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1.  Logical  expression  of  graph  properties

Graphs  are  simple, directed, finite.

(Extension is easy to undirected  graphs, to hypergraphs,

and to relational structures)

G = < V, edg(.,.) >

   Vertices, edge relation

ϕ   logical formula

G   ����= ϕ    is a property of G

G  ����= ϕ (x,y)   is a property of a pair (x,y)   of  vertices of G

Languages : FO : First-Order logic

MS : Monadic Second-Order logic

SO : Second-Order logic



Incidence graphs

Inc(G) = < V ∪  E,  src(.,.), tgt(.,.)  >

Vertices and edges, source relation, target relation :

src(e,x)    and   tgt(e,y)  iff   e :  x � y

Using incidence graphs :

ϕ   logical formula (with   src,   tgt ) :

Inc(G)   ����= ϕ    is a property of G expressed via

its incidence graph.

Languages : FO2, MS2, SO2 

Remark : MS2  = GSO,  Guarded second-order logic

(Graedel et    al.)

Expressive  powers :

FO  = FO2   <   MS    <    MS2    <    SO = SO2



Satisfiability, Theories

Let   c  be  a class of finite  graphs, let L be a logical language

Th(L,c) is the set of formulas in L that are true in

all graphs in c
Sat(L,c) is the set of formulas in L that are true in

 some graph in c

Are these sets recursive ?

Is the L -theory  of  c  decidable ? Is the L -satisfiability

problem  for   c  decidable ?

c FO MS MS2 SO

All (finite) Und Und Und Und
Grids Dec Und Und Und

Directed
Cliques

Dec Dec Und Und

Forests
(Discrete

graphs)

Dec Dec Dec Und

Planar Und Und Und



2.  MS-compatible transformations

Definition of  an MS-transduction  (sometimes called an

interpretation):

A transformation  τ  of  structures such that  :

S   �              T  =  τ (S)

where   T  is  defined by  MS formulas

 inside  the  structure:

S ⊕⊕⊕⊕  S ⊕⊕⊕⊕  ... ⊕⊕⊕⊕  S

(fixed  number  of disjoint copies of S)



Example  of  an  MS-transduction

The  square  mapping  δ  on  words:  u  �→   uu

We  let  u  =    aac

S •  →→→→  • →→→→ • 
a      a      c

S ⊕⊕⊕⊕  S  •  →→→→  • →→→→ •             •  →→→→  • →→→→ •
a       a     c             a        a     c
p1    p1    p1          p2      p2   p2

δ(S) •  →→→→  • →→→→ •  →→→→  • →→→→ • →→→→  •
a        a      c        a      a        c

In δ(S) we  redefine Suc as  follows :
Suc(x,y) :  ⇔  ⇔  ⇔  ⇔   p1(x) & p1(y) & Suc(x,y)

v p2(x) & p2(y) & Suc(x,y)
 v p1(x) & p2(y) & "x has no  successor"

& "y has no  predecessor"

We also  remove  the  "marker" predicates p1, p2.



MS-compatible  graph transformations.

Definition : A transformation of graphs

(represented    by structures):

S   �                   τ (S)

τ #(ψ)              �  ψ

such  that every  MS  formula  ψ  has  an effectively
computable  backwards  translation τ #(ψ)  , an MS formula,
such that :

S   ����=  τ #(ψ)    iff    τ (S)   ����=  ψ

The verification of ψ  in  the object structure τ(S)  reduces
to  the  verification  of  τ #(ψ)   in  the  given structure S.

Informally    S   describes   τ(S)    and the MS properties of
τ(S)    are described by MS properties of S.

Consequence: If  a  set of  structures  L  has  a decidable MS
satisfiability problem, then so has τ(L).

The set Sat(MS, τ(L)) many-one reduces to the set Sat(MS, L).

Proposition:  Every  MS-transduction  is  MS-compatible.



3.  Monadic  Second-Order  Problems

Theorem (Seese): If  Sat(MS2, c)   is  recursive, then Inc(c) =

τ(T) for some MS - transduction τ and some set T of finite

trees, equivalently,  c  has bounded tree-width.

Conjecture (Seese) : If Sat(MS, c)  is  recursive, then c

=  τ(T)  for some MS - transduction τ and some set T of finite

trees, equivalently  c has bounded clique-width.

Stronger  forms :

Theorem (Lapoire): If  Sat(MS2, c)   is  recursive, then Inc(c )

= τ(T)  and T  =  σ(Inc(c ))   for some MS - transductions τ and

σ  and some set T of finite  trees. Hence, Sat(MS, T) is

recursive  and Sat(MS2, c) reduces to Sat(MS, T).

