Theorem
and Conjecture.



5. Proofs: Theorem and special cases of the
conjecture.

5.1 Proof Sketch of the Theorem (for MS, and tree-
width).

It uses the result of Robertson and Seymour (Graph

Minors V, 1986) that graphs without a fixed planar graph as a
minor have bounded tree-width.

1. The transformation
Minors : (Inc(G),X,Y) | — Inc(H)
for G a graph,
X a set of edges to be contracted,
Y a set of vertices and edges to be deleted

H : the resulting minor,

IS an MS-transduction.

2. If Sat(MS,, C) is decidable, so is Sat(MS,, Minors(C)),

3. and Minors(C) can only contain finitely many square grids
(otherwise, Sat(MS,, C) is undecidable because arbitrary long
Turing Machine computations can be encoded).

4. Hence C has bounded tree-width by R&S, GM V.



5.2 Cases where the conjecture reduces
to the theorem :

Planar graphs (Seese, 1991), graphs of bounded degree,
graphs without a fixed graph H as a minor, and, subsuming
all these cases:
For the class Uk of uniformly k-sparse graphs G, i.e. those
such that every (finite) subgraph M of G has at most
k.| V(M)| edges.
Theorem (Courcelle, to app.) : For each k, the mapping :
G | = Inc(G)
is an MS-transduction on UK.

Corollary : For graphs in Uk, MS, formulas can be translated
into equivalent MS formulas ; hence if C p Uk and Sat(MS, C)
is decidable, so is Sat(MS,, C) hence C has bounded twd.

No hint for a general proof of the conjecture !



Corollary : For every k, for every class of graphs C

having uniformly k-sparse edge-complements,

if Sat(MS, C) is decidable, then C has bounded clique-width.

Hint : Because then, Sat(MS, K) is decidable where K is the

class of edge-complements of the graphs in C,

hence has bounded tree-width (because K L UKk),
hence has bounded clique-width,

hence so has C because bounded clique-width is preserved
under edge-complement.

Observation :
The conjecture holds for sets of graphs that are :
either very sparse (uniformly k-sparse),

or very dense (with uniformly k-sparse edge-
complements)

What happens in the middle ?



5.3 Classes of unbounded tree-width

Method :

Class G Uy

T: G | > H
o: < |

where 1, ¢ are MS-transductions,

H is uniformly k-sparse and « describes » G

T maps G toHand o maps Hto G;

If C is a subclass of G :

Sat(MS, C) decidable = Sat(MS, t1(C)) decidable
= 1(C) has bounded twd
= 1(C) has bounded cwd

C = o(1(C)) has bounded cwd.

The strong form of the conjecture holds.



Cases where this method applies.

1. Chordal graphs of cligue-degree at most d.

Tree-decompositions with cligues as boxes, each vertex

belongs to at most d maximal cliques

H is a bipartite graph; its vertices corresponding to those
of G have degree at most d. The transduction o creates
cligues from stars.



2. Convex bipartite graphs (or hypergraphs)

A hypergraph is convex if there exists a linear order
on vertices such that every hyperedge is an interval

*

ROz

Order is unique only for prime convex hypergraphs, and
can be defined in MS logic.

Convex nonprime hypergraphs can be built from prime ones
by vertex substitution. There exists a unique canonical
modular decomposition.

A
LY

»O —5»0——-»0» 0—>»0—>»0—>»0




3. N-free Hasse diagrams

We use directed line graphs:

Simple DAG with source N-free Hasse
and sink diagram

(bipolar orientation) J\J

12 13

DL

Fact (Heuchenne, 1964): The mapping DL is a bijection.



The mapping o (directed line graph) is bijective:

Inc(G) | > DL(G)

< |

O and its inverse are MS transductions.

Hence, the conjecture holds for N-free Hasse diagrams,
and for the corresponding posets.

(Because the bijective correspondence between a finite posets
and its Hasse diagram is an MS transduction in both directions.)
This class of posets properly includes that of N-free
posets, also called quasi-series-parallel because they
can be generated by certain operations on posets,among
which are series composition and disjoint union (equiv.

parallel composition).

The corresponding Hasse diagrams are N*-free,

not necessarily N-free.
N l\

ot



What would help for the proof of the general case.