Conjecture : If Sat(MS, c)  is  recursive, then c =  τ(T)  and
T  =  σ(c)   for some MS - transductions τ and σ  and some set
T of finite  trees. Hence,  Sat(MS, T)   is  recursive.



4.  Tree- width and  clique-width

4.1  Tree- width

Tree-decompositions  of  width k :

Boxes have size at most  k +1

Tree-width  of   G, twd(G) =  minimal width of a tree-

decomposition.



A syntax for tree-decompositions

We  use graphs with distinguished vertices pointed  to  by labels

from  a  set of size k:
      {a, b, c,  ..., h}

Operations  are               Parallel  composition

G // H  is   the  disjoint  union of  G  and  H
with  distinguished   vertices
labelled  in  the  same  way  fused.

 (If G  and  H are  not  disjoint, one first  makes  a  copy of
H disjoint from  G .)

and  Forget a label

Forgeta(G)  is  G  without label a
(the  distinguished vertex labelled
by  a  is  made  "ordinary").

Basic graphs   are the connected graphs
with one  or  two  vertices

Proposition:  A  graph  has tree-width  ≤ k    iff  it  can  be
constructed   from  basic graphs  with   ≤  k  labels  by
using  the operations   //   and  Forgeta .



Theorem :

(1) For  fixed k, the mapping :

term  t  ����→ Inc(G)

where G is denoted  by  t (where t is a term using k

labels, whence G has  tree-width  at most  k) is an

MS-transduction.

(2) The  set  Inc(G) for G of  tree-width  at most  k

is τ(FiniteTrees) for some MS-transduction τ.

(3)  Conversely, if C is a set of graphs and

Inc(C) =  τ(FiniteTrees) for some MS-transduction τ,

then C  has bounded   tree-width. [B.C. and J. Engelfriet].



   4.2 (Bi)clique-decompositions and clique-
width

Clique-width  is  another complexity measure on  graphs  that
defines a more powerful  hierarchy.

Notation:   cwd(G)

Facts: 1.   If  twd(G) ≤  k   ,  then    cwd(G) ≤  2O(k)

2.  Cliques (and cographs)  have  clique- width  2

(and unbounded  twd).

3.  Planar graphs  have unbounded  clique-width.

4.  Deciding if  cwd(G) ≤   k  is  NP,

polynomial  if   k ≤  3,

perhaps  NP-complete  for  k = 4.



Operations defining  clique-width

We use k labels:  a , b , c,  ..., h.
Each vertex has one and only  one label.

Operations are the  disjoint  union   ⊕ ,

and  2  (types  of)  unary  operations:

Add-edga,b(G) = G augmenting  G   with edges  from
every  vertex labelled by   a  to
every  vertex   labelled  by  b

Relaba,b(G) = G relabelling  in G every vertex labelled
by a into b

Basic graphs  are those with a single vertex.

Definition:  A  graph  G  has  clique-width  ≤   k  iff

it can be constructed  from basic graphs with  k

labels  by  using  the operations  ⊕ ,

Add-edga,b   and  Relaba,b  .

Its (exact) clique-width cwd(G)  is the minimum such  k.



Theorem (comparison with a previous theorem):

(1) For  fixed  k, the mapping :

term  t  ����→ G  (resp. Inc(G))

where G is denoted  by  t  (term using k labels) is an

MS-transduction; G has clique-width (resp. tree-width)  at

most  k.

(2) The  set  of graphs G of clique-width at most k

 (of graphs Inc(G) for G of  tree-width  at most  k)

is τ(FiniteTrees) for some MS-transduction τ.

(3) Conversely, if C is a set of graphs = τ(FiniteTrees)

 (resp.  Inc(C) =  τ(FiniteTrees) ) for some MS-

transduction τ, then C  has bounded clique-width

[J.Engelfriet] (resp. tree-width, [B.C. and J. Engelfriet]).

These results yield the equivalent forms of Seese's  Theorem
and Conjecture.



5. Proofs: Theorem  and special cases of the
conjecture.

5.1  Proof Sketch  of  the Theorem  (for MS2 and tree-
width).

It  uses the result of Robertson and Seymour (Graph
Minors V, 1986) that graphs without a fixed planar graph as a
minor have bounded tree-width.

1. The transformation

Minors :  (Inc(G),X,Y)  ����→ Inc(H)

for G a graph,
X a set of  edges to be contracted,
Y a set of  vertices and edges to be deleted
H : the resulting minor,

is an MS-transduction.

2. If Sat(MS2, C) is decidable, so is Sat(MS2, Minors(C)),

3. and Minors(C) can only contain finitely many square grids
(otherwise, Sat(MS2, C)  is undecidable because arbitrary long
Turing Machine computations can be encoded).

4. Hence C  has bounded tree-width  by R&S, GM V.



5.2 Cases where  the conjecture reduces
to the theorem :

Planar graphs (Seese, 1991), graphs of bounded degree,

graphs without a fixed graph H as a  minor, and, subsuming

all  these cases :

For the class  Uk of uniformly k-sparse graphs  G, i.e. those

such that every (finite)  subgraph M of G has at most

k.�V(M) � edges.

Theorem (Courcelle, to app.) : For each k,  the  mapping :
         

       G  ����→ Inc(G)

is an MS-transduction  on Uk.

Corollary : For graphs  in Uk, MS2 formulas can be translated
into equivalent MS formulas ; hence if c µ Uk and Sat(MS, c)

is decidable, so is  Sat(MS2, c) hence c has bounded twd.

No hint  for a general proof of the  conjecture !



Corollary : For every k, for every class of graphs c

 having  uniformly k-sparse edge-complements,

if  Sat(MS, c) is decidable, then c  has bounded clique-width.

Hint : Because then, Sat(MS, K) is decidable where K is the
class of edge-complements of the graphs in c,

hence has bounded tree-width (because  K µ Uk),
hence has bounded clique-width,
hence so has c because bounded clique-width is preserved
under edge-complement.

Observation :

The conjecture holds for sets of graphs that  are :

either very sparse (uniformly k-sparse),

or very dense (with uniformly k-sparse edge-
complements)

What happens in the middle ?



5.3  Classes  of  unbounded  tree-width

Method :

Class  G Uk

τ : G � H
σ :             � 

where τ , σ   are MS-transductions,

H  is  uniformly k-sparse  and « describes »   G

τ  maps G  to H and σ maps  H to G ;

If C is a subclass  of G :

Sat(MS, C)  decidable �  Sat(MS, τ(C))  decidable

� τ(C)  has bounded  twd
 

� τ(C)  has bounded cwd

C =  σ(τ(C))  has bounded cwd.

The strong form of the conjecture holds.



Cases  where  this method  applies.

1. Chordal graphs of  clique-degree  at most d.

Tree-decompositions  with cliques as boxes, each vertex

belongs to at most  d  maximal cliques  :

                                         G

                                                                 H

H  is  a bipartite  graph; its  vertices  corresponding to those
of  G have degree  at most  d.  The transduction  σ  creates
cliques  from  stars.



2. Convex  bipartite  graphs (or hypergraphs)

A  hypergraph  is convex  if  there exists  a linear order
on vertices  such that every  hyperedge is an interval

        *            *             *               *            *            *         *

o      o      o      o       o      o     o    o    o     o     o     o     o      o

Order is  unique only for  prime  convex hypergraphs,  and
can  be defined  in MS logic.

Convex nonprime hypergraphs  can be built  from prime ones
by  vertex substitution. There exists a unique canonical
modular decomposition.

        *            *             *               *            *            *        *

o      o              o       o      o           o    o     o     o     o          G

        *            *             *               *            *            *        *

o      o              o       o      o           o    o     o     o     o          H



3. N-free Hasse diagrams

We use    directed line graphs:

Simple DAG with source N-free Hasse
and sink diagram
(bipolar orientation)

     1       2      3                                                  1              2               3

   4                  7
       6    8   5                                            4            5        6        7          8
                    10

      9        11         13                                    9              10              11

       12                                                                  12         13

 �
DL

Fact (Heuchenne, 1964): The mapping DL is a bijection.



The mapping δ (directed line graph) is bijective:

Inc(G)   � DL(G)
  �

δ and its inverse are MS transductions.

Hence, the conjecture holds for N-free Hasse diagrams,

and for the corresponding posets.

(Because the bijective correspondence between a finite posets
and its Hasse diagram is an MS transduction in both directions.)

This class of posets properly includes that of N-free

posets, also called quasi-series-parallel because they

can be generated by certain operations on posets,among
which are series composition and disjoint union (equiv.
parallel composition).

The corresponding Hasse diagrams are N*-free,
not necessarily N-free.