We have:

G large tree-width = G contains large grid minor

We need :
G large clique-width = T(G) is alarge grid

for some fixed MS-transduction T
hence a knownledge of the structure of graphs of large

cligue-width.



6. Reductions between specific cases

Let C and D be two classes.
We write C = D, if one can prove the conjecture
for all subsets of D assuming it is proved for all

subsets of C.

Questions :
1. ? Finite graphs = countable graphs ?

(For countable graphs,the same proof as for finite graphs
works for tree-width and MS, satisfiability).

2. ? Finite graphs = finite relational structures ?



3. Theorem (for classes of finite graphs):

Directed graphs
- Directed acyclic graphs
- Partial orders

- Undirected graphs
- Bipartite graphs
- Chordal graphs

- Vertex/edge labeled such classes.



Proof sketches :
1. Class C = k-color-vertex(C).

If Lincluded in C has decidable MS-
satisfiability problem,

so has L’ = L with colors removed,
hence L’ has bounded clique-width,
so has L.

2. General tool to prove C = D
encode G of D into H of C by MS-
transduction, so that its inverse is also an

MS-transduction.

Directed — Undirected :

u 0 —— o s

4-vertex-colored bipartite undirected = Directed

a
DDD<
a

[] []
\ /V .
Rt

Ny



Decoding ; [I— > [&— [] other edges contracted



4-vertex-colored bipartite Hasse diagrams
— Directed

L] L] L]
~ . D\
e

Decoding : [I—, O [ []other edges contracted

Case of aloop:

[] [] []
D>>D/ — g}»D‘—>D<— D—»D/
D/'>> 0

For edge labels, the technique is similar :

L] L] > [

Decoding : [ —|— O—[]
OO O »[]
other edges contracted



3-vertex-colored chordal graphs = Directed

S A =

[]
Directed graph, n vertices, K, + vertices, edges
F/D
O
[] []

Directed edges are created from this pattern ; blue and red
vertices are deleted



7. Description of MS compatible structure
transformations ?

Which structure transformations are MS -compatible ?
MS compatible transformations of structures :

1. MS-transductions

2. The composition of two MS compatible
transformations (clear from the definition)

3. Unfolding
4.The Shelah-Stupp-Muchnik tree expansion (proved
by Walukiewicz).

Can every MS-compatible transformation be obtained from

these cases ?



The Shelah-Stupp-Muchnik Construction

Structure | »  Structure
M Tree(M)

M= <V, edqg(.,.)>

Tree(M) = <Seq(V), edg>edq(.,.),son(.,.),clone(.)>

Seq(V) = nonempty sequences over V,
edgSed ={ (wxwy) / w LIV (xy) 2 edg}
son = { (W,wx) I w L seq(V), x 2V},
clone ={ wxx [ w v, x Qv

(clone = copy of its father).

Theorem (Walukiewicz): The mapping M |—— Tree(M)
IS MS-compatible.

Observation: For a graph G, the tree Unf(G) is MS- definable inside
Tree(G) (whence, definable from Tree(G) by an MS-transduction).

Consequence: The mapping Unf is MS-compatible, as composition of
two MS-compatible mappings.



8. Other open questions

8.1 For a Noetherian and confluent term rewriting
system, the normal form mapping goes from

finite terms to finite terms.

When is it an MS-transduction ?

When is it MS-compatible?

8.2 Operations on finite graphs such that the value mapping
has good algorithmic behaviour but is not an MS transduction ?

(Might give counter-examples to Seese’s conjecture.)



	On   Seese’s  Conjecture
	
	
	
	
	
	Bruno  Courcelle

	1.  Logical  expression  of  graph  properties





	G = < V, edg(.,.) >
	Vertices, edge relation
	
	
	MS€: Monadic Second-Order logic


	Incidence graphs

	Inc(G) = < V ( E,  src(.,.), tgt(.,.)  >
	Vertices and edges, source relation, target relation€:
	
	
	Th(L,c) is the set of formulas in L that are true in
	all graphs in c
	Sat(L,c) is the set of formulas in L that are true in
	some graph in c
	Are these sets recursive€?
	These results yield the equivalent forms of Seese's  Theorem
	Y a set of  vertices and edges to be deleted


	Observation€:
	The conjecture holds for sets of graphs that  are€:
	
	MS-transductions
	
	The Shelah-Stupp-Muchnik  Construction



	M =  <V, edg(.,.)>