N*



What  would help for the proof  of the general  case.

We have:

G  large  tree-width � G contains large  grid  minor

We need :

G  large  clique-width � τ(G) is a large  grid

for  some fixed  MS-transduction  τ

hence  a  knownledge of  the structure of graphs of large

clique-width.



6. Reductions  between  specific cases

Let  C  and D   be two  classes.

We  write C   �  D,  if one can prove the conjecture

for all subsets of D assuming it is proved for all

subsets of C.

Questions :

1.  ? Finite graphs �  countable graphs ?

(For countable graphs,the same proof as for finite graphs
works for tree-width and MS2 satisfiability).

2. ? Finite graphs � finite relational structures ?



3. Theorem (for classes of finite graphs):

Directed graphs
⇔ Directed acyclic graphs
⇔ Partial orders

⇔ Undirected graphs
⇔ Bipartite graphs
⇔ Chordal graphs

⇔ Vertex/edge labeled such classes.



Proof  sketches :

1. Class C � k-color-vertex(C).

If  L included  in C has decidable MS-
satisfiability problem,
so has L’ = L with colors removed,
hence L’ has bounded clique-width,
so has L.

2. General tool  to prove  C   �  D :

encode G of D into H of C by MS-
transduction, so that its inverse is also an
MS-transduction.

Directed  �  Undirected :

∗                     ∗      � ∗     ∗

4-vertex-colored bipartite undirected � Directed 

∗ ∗ ∗ ∗
∗ ∗      � ∗   ∗         ∗         ∗        ∗
∗ ∗ ∗ ∗



Decoding :  ∗        ∗  �      ∗       ∗, other edges contracted 



4-vertex-colored bipartite Hasse diagrams
 �  Directed 

∗ ∗ ∗ ∗
∗ ∗      � ∗   ∗         ∗         ∗        ∗
∗ ∗ ∗ ∗

Decoding :  ∗        ∗  �      ∗       ∗, other edges contracted 

Case  of a loop :

∗ ∗ ∗ ∗
∗ ∗      � ∗   ∗         ∗         ∗        ∗
∗  ∗

For edge labels, the technique is similar :

∗ ∗ ∗    ∗ ∗
∗ ∗      � ∗   ∗         ∗         ∗        ∗
∗ ∗ ∗ ∗

Decoding : ∗        ∗  �      ∗       ∗, 
∗        ∗  �      ∗       ∗, 
other edges contracted



 3-vertex-colored chordal graphs  � Directed 

∗
∗

∗
∗ ∗    �       ∗ ∗

∗ ∗    ∗
∗   ∗

Directed graph, n vertices,  Kn + vertices, edges

∗
∗

∗            � ∗
    ∗    ∗
   

Directed edges are created from this pattern ; blue and red
vertices are deleted



7. Description of  MS compatible structure
transformations ?

Which structure transformations are MS -compatible ?

MS compatible transformations of structures  :

1. MS-transductions

2. The composition of two MS compatible
 transformations (clear from the definition)

3. Unfolding

4.The Shelah-Stupp-Muchnik tree expansion (proved
by  Walukiewicz).

Can every MS-compatible transformation be obtained from

these cases ?



The Shelah-Stupp-Muchnik  Construction

Structure    �                              Structure 
     M   Tree(M)

M =  <V, edg(.,.)>

Tree(M) = <Seq(V), edgSeq(.,.),son(.,.),clone(.)>

Seq(V) = nonempty sequences over V,

edgSeq = { (wx,wy) /  w ∈  V*,(x,y) 2 edg}
   son     = { (w,wx) /  w ∈  Seq(V), x 2 V},

clone   = {  wxx  /  w ∈  V* , x ∈  V},
 (clone = copy  of its  father).

Theorem (Walukiewicz): The mapping M �             Tree(M)
is MS-compatible.

Observation: For  a  graph G, the tree Unf(G) is  MS- definable  inside
Tree(G)    (whence, definable from Tree(G)  by  an MS-transduction).

Consequence: The mapping  Unf  is  MS-compatible, as composition of
two  MS-compatible  mappings.



8.  Other open questions

8.1  For a Noetherian  and  confluent  term  rewriting

system,  the normal  form mapping goes from

finite terms  to  finite  terms .

When  is  it  an  MS-transduction ?

When is  it  MS-compatible?

8.2  Operations on finite graphs such that the value mapping

has  good algorithmic behaviour but is not an MS transduction ?

(Might give counter-examples to Seese’s conjecture.)
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